blob: 8ffd971515a66f4b1b51fbf954aa448532220f28 [file] [log] [blame]
//===-- X86FixupInstTunings.cpp - replace instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file does a tuning pass replacing slower machine instructions
// with faster ones. We do this here, as opposed to during normal ISel, as
// attempting to get the "right" instruction can break patterns. This pass
// is not meant search for special cases where an instruction can be transformed
// to another, it is only meant to do transformations where the old instruction
// is always replacable with the new instructions. For example:
//
// `vpermq ymm` -> `vshufd ymm`
// -- BAD, not always valid (lane cross/non-repeated mask)
//
// `vpermilps ymm` -> `vshufd ymm`
// -- GOOD, always replaceable
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "x86-fixup-inst-tuning"
STATISTIC(NumInstChanges, "Number of instructions changes");
namespace {
class X86FixupInstTuningPass : public MachineFunctionPass {
public:
static char ID;
X86FixupInstTuningPass() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return "X86 Fixup Inst Tuning"; }
bool runOnMachineFunction(MachineFunction &MF) override;
bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I);
// This pass runs after regalloc and doesn't support VReg operands.
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
const X86InstrInfo *TII = nullptr;
const X86Subtarget *ST = nullptr;
const MCSchedModel *SM = nullptr;
};
} // end anonymous namespace
char X86FixupInstTuningPass::ID = 0;
INITIALIZE_PASS(X86FixupInstTuningPass, DEBUG_TYPE, DEBUG_TYPE, false, false)
FunctionPass *llvm::createX86FixupInstTuning() {
return new X86FixupInstTuningPass();
}
template <typename T>
static std::optional<bool> CmpOptionals(T NewVal, T CurVal) {
if (NewVal.has_value() && CurVal.has_value() && *NewVal != *CurVal)
return *NewVal < *CurVal;
return std::nullopt;
}
bool X86FixupInstTuningPass::processInstruction(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I) {
MachineInstr &MI = *I;
unsigned Opc = MI.getOpcode();
unsigned NumOperands = MI.getDesc().getNumOperands();
auto GetInstTput = [&](unsigned Opcode) -> std::optional<double> {
// We already checked that SchedModel exists in `NewOpcPreferable`.
return MCSchedModel::getReciprocalThroughput(
*ST, *(SM->getSchedClassDesc(TII->get(Opcode).getSchedClass())));
};
auto GetInstLat = [&](unsigned Opcode) -> std::optional<double> {
// We already checked that SchedModel exists in `NewOpcPreferable`.
return MCSchedModel::computeInstrLatency(
*ST, *(SM->getSchedClassDesc(TII->get(Opcode).getSchedClass())));
};
auto GetInstSize = [&](unsigned Opcode) -> std::optional<unsigned> {
if (unsigned Size = TII->get(Opcode).getSize())
return Size;
// Zero size means we where unable to compute it.
return std::nullopt;
};
auto NewOpcPreferable = [&](unsigned NewOpc,
bool ReplaceInTie = true) -> bool {
std::optional<bool> Res;
if (SM->hasInstrSchedModel()) {
// Compare tput -> lat -> code size.
Res = CmpOptionals(GetInstTput(NewOpc), GetInstTput(Opc));
if (Res.has_value())
return *Res;
Res = CmpOptionals(GetInstLat(NewOpc), GetInstLat(Opc));
if (Res.has_value())
return *Res;
}
Res = CmpOptionals(GetInstSize(Opc), GetInstSize(NewOpc));
if (Res.has_value())
return *Res;
// We either have either were unable to get tput/lat/codesize or all values
// were equal. Return specified option for a tie.
return ReplaceInTie;
};
// `vpermilpd r, i` -> `vshufpd r, r, i`
// `vpermilpd r, i, k` -> `vshufpd r, r, i, k`
// `vshufpd` is always as fast or faster than `vpermilpd` and takes
// 1 less byte of code size for VEX and EVEX encoding.
auto ProcessVPERMILPDri = [&](unsigned NewOpc) -> bool {
if (!NewOpcPreferable(NewOpc))
return false;
unsigned MaskImm = MI.getOperand(NumOperands - 1).getImm();
MI.removeOperand(NumOperands - 1);
MI.addOperand(MI.getOperand(NumOperands - 2));
MI.setDesc(TII->get(NewOpc));
MI.addOperand(MachineOperand::CreateImm(MaskImm));
return true;
};
// `vpermilps r, i` -> `vshufps r, r, i`
// `vpermilps r, i, k` -> `vshufps r, r, i, k`
// `vshufps` is always as fast or faster than `vpermilps` and takes
// 1 less byte of code size for VEX and EVEX encoding.
auto ProcessVPERMILPSri = [&](unsigned NewOpc) -> bool {
if (!NewOpcPreferable(NewOpc))
return false;
unsigned MaskImm = MI.getOperand(NumOperands - 1).getImm();
MI.removeOperand(NumOperands - 1);
MI.addOperand(MI.getOperand(NumOperands - 2));
MI.setDesc(TII->get(NewOpc));
MI.addOperand(MachineOperand::CreateImm(MaskImm));
return true;
};
// `vpermilps m, i` -> `vpshufd m, i` iff no domain delay penalty on shuffles.
// `vpshufd` is always as fast or faster than `vpermilps` and takes 1 less
// byte of code size.
auto ProcessVPERMILPSmi = [&](unsigned NewOpc) -> bool {
// TODO: Might be work adding bypass delay if -Os/-Oz is enabled as
// `vpshufd` saves a byte of code size.
if (!ST->hasNoDomainDelayShuffle() ||
!NewOpcPreferable(NewOpc, /*ReplaceInTie*/ false))
return false;
MI.setDesc(TII->get(NewOpc));
return true;
};
// `vunpcklpd/vmovlhps r, r` -> `vunpcklqdq r, r`/`vshufpd r, r, 0x00`
// `vunpckhpd/vmovlhps r, r` -> `vunpckhqdq r, r`/`vshufpd r, r, 0xff`
// `vunpcklpd r, r, k` -> `vunpcklqdq r, r, k`/`vshufpd r, r, k, 0x00`
// `vunpckhpd r, r, k` -> `vunpckhqdq r, r, k`/`vshufpd r, r, k, 0xff`
// `vunpcklpd r, m` -> `vunpcklqdq r, m, k`
// `vunpckhpd r