| //===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | /// \file | 
 | /// This file defines ObjC ARC optimizations. ARC stands for Automatic | 
 | /// Reference Counting and is a system for managing reference counts for objects | 
 | /// in Objective C. | 
 | /// | 
 | /// The optimizations performed include elimination of redundant, partially | 
 | /// redundant, and inconsequential reference count operations, elimination of | 
 | /// redundant weak pointer operations, and numerous minor simplifications. | 
 | /// | 
 | /// WARNING: This file knows about certain library functions. It recognizes them | 
 | /// by name, and hardwires knowledge of their semantics. | 
 | /// | 
 | /// WARNING: This file knows about how certain Objective-C library functions are | 
 | /// used. Naive LLVM IR transformations which would otherwise be | 
 | /// behavior-preserving may break these assumptions. | 
 | /// | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "objc-arc-opts" | 
 | #include "ObjCARC.h" | 
 | #include "ARCRuntimeEntryPoints.h" | 
 | #include "DependencyAnalysis.h" | 
 | #include "ObjCARCAliasAnalysis.h" | 
 | #include "ProvenanceAnalysis.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/DenseSet.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/IR/IRBuilder.h" | 
 | #include "llvm/IR/LLVMContext.h" | 
 | #include "llvm/Support/CFG.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 |  | 
 | using namespace llvm; | 
 | using namespace llvm::objcarc; | 
 |  | 
 | /// \defgroup MiscUtils Miscellaneous utilities that are not ARC specific. | 
 | /// @{ | 
 |  | 
 | namespace { | 
 |   /// \brief An associative container with fast insertion-order (deterministic) | 
 |   /// iteration over its elements. Plus the special blot operation. | 
 |   template<class KeyT, class ValueT> | 
 |   class MapVector { | 
 |     /// Map keys to indices in Vector. | 
 |     typedef DenseMap<KeyT, size_t> MapTy; | 
 |     MapTy Map; | 
 |  | 
 |     typedef std::vector<std::pair<KeyT, ValueT> > VectorTy; | 
 |     /// Keys and values. | 
 |     VectorTy Vector; | 
 |  | 
 |   public: | 
 |     typedef typename VectorTy::iterator iterator; | 
 |     typedef typename VectorTy::const_iterator const_iterator; | 
 |     iterator begin() { return Vector.begin(); } | 
 |     iterator end() { return Vector.end(); } | 
 |     const_iterator begin() const { return Vector.begin(); } | 
 |     const_iterator end() const { return Vector.end(); } | 
 |  | 
 | #ifdef XDEBUG | 
 |     ~MapVector() { | 
 |       assert(Vector.size() >= Map.size()); // May differ due to blotting. | 
 |       for (typename MapTy::const_iterator I = Map.begin(), E = Map.end(); | 
 |            I != E; ++I) { | 
 |         assert(I->second < Vector.size()); | 
 |         assert(Vector[I->second].first == I->first); | 
 |       } | 
 |       for (typename VectorTy::const_iterator I = Vector.begin(), | 
 |            E = Vector.end(); I != E; ++I) | 
 |         assert(!I->first || | 
 |                (Map.count(I->first) && | 
 |                 Map[I->first] == size_t(I - Vector.begin()))); | 
 |     } | 
 | #endif | 
 |  | 
 |     ValueT &operator[](const KeyT &Arg) { | 
 |       std::pair<typename MapTy::iterator, bool> Pair = | 
 |         Map.insert(std::make_pair(Arg, size_t(0))); | 
 |       if (Pair.second) { | 
 |         size_t Num = Vector.size(); | 
 |         Pair.first->second = Num; | 
 |         Vector.push_back(std::make_pair(Arg, ValueT())); | 
 |         return Vector[Num].second; | 
 |       } | 
 |       return Vector[Pair.first->second].second; | 
 |     } | 
 |  | 
 |     std::pair<iterator, bool> | 
 |     insert(const std::pair<KeyT, ValueT> &InsertPair) { | 
 |       std::pair<typename MapTy::iterator, bool> Pair = | 
 |         Map.insert(std::make_pair(InsertPair.first, size_t(0))); | 
 |       if (Pair.second) { | 
 |         size_t Num = Vector.size(); | 
 |         Pair.first->second = Num; | 
 |         Vector.push_back(InsertPair); | 
 |         return std::make_pair(Vector.begin() + Num, true); | 
 |       } | 
 |       return std::make_pair(Vector.begin() + Pair.first->second, false); | 
 |     } | 
 |  | 
 |     iterator find(const KeyT &Key) { | 
 |       typename MapTy::iterator It = Map.find(Key); | 
 |       if (It == Map.end()) return Vector.end(); | 
 |       return Vector.begin() + It->second; | 
 |     } | 
 |  | 
 |     const_iterator find(const KeyT &Key) const { | 
 |       typename MapTy::const_iterator It = Map.find(Key); | 
 |       if (It == Map.end()) return Vector.end(); | 
 |       return Vector.begin() + It->second; | 
 |     } | 
 |  | 
 |     /// This is similar to erase, but instead of removing the element from the | 
 |     /// vector, it just zeros out the key in the vector. This leaves iterators | 
 |     /// intact, but clients must be prepared for zeroed-out keys when iterating. | 
 |     void blot(const KeyT &Key) { | 
 |       typename MapTy::iterator It = Map.find(Key); | 
 |       if (It == Map.end()) return; | 
 |       Vector[It->second].first = KeyT(); | 
 |       Map.erase(It); | 
 |     } | 
 |  | 
 |     void clear() { | 
 |       Map.clear(); | 
 |       Vector.clear(); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | /// @} | 
 | /// | 
 | /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC. | 
 | /// @{ | 
 |  | 
 | /// \brief This is similar to StripPointerCastsAndObjCCalls but it stops as soon | 
 | /// as it finds a value with multiple uses. | 
 | static const Value *FindSingleUseIdentifiedObject(const Value *Arg) { | 
 |   if (Arg->hasOneUse()) { | 
 |     if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg)) | 
 |       return FindSingleUseIdentifiedObject(BC->getOperand(0)); | 
 |     if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg)) | 
 |       if (GEP->hasAllZeroIndices()) | 
 |         return FindSingleUseIdentifiedObject(GEP->getPointerOperand()); | 
 |     if (IsForwarding(GetBasicInstructionClass(Arg))) | 
 |       return FindSingleUseIdentifiedObject( | 
 |                cast<CallInst>(Arg)->getArgOperand(0)); | 
 |     if (!IsObjCIdentifiedObject(Arg)) | 
 |       return 0; | 
 |     return Arg; | 
 |   } | 
 |  | 
 |   // If we found an identifiable object but it has multiple uses, but they are | 
 |   // trivial uses, we can still consider this to be a single-use value. | 
 |   if (IsObjCIdentifiedObject(Arg)) { | 
 |     for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end(); | 
 |          UI != UE; ++UI) { | 
 |       const User *U = *UI; | 
 |       if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg) | 
 |          return 0; | 
 |     } | 
 |  | 
 |     return Arg; | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /// This is a wrapper around getUnderlyingObjCPtr along the lines of | 
 | /// GetUnderlyingObjects except that it returns early when it sees the first | 
 | /// alloca. | 
 | static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V) { | 
 |   SmallPtrSet<const Value *, 4> Visited; | 
 |   SmallVector<const Value *, 4> Worklist; | 
 |   Worklist.push_back(V); | 
 |   do { | 
 |     const Value *P = Worklist.pop_back_val(); | 
 |     P = GetUnderlyingObjCPtr(P); | 
 |  | 
 |     if (isa<AllocaInst>(P)) | 
 |       return true; | 
 |  | 
 |     if (!Visited.insert(P)) | 
 |       continue; | 
 |  | 
 |     if (const SelectInst *SI = dyn_cast<const SelectInst>(P)) { | 
 |       Worklist.push_back(SI->getTrueValue()); | 
 |       Worklist.push_back(SI->getFalseValue()); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (const PHINode *PN = dyn_cast<const PHINode>(P)) { | 
 |       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
 |         Worklist.push_back(PN->getIncomingValue(i)); | 
 |       continue; | 
 |     } | 
 |   } while (!Worklist.empty()); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | /// @} | 
 | /// | 
 | /// \defgroup ARCOpt ARC Optimization. | 
 | /// @{ | 
 |  | 
 | // TODO: On code like this: | 
 | // | 
 | // objc_retain(%x) | 
 | // stuff_that_cannot_release() | 
 | // objc_autorelease(%x) | 
 | // stuff_that_cannot_release() | 
 | // objc_retain(%x) | 
 | // stuff_that_cannot_release() | 
 | // objc_autorelease(%x) | 
 | // | 
 | // The second retain and autorelease can be deleted. | 
 |  | 
 | // TODO: It should be possible to delete | 
 | // objc_autoreleasePoolPush and objc_autoreleasePoolPop | 
 | // pairs if nothing is actually autoreleased between them. Also, autorelease | 
 | // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code | 
 | // after inlining) can be turned into plain release calls. | 
 |  | 
 | // TODO: Critical-edge splitting. If the optimial insertion point is | 
 | // a critical edge, the current algorithm has to fail, because it doesn't | 
 | // know how to split edges. It should be possible to make the optimizer | 
 | // think in terms of edges, rather than blocks, and then split critical | 
 | // edges on demand. | 
 |  | 
 | // TODO: OptimizeSequences could generalized to be Interprocedural. | 
 |  | 
 | // TODO: Recognize that a bunch of other objc runtime calls have | 
 | // non-escaping arguments and non-releasing arguments, and may be | 
 | // non-autoreleasing. | 
 |  | 
 | // TODO: Sink autorelease calls as far as possible. Unfortunately we | 
 | // usually can't sink them past other calls, which would be the main | 
 | // case where it would be useful. | 
 |  | 
 | // TODO: The pointer returned from objc_loadWeakRetained is retained. | 
 |  | 
 | // TODO: Delete release+retain pairs (rare). | 
 |  | 
 | STATISTIC(NumNoops,       "Number of no-op objc calls eliminated"); | 
 | STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated"); | 
 | STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases"); | 
 | STATISTIC(NumRets,        "Number of return value forwarding " | 
 |                           "retain+autoreleases eliminated"); | 
 | STATISTIC(NumRRs,         "Number of retain+release paths eliminated"); | 
 | STATISTIC(NumPeeps,       "Number of calls peephole-optimized"); | 
 | #ifndef NDEBUG | 
 | STATISTIC(NumRetainsBeforeOpt, | 
 |           "Number of retains before optimization"); | 
 | STATISTIC(NumReleasesBeforeOpt, | 
 |           "Number of releases before optimization"); | 
 | STATISTIC(NumRetainsAfterOpt, | 
 |           "Number of retains after optimization"); | 
 | STATISTIC(NumReleasesAfterOpt, | 
 |           "Number of releases after optimization"); | 
 | #endif | 
 |  | 
 | namespace { | 
 |   /// \enum Sequence | 
 |   /// | 
 |   /// \brief A sequence of states that a pointer may go through in which an | 
 |   /// objc_retain and objc_release are actually needed. | 
 |   enum Sequence { | 
 |     S_None, | 
 |     S_Retain,         ///< objc_retain(x). | 
 |     S_CanRelease,     ///< foo(x) -- x could possibly see a ref count decrement. | 
 |     S_Use,            ///< any use of x. | 
 |     S_Stop,           ///< like S_Release, but code motion is stopped. | 
 |     S_Release,        ///< objc_release(x). | 
 |     S_MovableRelease  ///< objc_release(x), !clang.imprecise_release. | 
 |   }; | 
 |  | 
 |   raw_ostream &operator<<(raw_ostream &OS, const Sequence S) | 
 |     LLVM_ATTRIBUTE_UNUSED; | 
 |   raw_ostream &operator<<(raw_ostream &OS, const Sequence S) { | 
 |     switch (S) { | 
 |     case S_None: | 
 |       return OS << "S_None"; | 
 |     case S_Retain: | 
 |       return OS << "S_Retain"; | 
 |     case S_CanRelease: | 
 |       return OS << "S_CanRelease"; | 
 |     case S_Use: | 
 |       return OS << "S_Use"; | 
 |     case S_Release: | 
 |       return OS << "S_Release"; | 
 |     case S_MovableRelease: | 
 |       return OS << "S_MovableRelease"; | 
 |     case S_Stop: | 
 |       return OS << "S_Stop"; | 
 |     } | 
 |     llvm_unreachable("Unknown sequence type."); | 
 |   } | 
 | } | 
 |  | 
 | static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) { | 
 |   // The easy cases. | 
 |   if (A == B) | 
 |     return A; | 
 |   if (A == S_None || B == S_None) | 
 |     return S_None; | 
 |  | 
 |   if (A > B) std::swap(A, B); | 
 |   if (TopDown) { | 
 |     // Choose the side which is further along in the sequence. | 
 |     if ((A == S_Retain || A == S_CanRelease) && | 
 |         (B == S_CanRelease || B == S_Use)) | 
 |       return B; | 
 |   } else { | 
 |     // Choose the side which is further along in the sequence. | 
 |     if ((A == S_Use || A == S_CanRelease) && | 
 |         (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease)) | 
 |       return A; | 
 |     // If both sides are releases, choose the more conservative one. | 
 |     if (A == S_Stop && (B == S_Release || B == S_MovableRelease)) | 
 |       return A; | 
 |     if (A == S_Release && B == S_MovableRelease) | 
 |       return A; | 
 |   } | 
 |  | 
 |   return S_None; | 
 | } | 
 |  | 
 | namespace { | 
 |   /// \brief Unidirectional information about either a | 
 |   /// retain-decrement-use-release sequence or release-use-decrement-retain | 
 |   /// reverse sequence. | 
 |   struct RRInfo { | 
 |     /// After an objc_retain, the reference count of the referenced | 
 |     /// object is known to be positive. Similarly, before an objc_release, the | 
 |     /// reference count of the referenced object is known to be positive. If | 
 |     /// there are retain-release pairs in code regions where the retain count | 
 |     /// is known to be positive, they can be eliminated, regardless of any side | 
 |     /// effects between them. | 
 |     /// | 
 |     /// Also, a retain+release pair nested within another retain+release | 
 |     /// pair all on the known same pointer value can be eliminated, regardless | 
 |     /// of any intervening side effects. | 
 |     /// | 
 |     /// KnownSafe is true when either of these conditions is satisfied. | 
 |     bool KnownSafe; | 
 |  | 
 |     /// True of the objc_release calls are all marked with the "tail" keyword. | 
 |     bool IsTailCallRelease; | 
 |  | 
 |     /// If the Calls are objc_release calls and they all have a | 
 |     /// clang.imprecise_release tag, this is the metadata tag. | 
 |     MDNode *ReleaseMetadata; | 
 |  | 
 |     /// For a top-down sequence, the set of objc_retains or | 
 |     /// objc_retainBlocks. For bottom-up, the set of objc_releases. | 
 |     SmallPtrSet<Instruction *, 2> Calls; | 
 |  | 
 |     /// The set of optimal insert positions for moving calls in the opposite | 
 |     /// sequence. | 
 |     SmallPtrSet<Instruction *, 2> ReverseInsertPts; | 
 |  | 
 |     /// If this is true, we cannot perform code motion but can still remove | 
 |     /// retain/release pairs. | 
 |     bool CFGHazardAfflicted; | 
 |  | 
 |     RRInfo() : | 
 |       KnownSafe(false), IsTailCallRelease(false), ReleaseMetadata(0), | 
 |       CFGHazardAfflicted(false) {} | 
 |  | 
 |     void clear(); | 
 |  | 
 |     /// Conservatively merge the two RRInfo. Returns true if a partial merge has | 
 |     /// occured, false otherwise. | 
 |     bool Merge(const RRInfo &Other); | 
 |  | 
 |   }; | 
 | } | 
 |  | 
 | void RRInfo::clear() { | 
 |   KnownSafe = false; | 
 |   IsTailCallRelease = false; | 
 |   ReleaseMetadata = 0; | 
 |   Calls.clear(); | 
 |   ReverseInsertPts.clear(); | 
 |   CFGHazardAfflicted = false; | 
 | } | 
 |  | 
 | bool RRInfo::Merge(const RRInfo &Other) { | 
 |     // Conservatively merge the ReleaseMetadata information. | 
 |     if (ReleaseMetadata != Other.ReleaseMetadata) | 
 |       ReleaseMetadata = 0; | 
 |  | 
 |     // Conservatively merge the boolean state. | 
 |     KnownSafe &= Other.KnownSafe; | 
 |     IsTailCallRelease &= Other.IsTailCallRelease; | 
 |     CFGHazardAfflicted |= Other.CFGHazardAfflicted; | 
 |  | 
 |     // Merge the call sets. | 
 |     Calls.insert(Other.Calls.begin(), Other.Calls.end()); | 
 |  | 
 |     // Merge the insert point sets. If there are any differences, | 
 |     // that makes this a partial merge. | 
 |     bool Partial = ReverseInsertPts.size() != Other.ReverseInsertPts.size(); | 
 |     for (SmallPtrSet<Instruction *, 2>::const_iterator | 
 |          I = Other.ReverseInsertPts.begin(), | 
 |          E = Other.ReverseInsertPts.end(); I != E; ++I) | 
 |       Partial |= ReverseInsertPts.insert(*I); | 
 |     return Partial; | 
 | } | 
 |  | 
 | namespace { | 
 |   /// \brief This class summarizes several per-pointer runtime properties which | 
 |   /// are propogated through the flow graph. | 
 |   class PtrState { | 
 |     /// True if the reference count is known to be incremented. | 
 |     bool KnownPositiveRefCount; | 
 |  | 
 |     /// True if we've seen an opportunity for partial RR elimination, such as | 
 |     /// pushing calls into a CFG triangle or into one side of a CFG diamond. | 
 |     bool Partial; | 
 |  | 
 |     /// The current position in the sequence. | 
 |     unsigned char Seq : 8; | 
 |  | 
 |     /// Unidirectional information about the current sequence. | 
 |     RRInfo RRI; | 
 |  | 
 |   public: | 
 |     PtrState() : KnownPositiveRefCount(false), Partial(false), | 
 |                  Seq(S_None) {} | 
 |  | 
 |  | 
 |     bool IsKnownSafe() const { | 
 |       return RRI.KnownSafe; | 
 |     } | 
 |  | 
 |     void SetKnownSafe(const bool NewValue) { | 
 |       RRI.KnownSafe = NewValue; | 
 |     } | 
 |  | 
 |     bool IsTailCallRelease() const { | 
 |       return RRI.IsTailCallRelease; | 
 |     } | 
 |  | 
 |     void SetTailCallRelease(const bool NewValue) { | 
 |       RRI.IsTailCallRelease = NewValue; | 
 |     } | 
 |  | 
 |     bool IsTrackingImpreciseReleases() const { | 
 |       return RRI.ReleaseMetadata != 0; | 
 |     } | 
 |  | 
 |     const MDNode *GetReleaseMetadata() const { | 
 |       return RRI.ReleaseMetadata; | 
 |     } | 
 |  | 
 |     void SetReleaseMetadata(MDNode *NewValue) { | 
 |       RRI.ReleaseMetadata = NewValue; | 
 |     } | 
 |  | 
 |     bool IsCFGHazardAfflicted() const { | 
 |       return RRI.CFGHazardAfflicted; | 
 |     } | 
 |  | 
 |     void SetCFGHazardAfflicted(const bool NewValue) { | 
 |       RRI.CFGHazardAfflicted = NewValue; | 
 |     } | 
 |  | 
 |     void SetKnownPositiveRefCount() { | 
 |       DEBUG(dbgs() << "Setting Known Positive.\n"); | 
 |       KnownPositiveRefCount = true; | 
 |     } | 
 |  | 
 |     void ClearKnownPositiveRefCount() { | 
 |       DEBUG(dbgs() << "Clearing Known Positive.\n"); | 
 |       KnownPositiveRefCount = false; | 
 |     } | 
 |  | 
 |     bool HasKnownPositiveRefCount() const { | 
 |       return KnownPositiveRefCount; | 
 |     } | 
 |  | 
 |     void SetSeq(Sequence NewSeq) { | 
 |       DEBUG(dbgs() << "Old: " << Seq << "; New: " << NewSeq << "\n"); | 
 |       Seq = NewSeq; | 
 |     } | 
 |  | 
 |     Sequence GetSeq() const { | 
 |       return static_cast<Sequence>(Seq); | 
 |     } | 
 |  | 
 |     void ClearSequenceProgress() { | 
 |       ResetSequenceProgress(S_None); | 
 |     } | 
 |  | 
 |     void ResetSequenceProgress(Sequence NewSeq) { | 
 |       DEBUG(dbgs() << "Resetting sequence progress.\n"); | 
 |       SetSeq(NewSeq); | 
 |       Partial = false; | 
 |       RRI.clear(); | 
 |     } | 
 |  | 
 |     void Merge(const PtrState &Other, bool TopDown); | 
 |  | 
 |     void InsertCall(Instruction *I) { | 
 |       RRI.Calls.insert(I); | 
 |     } | 
 |  | 
 |     void InsertReverseInsertPt(Instruction *I) { | 
 |       RRI.ReverseInsertPts.insert(I); | 
 |     } | 
 |  | 
 |     void ClearReverseInsertPts() { | 
 |       RRI.ReverseInsertPts.clear(); | 
 |     } | 
 |  | 
 |     bool HasReverseInsertPts() const { | 
 |       return !RRI.ReverseInsertPts.empty(); | 
 |     } | 
 |  | 
 |     const RRInfo &GetRRInfo() const { | 
 |       return RRI; | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | void | 
 | PtrState::Merge(const PtrState &Other, bool TopDown) { | 
 |   Seq = MergeSeqs(GetSeq(), Other.GetSeq(), TopDown); | 
 |   KnownPositiveRefCount &= Other.KnownPositiveRefCount; | 
 |  | 
 |   // If we're not in a sequence (anymore), drop all associated state. | 
 |   if (Seq == S_None) { | 
 |     Partial = false; | 
 |     RRI.clear(); | 
 |   } else if (Partial || Other.Partial) { | 
 |     // If we're doing a merge on a path that's previously seen a partial | 
 |     // merge, conservatively drop the sequence, to avoid doing partial | 
 |     // RR elimination. If the branch predicates for the two merge differ, | 
 |     // mixing them is unsafe. | 
 |     ClearSequenceProgress(); | 
 |   } else { | 
 |     // Otherwise merge the other PtrState's RRInfo into our RRInfo. At this | 
 |     // point, we know that currently we are not partial. Stash whether or not | 
 |     // the merge operation caused us to undergo a partial merging of reverse | 
 |     // insertion points. | 
 |     Partial = RRI.Merge(Other.RRI); | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |   /// \brief Per-BasicBlock state. | 
 |   class BBState { | 
 |     /// The number of unique control paths from the entry which can reach this | 
 |     /// block. | 
 |     unsigned TopDownPathCount; | 
 |  | 
 |     /// The number of unique control paths to exits from this block. | 
 |     unsigned BottomUpPathCount; | 
 |  | 
 |     /// A type for PerPtrTopDown and PerPtrBottomUp. | 
 |     typedef MapVector<const Value *, PtrState> MapTy; | 
 |  | 
 |     /// The top-down traversal uses this to record information known about a | 
 |     /// pointer at the bottom of each block. | 
 |     MapTy PerPtrTopDown; | 
 |  | 
 |     /// The bottom-up traversal uses this to record information known about a | 
 |     /// pointer at the top of each block. | 
 |     MapTy PerPtrBottomUp; | 
 |  | 
 |     /// Effective predecessors of the current block ignoring ignorable edges and | 
 |     /// ignored backedges. | 
 |     SmallVector<BasicBlock *, 2> Preds; | 
 |     /// Effective successors of the current block ignoring ignorable edges and | 
 |     /// ignored backedges. | 
 |     SmallVector<BasicBlock *, 2> Succs; | 
 |  | 
 |   public: | 
 |     static const unsigned OverflowOccurredValue; | 
 |  | 
 |     BBState() : TopDownPathCount(0), BottomUpPathCount(0) { } | 
 |  | 
 |     typedef MapTy::iterator ptr_iterator; | 
 |     typedef MapTy::const_iterator ptr_const_iterator; | 
 |  | 
 |     ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); } | 
 |     ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); } | 
 |     ptr_const_iterator top_down_ptr_begin() const { | 
 |       return PerPtrTopDown.begin(); | 
 |     } | 
 |     ptr_const_iterator top_down_ptr_end() const { | 
 |       return PerPtrTopDown.end(); | 
 |     } | 
 |  | 
 |     ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); } | 
 |     ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); } | 
 |     ptr_const_iterator bottom_up_ptr_begin() const { | 
 |       return PerPtrBottomUp.begin(); | 
 |     } | 
 |     ptr_const_iterator bottom_up_ptr_end() const { | 
 |       return PerPtrBottomUp.end(); | 
 |     } | 
 |  | 
 |     /// Mark this block as being an entry block, which has one path from the | 
 |     /// entry by definition. | 
 |     void SetAsEntry() { TopDownPathCount = 1; } | 
 |  | 
 |     /// Mark this block as being an exit block, which has one path to an exit by | 
 |     /// definition. | 
 |     void SetAsExit()  { BottomUpPathCount = 1; } | 
 |  | 
 |     /// Attempt to find the PtrState object describing the top down state for | 
 |     /// pointer Arg. Return a new initialized PtrState describing the top down | 
 |     /// state for Arg if we do not find one. | 
 |     PtrState &getPtrTopDownState(const Value *Arg) { | 
 |       return PerPtrTopDown[Arg]; | 
 |     } | 
 |  | 
 |     /// Attempt to find the PtrState object describing the bottom up state for | 
 |     /// pointer Arg. Return a new initialized PtrState describing the bottom up | 
 |     /// state for Arg if we do not find one. | 
 |     PtrState &getPtrBottomUpState(const Value *Arg) { | 
 |       return PerPtrBottomUp[Arg]; | 
 |     } | 
 |  | 
 |     /// Attempt to find the PtrState object describing the bottom up state for | 
 |     /// pointer Arg. | 
 |     ptr_iterator findPtrBottomUpState(const Value *Arg) { | 
 |       return PerPtrBottomUp.find(Arg); | 
 |     } | 
 |  | 
 |     void clearBottomUpPointers() { | 
 |       PerPtrBottomUp.clear(); | 
 |     } | 
 |  | 
 |     void clearTopDownPointers() { | 
 |       PerPtrTopDown.clear(); | 
 |     } | 
 |  | 
 |     void InitFromPred(const BBState &Other); | 
 |     void InitFromSucc(const BBState &Other); | 
 |     void MergePred(const BBState &Other); | 
 |     void MergeSucc(const BBState &Other); | 
 |  | 
 |     /// Compute the number of possible unique paths from an entry to an exit | 
 |     /// which pass through this block. This is only valid after both the | 
 |     /// top-down and bottom-up traversals are complete. | 
 |     /// | 
 |     /// Returns true if overflow occured. Returns false if overflow did not | 
 |     /// occur. | 
 |     bool GetAllPathCountWithOverflow(unsigned &PathCount) const { | 
 |       if (TopDownPathCount == OverflowOccurredValue || | 
 |           BottomUpPathCount == OverflowOccurredValue) | 
 |         return true; | 
 |       unsigned long long Product = | 
 |         (unsigned long long)TopDownPathCount*BottomUpPathCount; | 
 |       // Overflow occured if any of the upper bits of Product are set or if all | 
 |       // the lower bits of Product are all set. | 
 |       return (Product >> 32) || | 
 |              ((PathCount = Product) == OverflowOccurredValue); | 
 |     } | 
 |  | 
 |     // Specialized CFG utilities. | 
 |     typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator; | 
 |     edge_iterator pred_begin() const { return Preds.begin(); } | 
 |     edge_iterator pred_end() const { return Preds.end(); } | 
 |     edge_iterator succ_begin() const { return Succs.begin(); } | 
 |     edge_iterator succ_end() const { return Succs.end(); } | 
 |  | 
 |     void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); } | 
 |     void addPred(BasicBlock *Pred) { Preds.push_back(Pred); } | 
 |  | 
 |     bool isExit() const { return Succs.empty(); } | 
 |   }; | 
 |  | 
 |   const unsigned BBState::OverflowOccurredValue = 0xffffffff; | 
 | } | 
 |  | 
 | void BBState::InitFromPred(const BBState &Other) { | 
 |   PerPtrTopDown = Other.PerPtrTopDown; | 
 |   TopDownPathCount = Other.TopDownPathCount; | 
 | } | 
 |  | 
 | void BBState::InitFromSucc(const BBState &Other) { | 
 |   PerPtrBottomUp = Other.PerPtrBottomUp; | 
 |   BottomUpPathCount = Other.BottomUpPathCount; | 
 | } | 
 |  | 
 | /// The top-down traversal uses this to merge information about predecessors to | 
 | /// form the initial state for a new block. | 
 | void BBState::MergePred(const BBState &Other) { | 
 |   if (TopDownPathCount == OverflowOccurredValue) | 
 |     return; | 
 |  | 
 |   // Other.TopDownPathCount can be 0, in which case it is either dead or a | 
 |   // loop backedge. Loop backedges are special. | 
 |   TopDownPathCount += Other.TopDownPathCount; | 
 |  | 
 |   // In order to be consistent, we clear the top down pointers when by adding | 
 |   // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow | 
 |   // has not occured. | 
 |   if (TopDownPathCount == OverflowOccurredValue) { | 
 |     clearTopDownPointers(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Check for overflow. If we have overflow, fall back to conservative | 
 |   // behavior. | 
 |   if (TopDownPathCount < Other.TopDownPathCount) { | 
 |     TopDownPathCount = OverflowOccurredValue; | 
 |     clearTopDownPointers(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // For each entry in the other set, if our set has an entry with the same key, | 
 |   // merge the entries. Otherwise, copy the entry and merge it with an empty | 
 |   // entry. | 
 |   for (ptr_const_iterator MI = Other.top_down_ptr_begin(), | 
 |        ME = Other.top_down_ptr_end(); MI != ME; ++MI) { | 
 |     std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI); | 
 |     Pair.first->second.Merge(Pair.second ? PtrState() : MI->second, | 
 |                              /*TopDown=*/true); | 
 |   } | 
 |  | 
 |   // For each entry in our set, if the other set doesn't have an entry with the | 
 |   // same key, force it to merge with an empty entry. | 
 |   for (ptr_iterator MI = top_down_ptr_begin(), | 
 |        ME = top_down_ptr_end(); MI != ME; ++MI) | 
 |     if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end()) | 
 |       MI->second.Merge(PtrState(), /*TopDown=*/true); | 
 | } | 
 |  | 
 | /// The bottom-up traversal uses this to merge information about successors to | 
 | /// form the initial state for a new block. | 
 | void BBState::MergeSucc(const BBState &Other) { | 
 |   if (BottomUpPathCount == OverflowOccurredValue) | 
 |     return; | 
 |  | 
 |   // Other.BottomUpPathCount can be 0, in which case it is either dead or a | 
 |   // loop backedge. Loop backedges are special. | 
 |   BottomUpPathCount += Other.BottomUpPathCount; | 
 |  | 
 |   // In order to be consistent, we clear the top down pointers when by adding | 
 |   // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow | 
 |   // has not occured. | 
 |   if (BottomUpPathCount == OverflowOccurredValue) { | 
 |     clearBottomUpPointers(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Check for overflow. If we have overflow, fall back to conservative | 
 |   // behavior. | 
 |   if (BottomUpPathCount < Other.BottomUpPathCount) { | 
 |     BottomUpPathCount = OverflowOccurredValue; | 
 |     clearBottomUpPointers(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // For each entry in the other set, if our set has an entry with the | 
 |   // same key, merge the entries. Otherwise, copy the entry and merge | 
 |   // it with an empty entry. | 
 |   for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(), | 
 |        ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) { | 
 |     std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI); | 
 |     Pair.first->second.Merge(Pair.second ? PtrState() : MI->second, | 
 |                              /*TopDown=*/false); | 
 |   } | 
 |  | 
 |   // For each entry in our set, if the other set doesn't have an entry | 
 |   // with the same key, force it to merge with an empty entry. | 
 |   for (ptr_iterator MI = bottom_up_ptr_begin(), | 
 |        ME = bottom_up_ptr_end(); MI != ME; ++MI) | 
 |     if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end()) | 
 |       MI->second.Merge(PtrState(), /*TopDown=*/false); | 
 | } | 
 |  | 
 | // Only enable ARC Annotations if we are building a debug version of | 
 | // libObjCARCOpts. | 
 | #ifndef NDEBUG | 
 | #define ARC_ANNOTATIONS | 
 | #endif | 
 |  | 
 | // Define some macros along the lines of DEBUG and some helper functions to make | 
 | // it cleaner to create annotations in the source code and to no-op when not | 
 | // building in debug mode. | 
 | #ifdef ARC_ANNOTATIONS | 
 |  | 
 | #include "llvm/Support/CommandLine.h" | 
 |  | 
 | /// Enable/disable ARC sequence annotations. | 
 | static cl::opt<bool> | 
 | EnableARCAnnotations("enable-objc-arc-annotations", cl::init(false), | 
 |                      cl::desc("Enable emission of arc data flow analysis " | 
 |                               "annotations")); | 
 | static cl::opt<bool> | 
 | DisableCheckForCFGHazards("disable-objc-arc-checkforcfghazards", cl::init(false), | 
 |                           cl::desc("Disable check for cfg hazards when " | 
 |                                    "annotating")); | 
 | static cl::opt<std::string> | 
 | ARCAnnotationTargetIdentifier("objc-arc-annotation-target-identifier", | 
 |                               cl::init(""), | 
 |                               cl::desc("filter out all data flow annotations " | 
 |                                        "but those that apply to the given " | 
 |                                        "target llvm identifier.")); | 
 |  | 
 | /// This function appends a unique ARCAnnotationProvenanceSourceMDKind id to an | 
 | /// instruction so that we can track backwards when post processing via the llvm | 
 | /// arc annotation processor tool. If the function is an | 
 | static MDString *AppendMDNodeToSourcePtr(unsigned NodeId, | 
 |                                          Value *Ptr) { | 
 |   MDString *Hash = 0; | 
 |  | 
 |   // If pointer is a result of an instruction and it does not have a source | 
 |   // MDNode it, attach a new MDNode onto it. If pointer is a result of | 
 |   // an instruction and does have a source MDNode attached to it, return a | 
 |   // reference to said Node. Otherwise just return 0. | 
 |   if (Instruction *Inst = dyn_cast<Instruction>(Ptr)) { | 
 |     MDNode *Node; | 
 |     if (!(Node = Inst->getMetadata(NodeId))) { | 
 |       // We do not have any node. Generate and attatch the hash MDString to the | 
 |       // instruction. | 
 |  | 
 |       // We just use an MDString to ensure that this metadata gets written out | 
 |       // of line at the module level and to provide a very simple format | 
 |       // encoding the information herein. Both of these makes it simpler to | 
 |       // parse the annotations by a simple external program. | 
 |       std::string Str; | 
 |       raw_string_ostream os(Str); | 
 |       os << "(" << Inst->getParent()->getParent()->getName() << ",%" | 
 |          << Inst->getName() << ")"; | 
 |  | 
 |       Hash = MDString::get(Inst->getContext(), os.str()); | 
 |       Inst->setMetadata(NodeId, MDNode::get(Inst->getContext(),Hash)); | 
 |     } else { | 
 |       // We have a node. Grab its hash and return it. | 
 |       assert(Node->getNumOperands() == 1 && | 
 |         "An ARCAnnotationProvenanceSourceMDKind can only have 1 operand."); | 
 |       Hash = cast<MDString>(Node->getOperand(0)); | 
 |     } | 
 |   } else if (Argument *Arg = dyn_cast<Argument>(Ptr)) { | 
 |     std::string str; | 
 |     raw_string_ostream os(str); | 
 |     os << "(" << Arg->getParent()->getName() << ",%" << Arg->getName() | 
 |        << ")"; | 
 |     Hash = MDString::get(Arg->getContext(), os.str()); | 
 |   } | 
 |  | 
 |   return Hash; | 
 | } | 
 |  | 
 | static std::string SequenceToString(Sequence A) { | 
 |   std::string str; | 
 |   raw_string_ostream os(str); | 
 |   os << A; | 
 |   return os.str(); | 
 | } | 
 |  | 
 | /// Helper function to change a Sequence into a String object using our overload | 
 | /// for raw_ostream so we only have printing code in one location. | 
 | static MDString *SequenceToMDString(LLVMContext &Context, | 
 |                                     Sequence A) { | 
 |   return MDString::get(Context, SequenceToString(A)); | 
 | } | 
 |  | 
 | /// A simple function to generate a MDNode which describes the change in state | 
 | /// for Value *Ptr caused by Instruction *Inst. | 
 | static void AppendMDNodeToInstForPtr(unsigned NodeId, | 
 |                                      Instruction *Inst, | 
 |                                      Value *Ptr, | 
 |                                      MDString *PtrSourceMDNodeID, | 
 |                                      Sequence OldSeq, | 
 |                                      Sequence NewSeq) { | 
 |   MDNode *Node = 0; | 
 |   Value *tmp[3] = {PtrSourceMDNodeID, | 
 |                    SequenceToMDString(Inst->getContext(), | 
 |                                       OldSeq), | 
 |                    SequenceToMDString(Inst->getContext(), | 
 |                                       NewSeq)}; | 
 |   Node = MDNode::get(Inst->getContext(), | 
 |                      ArrayRef<Value*>(tmp, 3)); | 
 |  | 
 |   Inst->setMetadata(NodeId, Node); | 
 | } | 
 |  | 
 | /// Add to the beginning of the basic block llvm.ptr.annotations which show the | 
 | /// state of a pointer at the entrance to a basic block. | 
 | static void GenerateARCBBEntranceAnnotation(const char *Name, BasicBlock *BB, | 
 |                                             Value *Ptr, Sequence Seq) { | 
 |   // If we have a target identifier, make sure that we match it before | 
 |   // continuing. | 
 |   if(!ARCAnnotationTargetIdentifier.empty() && | 
 |      !Ptr->getName().equals(ARCAnnotationTargetIdentifier)) | 
 |     return; | 
 |  | 
 |   Module *M = BB->getParent()->getParent(); | 
 |   LLVMContext &C = M->getContext(); | 
 |   Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); | 
 |   Type *I8XX = PointerType::getUnqual(I8X); | 
 |   Type *Params[] = {I8XX, I8XX}; | 
 |   FunctionType *FTy = FunctionType::get(Type::getVoidTy(C), | 
 |                                         ArrayRef<Type*>(Params, 2), | 
 |                                         /*isVarArg=*/false); | 
 |   Constant *Callee = M->getOrInsertFunction(Name, FTy); | 
 |  | 
 |   IRBuilder<> Builder(BB, BB->getFirstInsertionPt()); | 
 |  | 
 |   Value *PtrName; | 
 |   StringRef Tmp = Ptr->getName(); | 
 |   if (0 == (PtrName = M->getGlobalVariable(Tmp, true))) { | 
 |     Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp, | 
 |                                                          Tmp + "_STR"); | 
 |     PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage, | 
 |                                  cast<Constant>(ActualPtrName), Tmp); | 
 |   } | 
 |  | 
 |   Value *S; | 
 |   std::string SeqStr = SequenceToString(Seq); | 
 |   if (0 == (S = M->getGlobalVariable(SeqStr, true))) { | 
 |     Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr, | 
 |                                                          SeqStr + "_STR"); | 
 |     S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage, | 
 |                            cast<Constant>(ActualPtrName), SeqStr); | 
 |   } | 
 |  | 
 |   Builder.CreateCall2(Callee, PtrName, S); | 
 | } | 
 |  | 
 | /// Add to the end of the basic block llvm.ptr.annotations which show the state | 
 | /// of the pointer at the bottom of the basic block. | 
 | static void GenerateARCBBTerminatorAnnotation(const char *Name, BasicBlock *BB, | 
 |                                               Value *Ptr, Sequence Seq) { | 
 |   // If we have a target identifier, make sure that we match it before emitting | 
 |   // an annotation. | 
 |   if(!ARCAnnotationTargetIdentifier.empty() && | 
 |      !Ptr->getName().equals(ARCAnnotationTargetIdentifier)) | 
 |     return; | 
 |  | 
 |   Module *M = BB->getParent()->getParent(); | 
 |   LLVMContext &C = M->getContext(); | 
 |   Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); | 
 |   Type *I8XX = PointerType::getUnqual(I8X); | 
 |   Type *Params[] = {I8XX, I8XX}; | 
 |   FunctionType *FTy = FunctionType::get(Type::getVoidTy(C), | 
 |                                         ArrayRef<Type*>(Params, 2), | 
 |                                         /*isVarArg=*/false); | 
 |   Constant *Callee = M->getOrInsertFunction(Name, FTy); | 
 |  | 
 |   IRBuilder<> Builder(BB, llvm::prior(BB->end())); | 
 |  | 
 |   Value *PtrName; | 
 |   StringRef Tmp = Ptr->getName(); | 
 |   if (0 == (PtrName = M->getGlobalVariable(Tmp, true))) { | 
 |     Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp, | 
 |                                                          Tmp + "_STR"); | 
 |     PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage, | 
 |                                  cast<Constant>(ActualPtrName), Tmp); | 
 |   } | 
 |  | 
 |   Value *S; | 
 |   std::string SeqStr = SequenceToString(Seq); | 
 |   if (0 == (S = M->getGlobalVariable(SeqStr, true))) { | 
 |     Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr, | 
 |                                                          SeqStr + "_STR"); | 
 |     S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage, | 
 |                            cast<Constant>(ActualPtrName), SeqStr); | 
 |   } | 
 |   Builder.CreateCall2(Callee, PtrName, S); | 
 | } | 
 |  | 
 | /// Adds a source annotation to pointer and a state change annotation to Inst | 
 | /// referencing the source annotation and the old/new state of pointer. | 
 | static void GenerateARCAnnotation(unsigned InstMDId, | 
 |                                   unsigned PtrMDId, | 
 |                                   Instruction *Inst, | 
 |                                   Value *Ptr, | 
 |                                   Sequence OldSeq, | 
 |                                   Sequence NewSeq) { | 
 |   if (EnableARCAnnotations) { | 
 |     // If we have a target identifier, make sure that we match it before | 
 |     // emitting an annotation. | 
 |     if(!ARCAnnotationTargetIdentifier.empty() && | 
 |        !Ptr->getName().equals(ARCAnnotationTargetIdentifier)) | 
 |       return; | 
 |  | 
 |     // First generate the source annotation on our pointer. This will return an | 
 |     // MDString* if Ptr actually comes from an instruction implying we can put | 
 |     // in a source annotation. If AppendMDNodeToSourcePtr returns 0 (i.e. NULL), | 
 |     // then we know that our pointer is from an Argument so we put a reference | 
 |     // to the argument number. | 
 |     // | 
 |     // The point of this is to make it easy for the | 
 |     // llvm-arc-annotation-processor tool to cross reference where the source | 
 |     // pointer is in the LLVM IR since the LLVM IR parser does not submit such | 
 |     // information via debug info for backends to use (since why would anyone | 
 |     // need such a thing from LLVM IR besides in non standard cases | 
 |     // [i.e. this]). | 
 |     MDString *SourcePtrMDNode = | 
 |       AppendMDNodeToSourcePtr(PtrMDId, Ptr); | 
 |     AppendMDNodeToInstForPtr(InstMDId, Inst, Ptr, SourcePtrMDNode, OldSeq, | 
 |                              NewSeq); | 
 |   } | 
 | } | 
 |  | 
 | // The actual interface for accessing the above functionality is defined via | 
 | // some simple macros which are defined below. We do this so that the user does | 
 | // not need to pass in what metadata id is needed resulting in cleaner code and | 
 | // additionally since it provides an easy way to conditionally no-op all | 
 | // annotation support in a non-debug build. | 
 |  | 
 | /// Use this macro to annotate a sequence state change when processing | 
 | /// instructions bottom up, | 
 | #define ANNOTATE_BOTTOMUP(inst, ptr, old, new)                          \ | 
 |   GenerateARCAnnotation(ARCAnnotationBottomUpMDKind,                    \ | 
 |                         ARCAnnotationProvenanceSourceMDKind, (inst),    \ | 
 |                         const_cast<Value*>(ptr), (old), (new)) | 
 | /// Use this macro to annotate a sequence state change when processing | 
 | /// instructions top down. | 
 | #define ANNOTATE_TOPDOWN(inst, ptr, old, new)                           \ | 
 |   GenerateARCAnnotation(ARCAnnotationTopDownMDKind,                     \ | 
 |                         ARCAnnotationProvenanceSourceMDKind, (inst),    \ | 
 |                         const_cast<Value*>(ptr), (old), (new)) | 
 |  | 
 | #define ANNOTATE_BB(_states, _bb, _name, _type, _direction)                   \ | 
 |   do {                                                                        \ | 
 |     if (EnableARCAnnotations) {                                               \ | 
 |       for(BBState::ptr_const_iterator I = (_states)._direction##_ptr_begin(), \ | 
 |           E = (_states)._direction##_ptr_end(); I != E; ++I) {                \ | 
 |         Value *Ptr = const_cast<Value*>(I->first);                            \ | 
 |         Sequence Seq = I->second.GetSeq();                                    \ | 
 |         GenerateARCBB ## _type ## Annotation(_name, (_bb), Ptr, Seq);         \ | 
 |       }                                                                       \ | 
 |     }                                                                         \ | 
 |   } while (0) | 
 |  | 
 | #define ANNOTATE_BOTTOMUP_BBSTART(_states, _basicblock)                       \ | 
 |     ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbstart", \ | 
 |                 Entrance, bottom_up) | 
 | #define ANNOTATE_BOTTOMUP_BBEND(_states, _basicblock)                         \ | 
 |     ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbend",   \ | 
 |                 Terminator, bottom_up) | 
 | #define ANNOTATE_TOPDOWN_BBSTART(_states, _basicblock)                        \ | 
 |     ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbstart",  \ | 
 |                 Entrance, top_down) | 
 | #define ANNOTATE_TOPDOWN_BBEND(_states, _basicblock)                          \ | 
 |     ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbend",    \ | 
 |                 Terminator, top_down) | 
 |  | 
 | #else // !ARC_ANNOTATION | 
 | // If annotations are off, noop. | 
 | #define ANNOTATE_BOTTOMUP(inst, ptr, old, new) | 
 | #define ANNOTATE_TOPDOWN(inst, ptr, old, new) | 
 | #define ANNOTATE_BOTTOMUP_BBSTART(states, basicblock) | 
 | #define ANNOTATE_BOTTOMUP_BBEND(states, basicblock) | 
 | #define ANNOTATE_TOPDOWN_BBSTART(states, basicblock) | 
 | #define ANNOTATE_TOPDOWN_BBEND(states, basicblock) | 
 | #endif // !ARC_ANNOTATION | 
 |  | 
 | namespace { | 
 |   /// \brief The main ARC optimization pass. | 
 |   class ObjCARCOpt : public FunctionPass { | 
 |     bool Changed; | 
 |     ProvenanceAnalysis PA; | 
 |     ARCRuntimeEntryPoints EP; | 
 |  | 
 |     // This is used to track if a pointer is stored into an alloca. | 
 |     DenseSet<const Value *> MultiOwnersSet; | 
 |  | 
 |     /// A flag indicating whether this optimization pass should run. | 
 |     bool Run; | 
 |  | 
 |     /// Flags which determine whether each of the interesting runtine functions | 
 |     /// is in fact used in the current function. | 
 |     unsigned UsedInThisFunction; | 
 |  | 
 |     /// The Metadata Kind for clang.imprecise_release metadata. | 
 |     unsigned ImpreciseReleaseMDKind; | 
 |  | 
 |     /// The Metadata Kind for clang.arc.copy_on_escape metadata. | 
 |     unsigned CopyOnEscapeMDKind; | 
 |  | 
 |     /// The Metadata Kind for clang.arc.no_objc_arc_exceptions metadata. | 
 |     unsigned NoObjCARCExceptionsMDKind; | 
 |  | 
 | #ifdef ARC_ANNOTATIONS | 
 |     /// The Metadata Kind for llvm.arc.annotation.bottomup metadata. | 
 |     unsigned ARCAnnotationBottomUpMDKind; | 
 |     /// The Metadata Kind for llvm.arc.annotation.topdown metadata. | 
 |     unsigned ARCAnnotationTopDownMDKind; | 
 |     /// The Metadata Kind for llvm.arc.annotation.provenancesource metadata. | 
 |     unsigned ARCAnnotationProvenanceSourceMDKind; | 
 | #endif // ARC_ANNOATIONS | 
 |  | 
 |     bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV); | 
 |     void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV, | 
 |                                    InstructionClass &Class); | 
 |     void OptimizeIndividualCalls(Function &F); | 
 |  | 
 |     void CheckForCFGHazards(const BasicBlock *BB, | 
 |                             DenseMap<const BasicBlock *, BBState> &BBStates, | 
 |                             BBState &MyStates) const; | 
 |     bool VisitInstructionBottomUp(Instruction *Inst, | 
 |                                   BasicBlock *BB, | 
 |                                   MapVector<Value *, RRInfo> &Retains, | 
 |                                   BBState &MyStates); | 
 |     bool VisitBottomUp(BasicBlock *BB, | 
 |                        DenseMap<const BasicBlock *, BBState> &BBStates, | 
 |                        MapVector<Value *, RRInfo> &Retains); | 
 |     bool VisitInstructionTopDown(Instruction *Inst, | 
 |                                  DenseMap<Value *, RRInfo> &Releases, | 
 |                                  BBState &MyStates); | 
 |     bool VisitTopDown(BasicBlock *BB, | 
 |                       DenseMap<const BasicBlock *, BBState> &BBStates, | 
 |                       DenseMap<Value *, RRInfo> &Releases); | 
 |     bool Visit(Function &F, | 
 |                DenseMap<const BasicBlock *, BBState> &BBStates, | 
 |                MapVector<Value *, RRInfo> &Retains, | 
 |                DenseMap<Value *, RRInfo> &Releases); | 
 |  | 
 |     void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, | 
 |                    MapVector<Value *, RRInfo> &Retains, | 
 |                    DenseMap<Value *, RRInfo> &Releases, | 
 |                    SmallVectorImpl<Instruction *> &DeadInsts, | 
 |                    Module *M); | 
 |  | 
 |     bool ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState> &BBStates, | 
 |                                MapVector<Value *, RRInfo> &Retains, | 
 |                                DenseMap<Value *, RRInfo> &Releases, | 
 |                                Module *M, | 
 |                                SmallVectorImpl<Instruction *> &NewRetains, | 
 |                                SmallVectorImpl<Instruction *> &NewReleases, | 
 |                                SmallVectorImpl<Instruction *> &DeadInsts, | 
 |                                RRInfo &RetainsToMove, | 
 |                                RRInfo &ReleasesToMove, | 
 |                                Value *Arg, | 
 |                                bool KnownSafe, | 
 |                                bool &AnyPairsCompletelyEliminated); | 
 |  | 
 |     bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates, | 
 |                               MapVector<Value *, RRInfo> &Retains, | 
 |                               DenseMap<Value *, RRInfo> &Releases, | 
 |                               Module *M); | 
 |  | 
 |     void OptimizeWeakCalls(Function &F); | 
 |  | 
 |     bool OptimizeSequences(Function &F); | 
 |  | 
 |     void OptimizeReturns(Function &F); | 
 |  | 
 | #ifndef NDEBUG | 
 |     void GatherStatistics(Function &F, bool AfterOptimization = false); | 
 | #endif | 
 |  | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const; | 
 |     virtual bool doInitialization(Module &M); | 
 |     virtual bool runOnFunction(Function &F); | 
 |     virtual void releaseMemory(); | 
 |  | 
 |   public: | 
 |     static char ID; | 
 |     ObjCARCOpt() : FunctionPass(ID) { | 
 |       initializeObjCARCOptPass(*PassRegistry::getPassRegistry()); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | char ObjCARCOpt::ID = 0; | 
 | INITIALIZE_PASS_BEGIN(ObjCARCOpt, | 
 |                       "objc-arc", "ObjC ARC optimization", false, false) | 
 | INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis) | 
 | INITIALIZE_PASS_END(ObjCARCOpt, | 
 |                     "objc-arc", "ObjC ARC optimization", false, false) | 
 |  | 
 | Pass *llvm::createObjCARCOptPass() { | 
 |   return new ObjCARCOpt(); | 
 | } | 
 |  | 
 | void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.addRequired<ObjCARCAliasAnalysis>(); | 
 |   AU.addRequired<AliasAnalysis>(); | 
 |   // ARC optimization doesn't currently split critical edges. | 
 |   AU.setPreservesCFG(); | 
 | } | 
 |  | 
 | /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is | 
 | /// not a return value.  Or, if it can be paired with an | 
 | /// objc_autoreleaseReturnValue, delete the pair and return true. | 
 | bool | 
 | ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) { | 
 |   // Check for the argument being from an immediately preceding call or invoke. | 
 |   const Value *Arg = GetObjCArg(RetainRV); | 
 |   ImmutableCallSite CS(Arg); | 
 |   if (const Instruction *Call = CS.getInstruction()) { | 
 |     if (Call->getParent() == RetainRV->getParent()) { | 
 |       BasicBlock::const_iterator I = Call; | 
 |       ++I; | 
 |       while (IsNoopInstruction(I)) ++I; | 
 |       if (&*I == RetainRV) | 
 |         return false; | 
 |     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) { | 
 |       BasicBlock *RetainRVParent = RetainRV->getParent(); | 
 |       if (II->getNormalDest() == RetainRVParent) { | 
 |         BasicBlock::const_iterator I = RetainRVParent->begin(); | 
 |         while (IsNoopInstruction(I)) ++I; | 
 |         if (&*I == RetainRV) | 
 |           return false; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Check for being preceded by an objc_autoreleaseReturnValue on the same | 
 |   // pointer. In this case, we can delete the pair. | 
 |   BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin(); | 
 |   if (I != Begin) { | 
 |     do --I; while (I != Begin && IsNoopInstruction(I)); | 
 |     if (GetBasicInstructionClass(I) == IC_AutoreleaseRV && | 
 |         GetObjCArg(I) == Arg) { | 
 |       Changed = true; | 
 |       ++NumPeeps; | 
 |  | 
 |       DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n" | 
 |                    << "Erasing " << *RetainRV << "\n"); | 
 |  | 
 |       EraseInstruction(I); | 
 |       EraseInstruction(RetainRV); | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   // Turn it to a plain objc_retain. | 
 |   Changed = true; | 
 |   ++NumPeeps; | 
 |  | 
 |   DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => " | 
 |                   "objc_retain since the operand is not a return value.\n" | 
 |                   "Old = " << *RetainRV << "\n"); | 
 |  | 
 |   Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Retain); | 
 |   cast<CallInst>(RetainRV)->setCalledFunction(NewDecl); | 
 |  | 
 |   DEBUG(dbgs() << "New = " << *RetainRV << "\n"); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not | 
 | /// used as a return value. | 
 | void | 
 | ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV, | 
 |                                       InstructionClass &Class) { | 
 |   // Check for a return of the pointer value. | 
 |   const Value *Ptr = GetObjCArg(AutoreleaseRV); | 
 |   SmallVector<const Value *, 2> Users; | 
 |   Users.push_back(Ptr); | 
 |   do { | 
 |     Ptr = Users.pop_back_val(); | 
 |     for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end(); | 
 |          UI != UE; ++UI) { | 
 |       const User *I = *UI; | 
 |       if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV) | 
 |         return; | 
 |       if (isa<BitCastInst>(I)) | 
 |         Users.push_back(I); | 
 |     } | 
 |   } while (!Users.empty()); | 
 |  | 
 |   Changed = true; | 
 |   ++NumPeeps; | 
 |  | 
 |   DEBUG(dbgs() << "Transforming objc_autoreleaseReturnValue => " | 
 |                   "objc_autorelease since its operand is not used as a return " | 
 |                   "value.\n" | 
 |                   "Old = " << *AutoreleaseRV << "\n"); | 
 |  | 
 |   CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV); | 
 |   Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Autorelease); | 
 |   AutoreleaseRVCI->setCalledFunction(NewDecl); | 
 |   AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease. | 
 |   Class = IC_Autorelease; | 
 |  | 
 |   DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n"); | 
 |  | 
 | } | 
 |  | 
 | /// Visit each call, one at a time, and make simplifications without doing any | 
 | /// additional analysis. | 
 | void ObjCARCOpt::OptimizeIndividualCalls(Function &F) { | 
 |   DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n"); | 
 |   // Reset all the flags in preparation for recomputing them. | 
 |   UsedInThisFunction = 0; | 
 |  | 
 |   // Visit all objc_* calls in F. | 
 |   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { | 
 |     Instruction *Inst = &*I++; | 
 |  | 
 |     InstructionClass Class = GetBasicInstructionClass(Inst); | 
 |  | 
 |     DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n"); | 
 |  | 
 |     switch (Class) { | 
 |     default: break; | 
 |  | 
 |     // Delete no-op casts. These function calls have special semantics, but | 
 |     // the semantics are entirely implemented via lowering in the front-end, | 
 |     // so by the time they reach the optimizer, they are just no-op calls | 
 |     // which return their argument. | 
 |     // | 
 |     // There are gray areas here, as the ability to cast reference-counted | 
 |     // pointers to raw void* and back allows code to break ARC assumptions, | 
 |     // however these are currently considered to be unimportant. | 
 |     case IC_NoopCast: | 
 |       Changed = true; | 
 |       ++NumNoops; | 
 |       DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n"); | 
 |       EraseInstruction(Inst); | 
 |       continue; | 
 |  | 
 |     // If the pointer-to-weak-pointer is null, it's undefined behavior. | 
 |     case IC_StoreWeak: | 
 |     case IC_LoadWeak: | 
 |     case IC_LoadWeakRetained: | 
 |     case IC_InitWeak: | 
 |     case IC_DestroyWeak: { | 
 |       CallInst *CI = cast<CallInst>(Inst); | 
 |       if (IsNullOrUndef(CI->getArgOperand(0))) { | 
 |         Changed = true; | 
 |         Type *Ty = CI->getArgOperand(0)->getType(); | 
 |         new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()), | 
 |                       Constant::getNullValue(Ty), | 
 |                       CI); | 
 |         llvm::Value *NewValue = UndefValue::get(CI->getType()); | 
 |         DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior." | 
 |                        "\nOld = " << *CI << "\nNew = " << *NewValue << "\n"); | 
 |         CI->replaceAllUsesWith(NewValue); | 
 |         CI->eraseFromParent(); | 
 |         continue; | 
 |       } | 
 |       break; | 
 |     } | 
 |     case IC_CopyWeak: | 
 |     case IC_MoveWeak: { | 
 |       CallInst *CI = cast<CallInst>(Inst); | 
 |       if (IsNullOrUndef(CI->getArgOperand(0)) || | 
 |           IsNullOrUndef(CI->getArgOperand(1))) { | 
 |         Changed = true; | 
 |         Type *Ty = CI->getArgOperand(0)->getType(); | 
 |         new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()), | 
 |                       Constant::getNullValue(Ty), | 
 |                       CI); | 
 |  | 
 |         llvm::Value *NewValue = UndefValue::get(CI->getType()); | 
 |         DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior." | 
 |                         "\nOld = " << *CI << "\nNew = " << *NewValue << "\n"); | 
 |  | 
 |         CI->replaceAllUsesWith(NewValue); | 
 |         CI->eraseFromParent(); | 
 |         continue; | 
 |       } | 
 |       break; | 
 |     } | 
 |     case IC_RetainRV: | 
 |       if (OptimizeRetainRVCall(F, Inst)) | 
 |         continue; | 
 |       break; | 
 |     case IC_AutoreleaseRV: | 
 |       OptimizeAutoreleaseRVCall(F, Inst, Class); | 
 |       break; | 
 |     } | 
 |  | 
 |     // objc_autorelease(x) -> objc_release(x) if x is otherwise unused. | 
 |     if (IsAutorelease(Class) && Inst->use_empty()) { | 
 |       CallInst *Call = cast<CallInst>(Inst); | 
 |       const Value *Arg = Call->getArgOperand(0); | 
 |       Arg = FindSingleUseIdentifiedObject(Arg); | 
 |       if (Arg) { | 
 |         Changed = true; | 
 |         ++NumAutoreleases; | 
 |  | 
 |         // Create the declaration lazily. | 
 |         LLVMContext &C = Inst->getContext(); | 
 |  | 
 |         Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release); | 
 |         CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "", | 
 |                                              Call); | 
 |         NewCall->setMetadata(ImpreciseReleaseMDKind, MDNode::get(C, None)); | 
 |  | 
 |         DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) " | 
 |               "since x is otherwise unused.\nOld: " << *Call << "\nNew: " | 
 |               << *NewCall << "\n"); | 
 |  | 
 |         EraseInstruction(Call); | 
 |         Inst = NewCall; | 
 |         Class = IC_Release; | 
 |       } | 
 |     } | 
 |  | 
 |     // For functions which can never be passed stack arguments, add | 
 |     // a tail keyword. | 
 |     if (IsAlwaysTail(Class)) { | 
 |       Changed = true; | 
 |       DEBUG(dbgs() << "Adding tail keyword to function since it can never be " | 
 |                       "passed stack args: " << *Inst << "\n"); | 
 |       cast<CallInst>(Inst)->setTailCall(); | 
 |     } | 
 |  | 
 |     // Ensure that functions that can never have a "tail" keyword due to the | 
 |     // semantics of ARC truly do not do so. | 
 |     if (IsNeverTail(Class)) { | 
 |       Changed = true; | 
 |       DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst << | 
 |             "\n"); | 
 |       cast<CallInst>(Inst)->setTailCall(false); | 
 |     } | 
 |  | 
 |     // Set nounwind as needed. | 
 |     if (IsNoThrow(Class)) { | 
 |       Changed = true; | 
 |       DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst | 
 |                    << "\n"); | 
 |       cast<CallInst>(Inst)->setDoesNotThrow(); | 
 |     } | 
 |  | 
 |     if (!IsNoopOnNull(Class)) { | 
 |       UsedInThisFunction |= 1 << Class; | 
 |       continue; | 
 |     } | 
 |  | 
 |     const Value *Arg = GetObjCArg(Inst); | 
 |  | 
 |     // ARC calls with null are no-ops. Delete them. | 
 |     if (IsNullOrUndef(Arg)) { | 
 |       Changed = true; | 
 |       ++NumNoops; | 
 |       DEBUG(dbgs() << "ARC calls with  null are no-ops. Erasing: " << *Inst | 
 |             << "\n"); | 
 |       EraseInstruction(Inst); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Keep track of which of retain, release, autorelease, and retain_block | 
 |     // are actually present in this function. | 
 |     UsedInThisFunction |= 1 << Class; | 
 |  | 
 |     // If Arg is a PHI, and one or more incoming values to the | 
 |     // PHI are null, and the call is control-equivalent to the PHI, and there | 
 |     // are no relevant side effects between the PHI and the call, the call | 
 |     // could be pushed up to just those paths with non-null incoming values. | 
 |     // For now, don't bother splitting critical edges for this. | 
 |     SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist; | 
 |     Worklist.push_back(std::make_pair(Inst, Arg)); | 
 |     do { | 
 |       std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val(); | 
 |       Inst = Pair.first; | 
 |       Arg = Pair.second; | 
 |  | 
 |       const PHINode *PN = dyn_cast<PHINode>(Arg); | 
 |       if (!PN) continue; | 
 |  | 
 |       // Determine if the PHI has any null operands, or any incoming | 
 |       // critical edges. | 
 |       bool HasNull = false; | 
 |       bool HasCriticalEdges = false; | 
 |       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
 |         Value *Incoming = | 
 |           StripPointerCastsAndObjCCalls(PN->getIncomingValue(i)); | 
 |         if (IsNullOrUndef(Incoming)) | 
 |           HasNull = true; | 
 |         else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back()) | 
 |                    .getNumSuccessors() != 1) { | 
 |           HasCriticalEdges = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |       // If we have null operands and no critical edges, optimize. | 
 |       if (!HasCriticalEdges && HasNull) { | 
 |         SmallPtrSet<Instruction *, 4> DependingInstructions; | 
 |         SmallPtrSet<const BasicBlock *, 4> Visited; | 
 |  | 
 |         // Check that there is nothing that cares about the reference | 
 |         // count between the call and the phi. | 
 |         switch (Class) { | 
 |         case IC_Retain: | 
 |         case IC_RetainBlock: | 
 |           // These can always be moved up. | 
 |           break; | 
 |         case IC_Release: | 
 |           // These can't be moved across things that care about the retain | 
 |           // count. | 
 |           FindDependencies(NeedsPositiveRetainCount, Arg, | 
 |                            Inst->getParent(), Inst, | 
 |                            DependingInstructions, Visited, PA); | 
 |           break; | 
 |         case IC_Autorelease: | 
 |           // These can't be moved across autorelease pool scope boundaries. | 
 |           FindDependencies(AutoreleasePoolBoundary, Arg, | 
 |                            Inst->getParent(), Inst, | 
 |                            DependingInstructions, Visited, PA); | 
 |           break; | 
 |         case IC_RetainRV: | 
 |         case IC_AutoreleaseRV: | 
 |           // Don't move these; the RV optimization depends on the autoreleaseRV | 
 |           // being tail called, and the retainRV being immediately after a call | 
 |           // (which might still happen if we get lucky with codegen layout, but | 
 |           // it's not worth taking the chance). | 
 |           continue; | 
 |         default: | 
 |           llvm_unreachable("Invalid dependence flavor"); | 
 |         } | 
 |  | 
 |         if (DependingInstructions.size() == 1 && | 
 |             *DependingInstructions.begin() == PN) { | 
 |           Changed = true; | 
 |           ++NumPartialNoops; | 
 |           // Clone the call into each predecessor that has a non-null value. | 
 |           CallInst *CInst = cast<CallInst>(Inst); | 
 |           Type *ParamTy = CInst->getArgOperand(0)->getType(); | 
 |           for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
 |             Value *Incoming = | 
 |               StripPointerCastsAndObjCCalls(PN->getIncomingValue(i)); | 
 |             if (!IsNullOrUndef(Incoming)) { | 
 |               CallInst *Clone = cast<CallInst>(CInst->clone()); | 
 |               Value *Op = PN->getIncomingValue(i); | 
 |               Instruction *InsertPos = &PN->getIncomingBlock(i)->back(); | 
 |               if (Op->getType() != ParamTy) | 
 |                 Op = new BitCastInst(Op, ParamTy, "", InsertPos); | 
 |               Clone->setArgOperand(0, Op); | 
 |               Clone->insertBefore(InsertPos); | 
 |  | 
 |               DEBUG(dbgs() << "Cloning " | 
 |                            << *CInst << "\n" | 
 |                            "And inserting clone at " << *InsertPos << "\n"); | 
 |               Worklist.push_back(std::make_pair(Clone, Incoming)); | 
 |             } | 
 |           } | 
 |           // Erase the original call. | 
 |           DEBUG(dbgs() << "Erasing: " << *CInst << "\n"); | 
 |           EraseInstruction(CInst); | 
 |           continue; | 
 |         } | 
 |       } | 
 |     } while (!Worklist.empty()); | 
 |   } | 
 | } | 
 |  | 
 | /// If we have a top down pointer in the S_Use state, make sure that there are | 
 | /// no CFG hazards by checking the states of various bottom up pointers. | 
 | static void CheckForUseCFGHazard(const Sequence SuccSSeq, | 
 |                                  const bool SuccSRRIKnownSafe, | 
 |                                  PtrState &S, | 
 |                                  bool &SomeSuccHasSame, | 
 |                                  bool &AllSuccsHaveSame, | 
 |                                  bool &NotAllSeqEqualButKnownSafe, | 
 |                                  bool &ShouldContinue) { | 
 |   switch (SuccSSeq) { | 
 |   case S_CanRelease: { | 
 |     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) { | 
 |       S.ClearSequenceProgress(); | 
 |       break; | 
 |     } | 
 |     S.SetCFGHazardAfflicted(true); | 
 |     ShouldContinue = true; | 
 |     break; | 
 |   } | 
 |   case S_Use: | 
 |     SomeSuccHasSame = true; | 
 |     break; | 
 |   case S_Stop: | 
 |   case S_Release: | 
 |   case S_MovableRelease: | 
 |     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) | 
 |       AllSuccsHaveSame = false; | 
 |     else | 
 |       NotAllSeqEqualButKnownSafe = true; | 
 |     break; | 
 |   case S_Retain: | 
 |     llvm_unreachable("bottom-up pointer in retain state!"); | 
 |   case S_None: | 
 |     llvm_unreachable("This should have been handled earlier."); | 
 |   } | 
 | } | 
 |  | 
 | /// If we have a Top Down pointer in the S_CanRelease state, make sure that | 
 | /// there are no CFG hazards by checking the states of various bottom up | 
 | /// pointers. | 
 | static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq, | 
 |                                         const bool SuccSRRIKnownSafe, | 
 |                                         PtrState &S, | 
 |                                         bool &SomeSuccHasSame, | 
 |                                         bool &AllSuccsHaveSame, | 
 |                                         bool &NotAllSeqEqualButKnownSafe) { | 
 |   switch (SuccSSeq) { | 
 |   case S_CanRelease: | 
 |     SomeSuccHasSame = true; | 
 |     break; | 
 |   case S_Stop: | 
 |   case S_Release: | 
 |   case S_MovableRelease: | 
 |   case S_Use: | 
 |     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) | 
 |       AllSuccsHaveSame = false; | 
 |     else | 
 |       NotAllSeqEqualButKnownSafe = true; | 
 |     break; | 
 |   case S_Retain: | 
 |     llvm_unreachable("bottom-up pointer in retain state!"); | 
 |   case S_None: | 
 |     llvm_unreachable("This should have been handled earlier."); | 
 |   } | 
 | } | 
 |  | 
 | /// Check for critical edges, loop boundaries, irreducible control flow, or | 
 | /// other CFG structures where moving code across the edge would result in it | 
 | /// being executed more. | 
 | void | 
 | ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, | 
 |                                DenseMap<const BasicBlock *, BBState> &BBStates, | 
 |                                BBState &MyStates) const { | 
 |   // If any top-down local-use or possible-dec has a succ which is earlier in | 
 |   // the sequence, forget it. | 
 |   for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(), | 
 |          E = MyStates.top_down_ptr_end(); I != E; ++I) { | 
 |     PtrState &S = I->second; | 
 |     const Sequence Seq = I->second.GetSeq(); | 
 |  | 
 |     // We only care about S_Retain, S_CanRelease, and S_Use. | 
 |     if (Seq == S_None) | 
 |       continue; | 
 |  | 
 |     // Make sure that if extra top down states are added in the future that this | 
 |     // code is updated to handle it. | 
 |     assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) && | 
 |            "Unknown top down sequence state."); | 
 |  | 
 |     const Value *Arg = I->first; | 
 |     const TerminatorInst *TI = cast<TerminatorInst>(&BB->back()); | 
 |     bool SomeSuccHasSame = false; | 
 |     bool AllSuccsHaveSame = true; | 
 |     bool NotAllSeqEqualButKnownSafe = false; | 
 |  | 
 |     succ_const_iterator SI(TI), SE(TI, false); | 
 |  | 
 |     for (; SI != SE; ++SI) { | 
 |       // If VisitBottomUp has pointer information for this successor, take | 
 |       // what we know about it. | 
 |       const DenseMap<const BasicBlock *, BBState>::iterator BBI = | 
 |         BBStates.find(*SI); | 
 |       assert(BBI != BBStates.end()); | 
 |       const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); | 
 |       const Sequence SuccSSeq = SuccS.GetSeq(); | 
 |  | 
 |       // If bottom up, the pointer is in an S_None state, clear the sequence | 
 |       // progress since the sequence in the bottom up state finished | 
 |       // suggesting a mismatch in between retains/releases. This is true for | 
 |       // all three cases that we are handling here: S_Retain, S_Use, and | 
 |       // S_CanRelease. | 
 |       if (SuccSSeq == S_None) { | 
 |         S.ClearSequenceProgress(); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // If we have S_Use or S_CanRelease, perform our check for cfg hazard | 
 |       // checks. | 
 |       const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe(); | 
 |  | 
 |       // *NOTE* We do not use Seq from above here since we are allowing for | 
 |       // S.GetSeq() to change while we are visiting basic blocks. | 
 |       switch(S.GetSeq()) { | 
 |       case S_Use: { | 
 |         bool ShouldContinue = false; | 
 |         CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame, | 
 |                              AllSuccsHaveSame, NotAllSeqEqualButKnownSafe, | 
 |                              ShouldContinue); | 
 |         if (ShouldContinue) | 
 |           continue; | 
 |         break; | 
 |       } | 
 |       case S_CanRelease: { | 
 |         CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, | 
 |                                     SomeSuccHasSame, AllSuccsHaveSame, | 
 |                                     NotAllSeqEqualButKnownSafe); | 
 |         break; | 
 |       } | 
 |       case S_Retain: | 
 |       case S_None: | 
 |       case S_Stop: | 
 |       case S_Release: | 
 |       case S_MovableRelease: | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     // If the state at the other end of any of the successor edges | 
 |     // matches the current state, require all edges to match. This | 
 |     // guards against loops in the middle of a sequence. | 
 |     if (SomeSuccHasSame && !AllSuccsHaveSame) { | 
 |       S.ClearSequenceProgress(); | 
 |     } else if (NotAllSeqEqualButKnownSafe) { | 
 |       // If we would have cleared the state foregoing the fact that we are known | 
 |       // safe, stop code motion. This is because whether or not it is safe to | 
 |       // remove RR pairs via KnownSafe is an orthogonal concept to whether we | 
 |       // are allowed to perform code motion. | 
 |       S.SetCFGHazardAfflicted(true); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool | 
 | ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst, | 
 |                                      BasicBlock *BB, | 
 |                                      MapVector<Value *, RRInfo> &Retains, | 
 |                                      BBState &MyStates) { | 
 |   bool NestingDetected = false; | 
 |   InstructionClass Class = GetInstructionClass(Inst); | 
 |   const Value *Arg = 0; | 
 |  | 
 |   DEBUG(dbgs() << "Class: " << Class << "\n"); | 
 |  | 
 |   switch (Class) { | 
 |   case IC_Release: { | 
 |     Arg = GetObjCArg(Inst); | 
 |  | 
 |     PtrState &S = MyStates.getPtrBottomUpState(Arg); | 
 |  | 
 |     // If we see two releases in a row on the same pointer. If so, make | 
 |     // a note, and we'll cicle back to revisit it after we've | 
 |     // hopefully eliminated the second release, which may allow us to | 
 |     // eliminate the first release too. | 
 |     // Theoretically we could implement removal of nested retain+release | 
 |     // pairs by making PtrState hold a stack of states, but this is | 
 |     // simple and avoids adding overhead for the non-nested case. | 
 |     if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) { | 
 |       DEBUG(dbgs() << "Found nested releases (i.e. a release pair)\n"); | 
 |       NestingDetected = true; | 
 |     } | 
 |  | 
 |     MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind); | 
 |     Sequence NewSeq = ReleaseMetadata ? S_MovableRelease : S_Release; | 
 |     ANNOTATE_BOTTOMUP(Inst, Arg, S.GetSeq(), NewSeq); | 
 |     S.ResetSequenceProgress(NewSeq); | 
 |     S.SetReleaseMetadata(ReleaseMetadata); | 
 |     S.SetKnownSafe(S.HasKnownPositiveRefCount()); | 
 |     S.SetTailCallRelease(cast<CallInst>(Inst)->isTailCall()); | 
 |     S.InsertCall(Inst); | 
 |     S.SetKnownPositiveRefCount(); | 
 |     break; | 
 |   } | 
 |   case IC_RetainBlock: | 
 |     // In OptimizeIndividualCalls, we have strength reduced all optimizable | 
 |     // objc_retainBlocks to objc_retains. Thus at this point any | 
 |     // objc_retainBlocks that we see are not optimizable. | 
 |     break; | 
 |   case IC_Retain: | 
 |   case IC_RetainRV: { | 
 |     Arg = GetObjCArg(Inst); | 
 |  | 
 |     PtrState &S = MyStates.getPtrBottomUpState(Arg); | 
 |     S.SetKnownPositiveRefCount(); | 
 |  | 
 |     Sequence OldSeq = S.GetSeq(); | 
 |     switch (OldSeq) { | 
 |     case S_Stop: | 
 |     case S_Release: | 
 |     case S_MovableRelease: | 
 |     case S_Use: | 
 |       // If OldSeq is not S_Use or OldSeq is S_Use and we are tracking an | 
 |       // imprecise release, clear our reverse insertion points. | 
 |       if (OldSeq != S_Use || S.IsTrackingImpreciseReleases()) | 
 |         S.ClearReverseInsertPts(); | 
 |       // FALL THROUGH | 
 |     case S_CanRelease: | 
 |       // Don't do retain+release tracking for IC_RetainRV, because it's | 
 |       // better to let it remain as the first instruction after a call. | 
 |       if (Class != IC_RetainRV) | 
 |         Retains[Inst] = S.GetRRInfo(); | 
 |       S.ClearSequenceProgress(); | 
 |       break; | 
 |     case S_None: | 
 |       break; | 
 |     case S_Retain: | 
 |       llvm_unreachable("bottom-up pointer in retain state!"); | 
 |     } | 
 |     ANNOTATE_BOTTOMUP(Inst, Arg, OldSeq, S.GetSeq()); | 
 |     // A retain moving bottom up can be a use. | 
 |     break; | 
 |   } | 
 |   case IC_AutoreleasepoolPop: | 
 |     // Conservatively, clear MyStates for all known pointers. | 
 |     MyStates.clearBottomUpPointers(); | 
 |     return NestingDetected; | 
 |   case IC_AutoreleasepoolPush: | 
 |   case IC_None: | 
 |     // These are irrelevant. | 
 |     return NestingDetected; | 
 |   case IC_User: | 
 |     // If we have a store into an alloca of a pointer we are tracking, the | 
 |     // pointer has multiple owners implying that we must be more conservative. | 
 |     // | 
 |     // This comes up in the context of a pointer being ``KnownSafe''. In the | 
 |     // presense of a block being initialized, the frontend will emit the | 
 |     // objc_retain on the original pointer and the release on the pointer loaded | 
 |     // from the alloca. The optimizer will through the provenance analysis | 
 |     // realize that the two are related, but since we only require KnownSafe in | 
 |     // one direction, will match the inner retain on the original pointer with | 
 |     // the guard release on the original pointer. This is fixed by ensuring that | 
 |     // in the presense of allocas we only unconditionally remove pointers if | 
 |     // both our retain and our release are KnownSafe. | 
 |     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { | 
 |       if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand())) { | 
 |         BBState::ptr_iterator I = MyStates.findPtrBottomUpState( | 
 |           StripPointerCastsAndObjCCalls(SI->getValueOperand())); | 
 |         if (I != MyStates.bottom_up_ptr_end()) | 
 |           MultiOwnersSet.insert(I->first); | 
 |       } | 
 |     } | 
 |     break; | 
 |   default: | 
 |     break; | 
 |   } | 
 |  | 
 |   // Consider any other possible effects of this instruction on each | 
 |   // pointer being tracked. | 
 |   for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(), | 
 |        ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) { | 
 |     const Value *Ptr = MI->first; | 
 |     if (Ptr == Arg) | 
 |       continue; // Handled above. | 
 |     PtrState &S = MI->second; | 
 |     Sequence Seq = S.GetSeq(); | 
 |  | 
 |     // Check for possible releases. | 
 |     if (CanAlterRefCount(Inst, Ptr, PA, Class)) { | 
 |       DEBUG(dbgs() << "CanAlterRefCount: Seq: " << Seq << "; " << *Ptr | 
 |             << "\n"); | 
 |       S.ClearKnownPositiveRefCount(); | 
 |       switch (Seq) { | 
 |       case S_Use: | 
 |         S.SetSeq(S_CanRelease); | 
 |         ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S.GetSeq()); | 
 |         continue; | 
 |       case S_CanRelease: | 
 |       case S_Release: | 
 |       case S_MovableRelease: | 
 |       case S_Stop: | 
 |       case S_None: | 
 |         break; | 
 |       case S_Retain: | 
 |         llvm_unreachable("bottom-up pointer in retain state!"); | 
 |       } | 
 |     } | 
 |  | 
 |     // Check for possible direct uses. | 
 |     switch (Seq) { | 
 |     case S_Release: | 
 |     case S_MovableRelease: | 
 |       if (CanUse(Inst, Ptr, PA, Class)) { | 
 |         DEBUG(dbgs() << "CanUse: Seq: " << Seq << "; " << *Ptr | 
 |               << "\n"); | 
 |         assert(!S.HasReverseInsertPts()); | 
 |         // If this is an invoke instruction, we're scanning it as part of | 
 |         // one of its successor blocks, since we can't insert code after it | 
 |         // in its own block, and we don't want to split critical edges. | 
 |         if (isa<InvokeInst>(Inst)) | 
 |           S.InsertReverseInsertPt(BB->getFirstInsertionPt()); | 
 |         else | 
 |           S.InsertReverseInsertPt(llvm::next(BasicBlock::iterator(Inst))); | 
 |         S.SetSeq(S_Use); | 
 |         ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use); | 
 |       } else if (Seq == S_Release && IsUser(Class)) { | 
 |         DEBUG(dbgs() << "PreciseReleaseUse: Seq: " << Seq << "; " << *Ptr | 
 |               << "\n"); | 
 |         // Non-movable releases depend on any possible objc pointer use. | 
 |         S.SetSeq(S_Stop); | 
 |         ANNOTATE_BOTTOMUP(Inst, Ptr, S_Release, S_Stop); | 
 |         assert(!S.HasReverseInsertPts()); | 
 |         // As above; handle invoke specially. | 
 |         if (isa<InvokeInst>(Inst)) | 
 |           S.InsertReverseInsertPt(BB->getFirstInsertionPt()); | 
 |         else | 
 |           S.InsertReverseInsertPt(llvm::next(BasicBlock::iterator(Inst))); | 
 |       } | 
 |       break; | 
 |     case S_Stop: | 
 |       if (CanUse(Inst, Ptr, PA, Class)) { | 
 |         DEBUG(dbgs() << "PreciseStopUse: Seq: " << Seq << "; " << *Ptr | 
 |               << "\n"); | 
 |         S.SetSeq(S_Use); | 
 |         ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use); | 
 |       } | 
 |       break; | 
 |     case S_CanRelease: | 
 |     case S_Use: | 
 |     case S_None: | 
 |       break; | 
 |     case S_Retain: | 
 |       llvm_unreachable("bottom-up pointer in retain state!"); | 
 |     } | 
 |   } | 
 |  | 
 |   return NestingDetected; | 
 | } | 
 |  | 
 | bool | 
 | ObjCARCOpt::VisitBottomUp(BasicBlock *BB, | 
 |                           DenseMap<const BasicBlock *, BBState> &BBStates, | 
 |                           MapVector<Value *, RRInfo> &Retains) { | 
 |  | 
 |   DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n"); | 
 |  | 
 |   bool NestingDetected = false; | 
 |   BBState &MyStates = BBStates[BB]; | 
 |  | 
 |   // Merge the states from each successor to compute the initial state | 
 |   // for the current block. | 
 |   BBState::edge_iterator SI(MyStates.succ_begin()), | 
 |                          SE(MyStates.succ_end()); | 
 |   if (SI != SE) { | 
 |     const BasicBlock *Succ = *SI; | 
 |     DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ); | 
 |     assert(I != BBStates.end()); | 
 |     MyStates.InitFromSucc(I->second); | 
 |     ++SI; | 
 |     for (; SI != SE; ++SI) { | 
 |       Succ = *SI; | 
 |       I = BBStates.find(Succ); | 
 |       assert(I != BBStates.end()); | 
 |       MyStates.MergeSucc(I->second); | 
 |     } | 
 |   } | 
 |  | 
 |   // If ARC Annotations are enabled, output the current state of pointers at the | 
 |   // bottom of the basic block. | 
 |   ANNOTATE_BOTTOMUP_BBEND(MyStates, BB); | 
 |  | 
 |   // Visit all the instructions, bottom-up. | 
 |   for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) { | 
 |     Instruction *Inst = llvm::prior(I); | 
 |  | 
 |     // Invoke instructions are visited as part of their successors (below). | 
 |     if (isa<InvokeInst>(Inst)) | 
 |       continue; | 
 |  | 
 |     DEBUG(dbgs() << "Visiting " << *Inst << "\n"); | 
 |  | 
 |     NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates); | 
 |   } | 
 |  | 
 |   // If there's a predecessor with an invoke, visit the invoke as if it were | 
 |   // part of this block, since we can't insert code after an invoke in its own | 
 |   // block, and we don't want to split critical edges. | 
 |   for (BBState::edge_iterator PI(MyStates.pred_begin()), | 
 |        PE(MyStates.pred_end()); PI != PE; ++PI) { | 
 |     BasicBlock *Pred = *PI; | 
 |     if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back())) | 
 |       NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates); | 
 |   } | 
 |  | 
 |   // If ARC Annotations are enabled, output the current state of pointers at the | 
 |   // top of the basic block. | 
 |   ANNOTATE_BOTTOMUP_BBSTART(MyStates, BB); | 
 |  | 
 |   return NestingDetected; | 
 | } | 
 |  | 
 | bool | 
 | ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst, | 
 |                                     DenseMap<Value *, RRInfo> &Releases, | 
 |                                     BBState &MyStates) { | 
 |   bool NestingDetected = false; | 
 |   InstructionClass Class = GetInstructionClass(Inst); | 
 |   const Value *Arg = 0; | 
 |  | 
 |   switch (Class) { | 
 |   case IC_RetainBlock: | 
 |     // In OptimizeIndividualCalls, we have strength reduced all optimizable | 
 |     // objc_retainBlocks to objc_retains. Thus at this point any | 
 |     // objc_retainBlocks that we see are not optimizable. | 
 |     break; | 
 |   case IC_Retain: | 
 |   case IC_RetainRV: { | 
 |     Arg = GetObjCArg(Inst); | 
 |  | 
 |     PtrState &S = MyStates.getPtrTopDownState(Arg); | 
 |  | 
 |     // Don't do retain+release tracking for IC_RetainRV, because it's | 
 |     // better to let it remain as the first instruction after a call. | 
 |     if (Class != IC_RetainRV) { | 
 |       // If we see two retains in a row on the same pointer. If so, make | 
 |       // a note, and we'll cicle back to revisit it after we've | 
 |       // hopefully eliminated the second retain, which may allow us to | 
 |       // eliminate the first retain too. | 
 |       // Theoretically we could implement removal of nested retain+release | 
 |       // pairs by making PtrState hold a stack of states, but this is | 
 |       // simple and avoids adding overhead for the non-nested case. | 
 |       if (S.GetSeq() == S_Retain) | 
 |         NestingDetected = true; | 
 |  | 
 |       ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_Retain); | 
 |       S.ResetSequenceProgress(S_Retain); | 
 |       S.SetKnownSafe(S.HasKnownPositiveRefCount()); | 
 |       S.InsertCall(Inst); | 
 |     } | 
 |  | 
 |     S.SetKnownPositiveRefCount(); | 
 |  | 
 |     // A retain can be a potential use; procede to the generic checking | 
 |     // code below. | 
 |     break; | 
 |   } | 
 |   case IC_Release: { | 
 |     Arg = GetObjCArg(Inst); | 
 |  | 
 |     PtrState &S = MyStates.getPtrTopDownState(Arg); | 
 |     S.ClearKnownPositiveRefCount(); | 
 |  | 
 |     Sequence OldSeq = S.GetSeq(); | 
 |  | 
 |     MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind); | 
 |  | 
 |     switch (OldSeq) { | 
 |     case S_Retain: | 
 |     case S_CanRelease: | 
 |       if (OldSeq == S_Retain || ReleaseMetadata != 0) | 
 |         S.ClearReverseInsertPts(); | 
 |       // FALL THROUGH | 
 |     case S_Use: | 
 |       S.SetReleaseMetadata(ReleaseMetadata); | 
 |       S.SetTailCallRelease(cast<CallInst>(Inst)->isTailCall()); | 
 |       Releases[Inst] = S.GetRRInfo(); | 
 |       ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_None); | 
 |       S.ClearSequenceProgress(); | 
 |       break; | 
 |     case S_None: | 
 |       break; | 
 |     case S_Stop: | 
 |     case S_Release: | 
 |     case S_MovableRelease: | 
 |       llvm_unreachable("top-down pointer in release state!"); | 
 |     } | 
 |     break; | 
 |   } | 
 |   case IC_AutoreleasepoolPop: | 
 |     // Conservatively, clear MyStates for all known pointers. | 
 |     MyStates.clearTopDownPointers(); | 
 |     return NestingDetected; | 
 |   case IC_AutoreleasepoolPush: | 
 |   case IC_None: | 
 |     // These are irrelevant. | 
 |     return NestingDetected; | 
 |   default: | 
 |     break; | 
 |   } | 
 |  | 
 |   // Consider any other possible effects of this instruction on each | 
 |   // pointer being tracked. | 
 |   for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(), | 
 |        ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) { | 
 |     const Value *Ptr = MI->first; | 
 |     if (Ptr == Arg) | 
 |       continue; // Handled above. | 
 |     PtrState &S = MI->second; | 
 |     Sequence Seq = S.GetSeq(); | 
 |  | 
 |     // Check for possible releases. | 
 |     if (CanAlterRefCount(Inst, Ptr, PA, Class)) { | 
 |       DEBUG(dbgs() << "CanAlterRefCount: Seq: " << Seq << "; " << *Ptr | 
 |             << "\n"); | 
 |       S.ClearKnownPositiveRefCount(); | 
 |       switch (Seq) { | 
 |       case S_Retain: | 
 |         S.SetSeq(S_CanRelease); | 
 |         ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_CanRelease); | 
 |         assert(!S.HasReverseInsertPts()); | 
 |         S.InsertReverseInsertPt(Inst); | 
 |  | 
 |         // One call can't cause a transition from S_Retain to S_CanRelease | 
 |         // and S_CanRelease to S_Use. If we've made the first transition, | 
 |         // we're done. | 
 |         continue; | 
 |       case S_Use: | 
 |       case S_CanRelease: | 
 |       case S_None: | 
 |         break; | 
 |       case S_Stop: | 
 |       case S_Release: | 
 |       case S_MovableRelease: | 
 |         llvm_unreachable("top-down pointer in release state!"); | 
 |       } | 
 |     } | 
 |  | 
 |     // Check for possible direct uses. | 
 |     switch (Seq) { | 
 |     case S_CanRelease: | 
 |       if (CanUse(Inst, Ptr, PA, Class)) { | 
 |         DEBUG(dbgs() << "CanUse: Seq: " << Seq << "; " << *Ptr | 
 |               << "\n"); | 
 |         S.SetSeq(S_Use); | 
 |         ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_Use); | 
 |       } | 
 |       break; | 
 |     case S_Retain: | 
 |     case S_Use: | 
 |     case S_None: | 
 |       break; | 
 |     case S_Stop: | 
 |     case S_Release: | 
 |     case S_MovableRelease: | 
 |       llvm_unreachable("top-down pointer in release state!"); | 
 |     } | 
 |   } | 
 |  | 
 |   return NestingDetected; | 
 | } | 
 |  | 
 | bool | 
 | ObjCARCOpt::VisitTopDown(BasicBlock *BB, | 
 |                          DenseMap<const BasicBlock *, BBState> &BBStates, | 
 |                          DenseMap<Value *, RRInfo> &Releases) { | 
 |   DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n"); | 
 |   bool NestingDetected = false; | 
 |   BBState &MyStates = BBStates[BB]; | 
 |  | 
 |   // Merge the states from each predecessor to compute the initial state | 
 |   // for the current block. | 
 |   BBState::edge_iterator PI(MyStates.pred_begin()), | 
 |                          PE(MyStates.pred_end()); | 
 |   if (PI != PE) { | 
 |     const BasicBlock *Pred = *PI; | 
 |     DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred); | 
 |     assert(I != BBStates.end()); | 
 |     MyStates.InitFromPred(I->second); | 
 |     ++PI; | 
 |     for (; PI != PE; ++PI) { | 
 |       Pred = *PI; | 
 |       I = BBStates.find(Pred); | 
 |       assert(I != BBStates.end()); | 
 |       MyStates.MergePred(I->second); | 
 |     } | 
 |   } | 
 |  | 
 |   // If ARC Annotations are enabled, output the current state of pointers at the | 
 |   // top of the basic block. | 
 |   ANNOTATE_TOPDOWN_BBSTART(MyStates, BB); | 
 |  | 
 |   // Visit all the instructions, top-down. | 
 |   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { | 
 |     Instruction *Inst = I; | 
 |  | 
 |     DEBUG(dbgs() << "Visiting " << *Inst << "\n"); | 
 |  | 
 |     NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates); | 
 |   } | 
 |  | 
 |   // If ARC Annotations are enabled, output the current state of pointers at the | 
 |   // bottom of the basic block. | 
 |   ANNOTATE_TOPDOWN_BBEND(MyStates, BB); | 
 |  | 
 | #ifdef ARC_ANNOTATIONS | 
 |   if (!(EnableARCAnnotations && DisableCheckForCFGHazards)) | 
 | #endif | 
 |   CheckForCFGHazards(BB, BBStates, MyStates); | 
 |   return NestingDetected; | 
 | } | 
 |  | 
 | static void | 
 | ComputePostOrders(Function &F, | 
 |                   SmallVectorImpl<BasicBlock *> &PostOrder, | 
 |                   SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder, | 
 |                   unsigned NoObjCARCExceptionsMDKind, | 
 |                   DenseMap<const BasicBlock *, BBState> &BBStates) { | 
 |   /// The visited set, for doing DFS walks. | 
 |   SmallPtrSet<BasicBlock *, 16> Visited; | 
 |  | 
 |   // Do DFS, computing the PostOrder. | 
 |   SmallPtrSet<BasicBlock *, 16> OnStack; | 
 |   SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack; | 
 |  | 
 |   // Functions always have exactly one entry block, and we don't have | 
 |   // any other block that we treat like an entry block. | 
 |   BasicBlock *EntryBB = &F.getEntryBlock(); | 
 |   BBState &MyStates = BBStates[EntryBB]; | 
 |   MyStates.SetAsEntry(); | 
 |   TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back()); | 
 |   SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI))); | 
 |   Visited.insert(EntryBB); | 
 |   OnStack.insert(EntryBB); | 
 |   do { | 
 |   dfs_next_succ: | 
 |     BasicBlock *CurrBB = SuccStack.back().first; | 
 |     TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back()); | 
 |     succ_iterator SE(TI, false); | 
 |  | 
 |     while (SuccStack.back().second != SE) { | 
 |       BasicBlock *SuccBB = *SuccStack.back().second++; | 
 |       if (Visited.insert(SuccBB)) { | 
 |         TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back()); | 
 |         SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI))); | 
 |         BBStates[CurrBB].addSucc(SuccBB); | 
 |         BBState &SuccStates = BBStates[SuccBB]; | 
 |         SuccStates.addPred(CurrBB); | 
 |         OnStack.insert(SuccBB); | 
 |         goto dfs_next_succ; | 
 |       } | 
 |  | 
 |       if (!OnStack.count(SuccBB)) { | 
 |         BBStates[CurrBB].addSucc(SuccBB); | 
 |         BBStates[SuccBB].addPred(CurrBB); | 
 |       } | 
 |     } | 
 |     OnStack.erase(CurrBB); | 
 |     PostOrder.push_back(CurrBB); | 
 |     SuccStack.pop_back(); | 
 |   } while (!SuccStack.empty()); | 
 |  | 
 |   Visited.clear(); | 
 |  | 
 |   // Do reverse-CFG DFS, computing the reverse-CFG PostOrder. | 
 |   // Functions may have many exits, and there also blocks which we treat | 
 |   // as exits due to ignored edges. | 
 |   SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack; | 
 |   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { | 
 |     BasicBlock *ExitBB = I; | 
 |     BBState &MyStates = BBStates[ExitBB]; | 
 |     if (!MyStates.isExit()) | 
 |       continue; | 
 |  | 
 |     MyStates.SetAsExit(); | 
 |  | 
 |     PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin())); | 
 |     Visited.insert(ExitBB); | 
 |     while (!PredStack.empty()) { | 
 |     reverse_dfs_next_succ: | 
 |       BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end(); | 
 |       while (PredStack.back().second != PE) { | 
 |         BasicBlock *BB = *PredStack.back().second++; | 
 |         if (Visited.insert(BB)) { | 
 |           PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin())); | 
 |           goto reverse_dfs_next_succ; | 
 |         } | 
 |       } | 
 |       ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Visit the function both top-down and bottom-up. | 
 | bool | 
 | ObjCARCOpt::Visit(Function &F, | 
 |                   DenseMap<const BasicBlock *, BBState> &BBStates, | 
 |                   MapVector<Value *, RRInfo> &Retains, | 
 |                   DenseMap<Value *, RRInfo> &Releases) { | 
 |  | 
 |   // Use reverse-postorder traversals, because we magically know that loops | 
 |   // will be well behaved, i.e. they won't repeatedly call retain on a single | 
 |   // pointer without doing a release. We can't use the ReversePostOrderTraversal | 
 |   // class here because we want the reverse-CFG postorder to consider each | 
 |   // function exit point, and we want to ignore selected cycle edges. | 
 |   SmallVector<BasicBlock *, 16> PostOrder; | 
 |   SmallVector<BasicBlock *, 16> ReverseCFGPostOrder; | 
 |   ComputePostOrders(F, PostOrder, ReverseCFGPostOrder, | 
 |                     NoObjCARCExceptionsMDKind, | 
 |                     BBStates); | 
 |  | 
 |   // Use reverse-postorder on the reverse CFG for bottom-up. | 
 |   bool BottomUpNestingDetected = false; | 
 |   for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I = | 
 |        ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend(); | 
 |        I != E; ++I) | 
 |     BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains); | 
 |  | 
 |   // Use reverse-postorder for top-down. | 
 |   bool TopDownNestingDetected = false; | 
 |   for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I = | 
 |        PostOrder.rbegin(), E = PostOrder.rend(); | 
 |        I != E; ++I) | 
 |     TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases); | 
 |  | 
 |   return TopDownNestingDetected && BottomUpNestingDetected; | 
 | } | 
 |  | 
 | /// Move the calls in RetainsToMove and ReleasesToMove. | 
 | void ObjCARCOpt::MoveCalls(Value *Arg, | 
 |                            RRInfo &RetainsToMove, | 
 |                            RRInfo &ReleasesToMove, | 
 |                            MapVector<Value *, RRInfo> &Retains, | 
 |                            DenseMap<Value *, RRInfo> &Releases, | 
 |                            SmallVectorImpl<Instruction *> &DeadInsts, | 
 |                            Module *M) { | 
 |   Type *ArgTy = Arg->getType(); | 
 |   Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext())); | 
 |  | 
 |   DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n"); | 
 |  | 
 |   // Insert the new retain and release calls. | 
 |   for (SmallPtrSet<Instruction *, 2>::const_iterator | 
 |        PI = ReleasesToMove.ReverseInsertPts.begin(), | 
 |        PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) { | 
 |     Instruction *InsertPt = *PI; | 
 |     Value *MyArg = ArgTy == ParamTy ? Arg : | 
 |                    new BitCastInst(Arg, ParamTy, "", InsertPt); | 
 |     Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain); | 
 |     CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt); | 
 |     Call->setDoesNotThrow(); | 
 |     Call->setTailCall(); | 
 |  | 
 |     DEBUG(dbgs() << "Inserting new Retain: " << *Call << "\n" | 
 |                     "At insertion point: " << *InsertPt << "\n"); | 
 |   } | 
 |   for (SmallPtrSet<Instruction *, 2>::const_iterator | 
 |        PI = RetainsToMove.ReverseInsertPts.begin(), | 
 |        PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) { | 
 |     Instruction *InsertPt = *PI; | 
 |     Value *MyArg = ArgTy == ParamTy ? Arg : | 
 |                    new BitCastInst(Arg, ParamTy, "", InsertPt); | 
 |     Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release); | 
 |     CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt); | 
 |     // Attach a clang.imprecise_release metadata tag, if appropriate. | 
 |     if (MDNode *M = ReleasesToMove.ReleaseMetadata) | 
 |       Call->setMetadata(ImpreciseReleaseMDKind, M); | 
 |     Call->setDoesNotThrow(); | 
 |     if (ReleasesToMove.IsTailCallRelease) | 
 |       Call->setTailCall(); | 
 |  | 
 |     DEBUG(dbgs() << "Inserting new Release: " << *Call << "\n" | 
 |                     "At insertion point: " << *InsertPt << "\n"); | 
 |   } | 
 |  | 
 |   // Delete the original retain and release calls. | 
 |   for (SmallPtrSet<Instruction *, 2>::const_iterator | 
 |        AI = RetainsToMove.Calls.begin(), | 
 |        AE = RetainsToMove.Calls.end(); AI != AE; ++AI) { | 
 |     Instruction *OrigRetain = *AI; | 
 |     Retains.blot(OrigRetain); | 
 |     DeadInsts.push_back(OrigRetain); | 
 |     DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n"); | 
 |   } | 
 |   for (SmallPtrSet<Instruction *, 2>::const_iterator | 
 |        AI = ReleasesToMove.Calls.begin(), | 
 |        AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) { | 
 |     Instruction *OrigRelease = *AI; | 
 |     Releases.erase(OrigRelease); | 
 |     DeadInsts.push_back(OrigRelease); | 
 |     DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n"); | 
 |   } | 
 |  | 
 | } | 
 |  | 
 | bool | 
 | ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState> | 
 |                                     &BBStates, | 
 |                                   MapVector<Value *, RRInfo> &Retains, | 
 |                                   DenseMap<Value *, RRInfo> &Releases, | 
 |                                   Module *M, | 
 |                                   SmallVectorImpl<Instruction *> &NewRetains, | 
 |                                   SmallVectorImpl<Instruction *> &NewReleases, | 
 |                                   SmallVectorImpl<Instruction *> &DeadInsts, | 
 |                                   RRInfo &RetainsToMove, | 
 |                                   RRInfo &ReleasesToMove, | 
 |                                   Value *Arg, | 
 |                                   bool KnownSafe, | 
 |                                   bool &AnyPairsCompletelyEliminated) { | 
 |   // If a pair happens in a region where it is known that the reference count | 
 |   // is already incremented, we can similarly ignore possible decrements unless | 
 |   // we are dealing with a retainable object with multiple provenance sources. | 
 |   bool KnownSafeTD = true, KnownSafeBU = true; | 
 |   bool MultipleOwners = false; | 
 |   bool CFGHazardAfflicted = false; | 
 |  | 
 |   // Connect the dots between the top-down-collected RetainsToMove and | 
 |   // bottom-up-collected ReleasesToMove to form sets of related calls. | 
 |   // This is an iterative process so that we connect multiple releases | 
 |   // to multiple retains if needed. | 
 |   unsigned OldDelta = 0; | 
 |   unsigned NewDelta = 0; | 
 |   unsigned OldCount = 0; | 
 |   unsigned NewCount = 0; | 
 |   bool FirstRelease = true; | 
 |   for (;;) { | 
 |     for (SmallVectorImpl<Instruction *>::const_iterator | 
 |            NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) { | 
 |       Instruction *NewRetain = *NI; | 
 |       MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain); | 
 |       assert(It != Retains.end()); | 
 |       const RRInfo &NewRetainRRI = It->second; | 
 |       KnownSafeTD &= NewRetainRRI.KnownSafe; | 
 |       MultipleOwners = | 
 |         MultipleOwners || MultiOwnersSet.count(GetObjCArg(NewRetain)); | 
 |       for (SmallPtrSet<Instruction *, 2>::const_iterator | 
 |              LI = NewRetainRRI.Calls.begin(), | 
 |              LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) { | 
 |         Instruction *NewRetainRelease = *LI; | 
 |         DenseMap<Value *, RRInfo>::const_iterator Jt = | 
 |           Releases.find(NewRetainRelease); | 
 |         if (Jt == Releases.end()) | 
 |           return false; | 
 |         const RRInfo &NewRetainReleaseRRI = Jt->second; | 
 |  | 
 |         // If the release does not have a reference to the retain as well, | 
 |         // something happened which is unaccounted for. Do not do anything. | 
 |         // | 
 |         // This can happen if we catch an additive overflow during path count | 
 |         // merging. | 
 |         if (!NewRetainReleaseRRI.Calls.count(NewRetain)) | 
 |           return false; | 
 |  | 
 |         if (ReleasesToMove.Calls.insert(NewRetainRelease)) { | 
 |  | 
 |           // If we overflow when we compute the path count, don't remove/move | 
 |           // anything. | 
 |           const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()]; | 
 |           unsigned PathCount = BBState::OverflowOccurredValue; | 
 |           if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) | 
 |             return false; | 
 |           assert(PathCount != BBState::OverflowOccurredValue && | 
 |                  "PathCount at this point can not be " | 
 |                  "OverflowOccurredValue."); | 
 |           OldDelta -= PathCount; | 
 |  | 
 |           // Merge the ReleaseMetadata and IsTailCallRelease values. | 
 |           if (FirstRelease) { | 
 |             ReleasesToMove.ReleaseMetadata = | 
 |               NewRetainReleaseRRI.ReleaseMetadata; | 
 |             ReleasesToMove.IsTailCallRelease = | 
 |               NewRetainReleaseRRI.IsTailCallRelease; | 
 |             FirstRelease = false; | 
 |           } else { | 
 |             if (ReleasesToMove.ReleaseMetadata != | 
 |                 NewRetainReleaseRRI.ReleaseMetadata) | 
 |               ReleasesToMove.ReleaseMetadata = 0; | 
 |             if (ReleasesToMove.IsTailCallRelease != | 
 |                 NewRetainReleaseRRI.IsTailCallRelease) | 
 |               ReleasesToMove.IsTailCallRelease = false; | 
 |           } | 
 |  | 
 |           // Collect the optimal insertion points. | 
 |           if (!KnownSafe) | 
 |             for (SmallPtrSet<Instruction *, 2>::const_iterator | 
 |                    RI = NewRetainReleaseRRI.ReverseInsertPts.begin(), | 
 |                    RE = NewRetainReleaseRRI.ReverseInsertPts.end(); | 
 |                  RI != RE; ++RI) { | 
 |               Instruction *RIP = *RI; | 
 |               if (ReleasesToMove.ReverseInsertPts.insert(RIP)) { | 
 |                 // If we overflow when we compute the path count, don't | 
 |                 // remove/move anything. | 
 |                 const BBState &RIPBBState = BBStates[RIP->getParent()]; | 
 |                 PathCount = BBState::OverflowOccurredValue; | 
 |                 if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) | 
 |                   return false; | 
 |                 assert(PathCount != BBState::OverflowOccurredValue && | 
 |                        "PathCount at this point can not be " | 
 |                        "OverflowOccurredValue."); | 
 |                 NewDelta -= PathCount; | 
 |               } | 
 |             } | 
 |           NewReleases.push_back(NewRetainRelease); | 
 |         } | 
 |       } | 
 |     } | 
 |     NewRetains.clear(); | 
 |     if (NewReleases.empty()) break; | 
 |  | 
 |     // Back the other way. | 
 |     for (SmallVectorImpl<Instruction *>::const_iterator | 
 |            NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) { | 
 |       Instruction *NewRelease = *NI; | 
 |       DenseMap<Value *, RRInfo>::const_iterator It = | 
 |         Releases.find(NewRelease); | 
 |       assert(It != Releases.end()); | 
 |       const RRInfo &NewReleaseRRI = It->second; | 
 |       KnownSafeBU &= NewReleaseRRI.KnownSafe; | 
 |       CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted; | 
 |       for (SmallPtrSet<Instruction *, 2>::const_iterator | 
 |              LI = NewReleaseRRI.Calls.begin(), | 
 |              LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) { | 
 |         Instruction *NewReleaseRetain = *LI; | 
 |         MapVector<Value *, RRInfo>::const_iterator Jt = | 
 |           Retains.find(NewReleaseRetain); | 
 |         if (Jt == Retains.end()) | 
 |           return false; | 
 |         const RRInfo &NewReleaseRetainRRI = Jt->second; | 
 |  | 
 |         // If the retain does not have a reference to the release as well, | 
 |         // something happened which is unaccounted for. Do not do anything. | 
 |         // | 
 |         // This can happen if we catch an additive overflow during path count | 
 |         // merging. | 
 |         if (!NewReleaseRetainRRI.Calls.count(NewRelease)) | 
 |           return false; | 
 |  | 
 |         if (RetainsToMove.Calls.insert(NewReleaseRetain)) { | 
 |           // If we overflow when we compute the path count, don't remove/move | 
 |           // anything. | 
 |           const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()]; | 
 |           unsigned PathCount = BBState::OverflowOccurredValue; | 
 |           if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) | 
 |             return false; | 
 |           assert(PathCount != BBState::OverflowOccurredValue && | 
 |                  "PathCount at this point can not be " | 
 |                  "OverflowOccurredValue."); | 
 |           OldDelta += PathCount; | 
 |           OldCount += PathCount; | 
 |  | 
 |           // Collect the optimal insertion points. | 
 |           if (!KnownSafe) | 
 |             for (SmallPtrSet<Instruction *, 2>::const_iterator | 
 |                    RI = NewReleaseRetainRRI.ReverseInsertPts.begin(), | 
 |                    RE = NewReleaseRetainRRI.ReverseInsertPts.end(); | 
 |                  RI != RE; ++RI) { | 
 |               Instruction *RIP = *RI; | 
 |               if (RetainsToMove.ReverseInsertPts.insert(RIP)) { | 
 |                 // If we overflow when we compute the path count, don't | 
 |                 // remove/move anything. | 
 |                 const BBState &RIPBBState = BBStates[RIP->getParent()]; | 
 |  | 
 |                 PathCount = BBState::OverflowOccurredValue; | 
 |                 if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) | 
 |                   return false; | 
 |                 assert(PathCount != BBState::OverflowOccurredValue && | 
 |                        "PathCount at this point can not be " | 
 |                        "OverflowOccurredValue."); | 
 |                 NewDelta += PathCount; | 
 |                 NewCount += PathCount; | 
 |               } | 
 |             } | 
 |           NewRetains.push_back(NewReleaseRetain); | 
 |         } | 
 |       } | 
 |     } | 
 |     NewReleases.clear(); | 
 |     if (NewRetains.empty()) break; | 
 |   } | 
 |  | 
 |   // If the pointer is known incremented in 1 direction and we do not have | 
 |   // MultipleOwners, we can safely remove the retain/releases. Otherwise we need | 
 |   // to be known safe in both directions. | 
 |   bool UnconditionallySafe = (KnownSafeTD && KnownSafeBU) || | 
 |     ((KnownSafeTD || KnownSafeBU) && !MultipleOwners); | 
 |   if (UnconditionallySafe) { | 
 |     RetainsToMove.ReverseInsertPts.clear(); | 
 |     ReleasesToMove.ReverseInsertPts.clear(); | 
 |     NewCount = 0; | 
 |   } else { | 
 |     // Determine whether the new insertion points we computed preserve the | 
 |     // balance of retain and release calls through the program. | 
 |     // TODO: If the fully aggressive solution isn't valid, try to find a | 
 |     // less aggressive solution which is. | 
 |     if (NewDelta != 0) | 
 |       return false; | 
 |  | 
 |     // At this point, we are not going to remove any RR pairs, but we still are | 
 |     // able to move RR pairs. If one of our pointers is afflicted with | 
 |     // CFGHazards, we cannot perform such code motion so exit early. | 
 |     const bool WillPerformCodeMotion = RetainsToMove.ReverseInsertPts.size() || | 
 |       ReleasesToMove.ReverseInsertPts.size(); | 
 |     if (CFGHazardAfflicted && WillPerformCodeMotion) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Determine whether the original call points are balanced in the retain and | 
 |   // release calls through the program. If not, conservatively don't touch | 
 |   // them. | 
 |   // TODO: It's theoretically possible to do code motion in this case, as | 
 |   // long as the existing imbalances are maintained. | 
 |   if (OldDelta != 0) | 
 |     return false; | 
 |  | 
 | #ifdef ARC_ANNOTATIONS | 
 |   // Do not move calls if ARC annotations are requested. | 
 |   if (EnableARCAnnotations) | 
 |     return false; | 
 | #endif // ARC_ANNOTATIONS | 
 |  | 
 |   Changed = true; | 
 |   assert(OldCount != 0 && "Unreachable code?"); | 
 |   NumRRs += OldCount - NewCount; | 
 |   // Set to true if we completely removed any RR pairs. | 
 |   AnyPairsCompletelyEliminated = NewCount == 0; | 
 |  | 
 |   // We can move calls! | 
 |   return true; | 
 | } | 
 |  | 
 | /// Identify pairings between the retains and releases, and delete and/or move | 
 | /// them. | 
 | bool | 
 | ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState> | 
 |                                    &BBStates, | 
 |                                  MapVector<Value *, RRInfo> &Retains, | 
 |                                  DenseMap<Value *, RRInfo> &Releases, | 
 |                                  Module *M) { | 
 |   DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n"); | 
 |  | 
 |   bool AnyPairsCompletelyEliminated = false; | 
 |   RRInfo RetainsToMove; | 
 |   RRInfo ReleasesToMove; | 
 |   SmallVector<Instruction *, 4> NewRetains; | 
 |   SmallVector<Instruction *, 4> NewReleases; | 
 |   SmallVector<Instruction *, 8> DeadInsts; | 
 |  | 
 |   // Visit each retain. | 
 |   for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(), | 
 |        E = Retains.end(); I != E; ++I) { | 
 |     Value *V = I->first; | 
 |     if (!V) continue; // blotted | 
 |  | 
 |     Instruction *Retain = cast<Instruction>(V); | 
 |  | 
 |     DEBUG(dbgs() << "Visiting: " << *Retain << "\n"); | 
 |  | 
 |     Value *Arg = GetObjCArg(Retain); | 
 |  | 
 |     // If the object being released is in static or stack storage, we know it's | 
 |     // not being managed by ObjC reference counting, so we can delete pairs | 
 |     // regardless of what possible decrements or uses lie between them. | 
 |     bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg); | 
 |  | 
 |     // A constant pointer can't be pointing to an object on the heap. It may | 
 |     // be reference-counted, but it won't be deleted. | 
 |     if (const LoadInst *LI = dyn_cast<LoadInst>(Arg)) | 
 |       if (const GlobalVariable *GV = | 
 |             dyn_cast<GlobalVariable>( | 
 |               StripPointerCastsAndObjCCalls(LI->getPointerOperand()))) | 
 |         if (GV->isConstant()) | 
 |           KnownSafe = true; | 
 |  | 
 |     // Connect the dots between the top-down-collected RetainsToMove and | 
 |     // bottom-up-collected ReleasesToMove to form sets of related calls. | 
 |     NewRetains.push_back(Retain); | 
 |     bool PerformMoveCalls = | 
 |       ConnectTDBUTraversals(BBStates, Retains, Releases, M, NewRetains, | 
 |                             NewReleases, DeadInsts, RetainsToMove, | 
 |                             ReleasesToMove, Arg, KnownSafe, | 
 |                             AnyPairsCompletelyEliminated); | 
 |  | 
 |     if (PerformMoveCalls) { | 
 |       // Ok, everything checks out and we're all set. Let's move/delete some | 
 |       // code! | 
 |       MoveCalls(Arg, RetainsToMove, ReleasesToMove, | 
 |                 Retains, Releases, DeadInsts, M); | 
 |     } | 
 |  | 
 |     // Clean up state for next retain. | 
 |     NewReleases.clear(); | 
 |     NewRetains.clear(); | 
 |     RetainsToMove.clear(); | 
 |     ReleasesToMove.clear(); | 
 |   } | 
 |  | 
 |   // Now that we're done moving everything, we can delete the newly dead | 
 |   // instructions, as we no longer need them as insert points. | 
 |   while (!DeadInsts.empty()) | 
 |     EraseInstruction(DeadInsts.pop_back_val()); | 
 |  | 
 |   return AnyPairsCompletelyEliminated; | 
 | } | 
 |  | 
 | /// Weak pointer optimizations. | 
 | void ObjCARCOpt::OptimizeWeakCalls(Function &F) { | 
 |   DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n"); | 
 |  | 
 |   // First, do memdep-style RLE and S2L optimizations. We can't use memdep | 
 |   // itself because it uses AliasAnalysis and we need to do provenance | 
 |   // queries instead. | 
 |   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { | 
 |     Instruction *Inst = &*I++; | 
 |  | 
 |     DEBUG(dbgs() << "Visiting: " << *Inst << "\n"); | 
 |  | 
 |     InstructionClass Class = GetBasicInstructionClass(Inst); | 
 |     if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained) | 
 |       continue; | 
 |  | 
 |     // Delete objc_loadWeak calls with no users. | 
 |     if (Class == IC_LoadWeak && Inst->use_empty()) { | 
 |       Inst->eraseFromParent(); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // TODO: For now, just look for an earlier available version of this value | 
 |     // within the same block. Theoretically, we could do memdep-style non-local | 
 |     // analysis too, but that would want caching. A better approach would be to | 
 |     // use the technique that EarlyCSE uses. | 
 |     inst_iterator Current = llvm::prior(I); | 
 |     BasicBlock *CurrentBB = Current.getBasicBlockIterator(); | 
 |     for (BasicBlock::iterator B = CurrentBB->begin(), | 
 |                               J = Current.getInstructionIterator(); | 
 |          J != B; --J) { | 
 |       Instruction *EarlierInst = &*llvm::prior(J); | 
 |       InstructionClass EarlierClass = GetInstructionClass(EarlierInst); | 
 |       switch (EarlierClass) { | 
 |       case IC_LoadWeak: | 
 |       case IC_LoadWeakRetained: { | 
 |         // If this is loading from the same pointer, replace this load's value | 
 |         // with that one. | 
 |         CallInst *Call = cast<CallInst>(Inst); | 
 |         CallInst *EarlierCall = cast<CallInst>(EarlierInst); | 
 |         Value *Arg = Call->getArgOperand(0); | 
 |         Value *EarlierArg = EarlierCall->getArgOperand(0); | 
 |         switch (PA.getAA()->alias(Arg, EarlierArg)) { | 
 |         case AliasAnalysis::MustAlias: | 
 |           Changed = true; | 
 |           // If the load has a builtin retain, insert a plain retain for it. | 
 |           if (Class == IC_LoadWeakRetained) { | 
 |             Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain); | 
 |             CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call); | 
 |             CI->setTailCall(); | 
 |           } | 
 |           // Zap the fully redundant load. | 
 |           Call->replaceAllUsesWith(EarlierCall); | 
 |           Call->eraseFromParent(); | 
 |           goto clobbered; | 
 |         case AliasAnalysis::MayAlias: | 
 |         case AliasAnalysis::PartialAlias: | 
 |           goto clobbered; | 
 |         case AliasAnalysis::NoAlias: | 
 |           break; | 
 |         } | 
 |         break; | 
 |       } | 
 |       case IC_StoreWeak: | 
 |       case IC_InitWeak: { | 
 |         // If this is storing to the same pointer and has the same size etc. | 
 |         // replace this load's value with the stored value. | 
 |         CallInst *Call = cast<CallInst>(Inst); | 
 |         CallInst *EarlierCall = cast<CallInst>(EarlierInst); | 
 |         Value *Arg = Call->getArgOperand(0); | 
 |         Value *EarlierArg = EarlierCall->getArgOperand(0); | 
 |         switch (PA.getAA()->alias(Arg, EarlierArg)) { | 
 |         case AliasAnalysis::MustAlias: | 
 |           Changed = true; | 
 |           // If the load has a builtin retain, insert a plain retain for it. | 
 |           if (Class == IC_LoadWeakRetained) { | 
 |             Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain); | 
 |             CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call); | 
 |             CI->setTailCall(); | 
 |           } | 
 |           // Zap the fully redundant load. | 
 |           Call->replaceAllUsesWith(EarlierCall->getArgOperand(1)); | 
 |           Call->eraseFromParent(); | 
 |           goto clobbered; | 
 |         case AliasAnalysis::MayAlias: | 
 |         case AliasAnalysis::PartialAlias: | 
 |           goto clobbered; | 
 |         case AliasAnalysis::NoAlias: | 
 |           break; | 
 |         } | 
 |         break; | 
 |       } | 
 |       case IC_MoveWeak: | 
 |       case IC_CopyWeak: | 
 |         // TOOD: Grab the copied value. | 
 |         goto clobbered; | 
 |       case IC_AutoreleasepoolPush: | 
 |       case IC_None: | 
 |       case IC_IntrinsicUser: | 
 |       case IC_User: | 
 |         // Weak pointers are only modified through the weak entry points | 
 |         // (and arbitrary calls, which could call the weak entry points). | 
 |         break; | 
 |       default: | 
 |         // Anything else could modify the weak pointer. | 
 |         goto clobbered; | 
 |       } | 
 |     } | 
 |   clobbered:; | 
 |   } | 
 |  | 
 |   // Then, for each destroyWeak with an alloca operand, check to see if | 
 |   // the alloca and all its users can be zapped. | 
 |   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { | 
 |     Instruction *Inst = &*I++; | 
 |     InstructionClass Class = GetBasicInstructionClass(Inst); | 
 |     if (Class != IC_DestroyWeak) | 
 |       continue; | 
 |  | 
 |     CallInst *Call = cast<CallInst>(Inst); | 
 |     Value *Arg = Call->getArgOperand(0); | 
 |     if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) { | 
 |       for (Value::use_iterator UI = Alloca->use_begin(), | 
 |            UE = Alloca->use_end(); UI != UE; ++UI) { | 
 |         const Instruction *UserInst = cast<Instruction>(*UI); | 
 |         switch (GetBasicInstructionClass(UserInst)) { | 
 |         case IC_InitWeak: | 
 |         case IC_StoreWeak: | 
 |         case IC_DestroyWeak: | 
 |           continue; | 
 |         default: | 
 |           goto done; | 
 |         } | 
 |       } | 
 |       Changed = true; | 
 |       for (Value::use_iterator UI = Alloca->use_begin(), | 
 |            UE = Alloca->use_end(); UI != UE; ) { | 
 |         CallInst *UserInst = cast<CallInst>(*UI++); | 
 |         switch (GetBasicInstructionClass(UserInst)) { | 
 |         case IC_InitWeak: | 
 |         case IC_StoreWeak: | 
 |           // These functions return their second argument. | 
 |           UserInst->replaceAllUsesWith(UserInst->getArgOperand(1)); | 
 |           break; | 
 |         case IC_DestroyWeak: | 
 |           // No return value. | 
 |           break; | 
 |         default: | 
 |           llvm_unreachable("alloca really is used!"); | 
 |         } | 
 |         UserInst->eraseFromParent(); | 
 |       } | 
 |       Alloca->eraseFromParent(); | 
 |     done:; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// Identify program paths which execute sequences of retains and releases which | 
 | /// can be eliminated. | 
 | bool ObjCARCOpt::OptimizeSequences(Function &F) { | 
 |   // Releases, Retains - These are used to store the results of the main flow | 
 |   // analysis. These use Value* as the key instead of Instruction* so that the | 
 |   // map stays valid when we get around to rewriting code and calls get | 
 |   // replaced by arguments. | 
 |   DenseMap<Value *, RRInfo> Releases; | 
 |   MapVector<Value *, RRInfo> Retains; | 
 |  | 
 |   // This is used during the traversal of the function to track the | 
 |   // states for each identified object at each block. | 
 |   DenseMap<const BasicBlock *, BBState> BBStates; | 
 |  | 
 |   // Analyze the CFG of the function, and all instructions. | 
 |   bool NestingDetected = Visit(F, BBStates, Retains, Releases); | 
 |  | 
 |   // Transform. | 
 |   bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains, | 
 |                                                            Releases, | 
 |                                                            F.getParent()); | 
 |  | 
 |   // Cleanup. | 
 |   MultiOwnersSet.clear(); | 
 |  | 
 |   return AnyPairsCompletelyEliminated && NestingDetected; | 
 | } | 
 |  | 
 | /// Check if there is a dependent call earlier that does not have anything in | 
 | /// between the Retain and the call that can affect the reference count of their | 
 | /// shared pointer argument. Note that Retain need not be in BB. | 
 | static bool | 
 | HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain, | 
 |                              SmallPtrSet<Instruction *, 4> &DepInsts, | 
 |                              SmallPtrSet<const BasicBlock *, 4> &Visited, | 
 |                              ProvenanceAnalysis &PA) { | 
 |   FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain, | 
 |                    DepInsts, Visited, PA); | 
 |   if (DepInsts.size() != 1) | 
 |     return false; | 
 |  | 
 |   CallInst *Call = | 
 |     dyn_cast_or_null<CallInst>(*DepInsts.begin()); | 
 |  | 
 |   // Check that the pointer is the return value of the call. | 
 |   if (!Call || Arg != Call) | 
 |     return false; | 
 |  | 
 |   // Check that the call is a regular call. | 
 |   InstructionClass Class = GetBasicInstructionClass(Call); | 
 |   if (Class != IC_CallOrUser && Class != IC_Call) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Find a dependent retain that precedes the given autorelease for which there | 
 | /// is nothing in between the two instructions that can affect the ref count of | 
 | /// Arg. | 
 | static CallInst * | 
 | FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB, | 
 |                                   Instruction *Autorelease, | 
 |                                   SmallPtrSet<Instruction *, 4> &DepInsts, | 
 |                                   SmallPtrSet<const BasicBlock *, 4> &Visited, | 
 |                                   ProvenanceAnalysis &PA) { | 
 |   FindDependencies(CanChangeRetainCount, Arg, | 
 |                    BB, Autorelease, DepInsts, Visited, PA); | 
 |   if (DepInsts.size() != 1) | 
 |     return 0; | 
 |  | 
 |   CallInst *Retain = | 
 |     dyn_cast_or_null<CallInst>(*DepInsts.begin()); | 
 |  | 
 |   // Check that we found a retain with the same argument. | 
 |   if (!Retain || | 
 |       !IsRetain(GetBasicInstructionClass(Retain)) || | 
 |       GetObjCArg(Retain) != Arg) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return Retain; | 
 | } | 
 |  | 
 | /// Look for an ``autorelease'' instruction dependent on Arg such that there are | 
 | /// no instructions dependent on Arg that need a positive ref count in between | 
 | /// the autorelease and the ret. | 
 | static CallInst * | 
 | FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB, | 
 |                                        ReturnInst *Ret, | 
 |                                        SmallPtrSet<Instruction *, 4> &DepInsts, | 
 |                                        SmallPtrSet<const BasicBlock *, 4> &V, | 
 |                                        ProvenanceAnalysis &PA) { | 
 |   FindDependencies(NeedsPositiveRetainCount, Arg, | 
 |                    BB, Ret, DepInsts, V, PA); | 
 |   if (DepInsts.size() != 1) | 
 |     return 0; | 
 |  | 
 |   CallInst *Autorelease = | 
 |     dyn_cast_or_null<CallInst>(*DepInsts.begin()); | 
 |   if (!Autorelease) | 
 |     return 0; | 
 |   InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease); | 
 |   if (!IsAutorelease(AutoreleaseClass)) | 
 |     return 0; | 
 |   if (GetObjCArg(Autorelease) != Arg) | 
 |     return 0; | 
 |  | 
 |   return Autorelease; | 
 | } | 
 |  | 
 | /// Look for this pattern: | 
 | /// \code | 
 | ///    %call = call i8* @something(...) | 
 | ///    %2 = call i8* @objc_retain(i8* %call) | 
 | ///    %3 = call i8* @objc_autorelease(i8* %2) | 
 | ///    ret i8* %3 | 
 | /// \endcode | 
 | /// And delete the retain and autorelease. | 
 | void ObjCARCOpt::OptimizeReturns(Function &F) { | 
 |   if (!F.getReturnType()->isPointerTy()) | 
 |     return; | 
 |  | 
 |   DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n"); | 
 |  | 
 |   SmallPtrSet<Instruction *, 4> DependingInstructions; | 
 |   SmallPtrSet<const BasicBlock *, 4> Visited; | 
 |   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { | 
 |     BasicBlock *BB = FI; | 
 |     ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back()); | 
 |  | 
 |     DEBUG(dbgs() << "Visiting: " << *Ret << "\n"); | 
 |  | 
 |     if (!Ret) | 
 |       continue; | 
 |  | 
 |     const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0)); | 
 |  | 
 |     // Look for an ``autorelease'' instruction that is a predecessor of Ret and | 
 |     // dependent on Arg such that there are no instructions dependent on Arg | 
 |     // that need a positive ref count in between the autorelease and Ret. | 
 |     CallInst *Autorelease = | 
 |       FindPredecessorAutoreleaseWithSafePath(Arg, BB, Ret, | 
 |                                              DependingInstructions, Visited, | 
 |                                              PA); | 
 |     DependingInstructions.clear(); | 
 |     Visited.clear(); | 
 |  | 
 |     if (!Autorelease) | 
 |       continue; | 
 |  | 
 |     CallInst *Retain = | 
 |       FindPredecessorRetainWithSafePath(Arg, BB, Autorelease, | 
 |                                         DependingInstructions, Visited, PA); | 
 |     DependingInstructions.clear(); | 
 |     Visited.clear(); | 
 |  | 
 |     if (!Retain) | 
 |       continue; | 
 |  | 
 |     // Check that there is nothing that can affect the reference count | 
 |     // between the retain and the call.  Note that Retain need not be in BB. | 
 |     bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain, | 
 |                                                           DependingInstructions, | 
 |                                                           Visited, PA); | 
 |     DependingInstructions.clear(); | 
 |     Visited.clear(); | 
 |  | 
 |     if (!HasSafePathToCall) | 
 |       continue; | 
 |  | 
 |     // If so, we can zap the retain and autorelease. | 
 |     Changed = true; | 
 |     ++NumRets; | 
 |     DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " | 
 |           << *Autorelease << "\n"); | 
 |     EraseInstruction(Retain); | 
 |     EraseInstruction(Autorelease); | 
 |   } | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | void | 
 | ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) { | 
 |   llvm::Statistic &NumRetains = | 
 |     AfterOptimization? NumRetainsAfterOpt : NumRetainsBeforeOpt; | 
 |   llvm::Statistic &NumReleases = | 
 |     AfterOptimization? NumReleasesAfterOpt : NumReleasesBeforeOpt; | 
 |  | 
 |   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { | 
 |     Instruction *Inst = &*I++; | 
 |     switch (GetBasicInstructionClass(Inst)) { | 
 |     default: | 
 |       break; | 
 |     case IC_Retain: | 
 |       ++NumRetains; | 
 |       break; | 
 |     case IC_Release: | 
 |       ++NumReleases; | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | bool ObjCARCOpt::doInitialization(Module &M) { | 
 |   if (!EnableARCOpts) | 
 |     return false; | 
 |  | 
 |   // If nothing in the Module uses ARC, don't do anything. | 
 |   Run = ModuleHasARC(M); | 
 |   if (!Run) | 
 |     return false; | 
 |  | 
 |   // Identify the imprecise release metadata kind. | 
 |   ImpreciseReleaseMDKind = | 
 |     M.getContext().getMDKindID("clang.imprecise_release"); | 
 |   CopyOnEscapeMDKind = | 
 |     M.getContext().getMDKindID("clang.arc.copy_on_escape"); | 
 |   NoObjCARCExceptionsMDKind = | 
 |     M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions"); | 
 | #ifdef ARC_ANNOTATIONS | 
 |   ARCAnnotationBottomUpMDKind = | 
 |     M.getContext().getMDKindID("llvm.arc.annotation.bottomup"); | 
 |   ARCAnnotationTopDownMDKind = | 
 |     M.getContext().getMDKindID("llvm.arc.annotation.topdown"); | 
 |   ARCAnnotationProvenanceSourceMDKind = | 
 |     M.getContext().getMDKindID("llvm.arc.annotation.provenancesource"); | 
 | #endif // ARC_ANNOTATIONS | 
 |  | 
 |   // Intuitively, objc_retain and others are nocapture, however in practice | 
 |   // they are not, because they return their argument value. And objc_release | 
 |   // calls finalizers which can have arbitrary side effects. | 
 |  | 
 |   // Initialize our runtime entry point cache. | 
 |   EP.Initialize(&M); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool ObjCARCOpt::runOnFunction(Function &F) { | 
 |   if (!EnableARCOpts) | 
 |     return false; | 
 |  | 
 |   // If nothing in the Module uses ARC, don't do anything. | 
 |   if (!Run) | 
 |     return false; | 
 |  | 
 |   Changed = false; | 
 |  | 
 |   DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() << " >>>" | 
 |         "\n"); | 
 |  | 
 |   PA.setAA(&getAnalysis<AliasAnalysis>()); | 
 |  | 
 | #ifndef NDEBUG | 
 |   if (AreStatisticsEnabled()) { | 
 |     GatherStatistics(F, false); | 
 |   } | 
 | #endif | 
 |  | 
 |   // This pass performs several distinct transformations. As a compile-time aid | 
 |   // when compiling code that isn't ObjC, skip these if the relevant ObjC | 
 |   // library functions aren't declared. | 
 |  | 
 |   // Preliminary optimizations. This also computes UsedInThisFunction. | 
 |   OptimizeIndividualCalls(F); | 
 |  | 
 |   // Optimizations for weak pointers. | 
 |   if (UsedInThisFunction & ((1 << IC_LoadWeak) | | 
 |                             (1 << IC_LoadWeakRetained) | | 
 |                             (1 << IC_StoreWeak) | | 
 |                             (1 << IC_InitWeak) | | 
 |                             (1 << IC_CopyWeak) | | 
 |                             (1 << IC_MoveWeak) | | 
 |                             (1 << IC_DestroyWeak))) | 
 |     OptimizeWeakCalls(F); | 
 |  | 
 |   // Optimizations for retain+release pairs. | 
 |   if (UsedInThisFunction & ((1 << IC_Retain) | | 
 |                             (1 << IC_RetainRV) | | 
 |                             (1 << IC_RetainBlock))) | 
 |     if (UsedInThisFunction & (1 << IC_Release)) | 
 |       // Run OptimizeSequences until it either stops making changes or | 
 |       // no retain+release pair nesting is detected. | 
 |       while (OptimizeSequences(F)) {} | 
 |  | 
 |   // Optimizations if objc_autorelease is used. | 
 |   if (UsedInThisFunction & ((1 << IC_Autorelease) | | 
 |                             (1 << IC_AutoreleaseRV))) | 
 |     OptimizeReturns(F); | 
 |  | 
 |   // Gather statistics after optimization. | 
 | #ifndef NDEBUG | 
 |   if (AreStatisticsEnabled()) { | 
 |     GatherStatistics(F, true); | 
 |   } | 
 | #endif | 
 |  | 
 |   DEBUG(dbgs() << "\n"); | 
 |  | 
 |   return Changed; | 
 | } | 
 |  | 
 | void ObjCARCOpt::releaseMemory() { | 
 |   PA.clear(); | 
 | } | 
 |  | 
 | /// @} | 
 | /// |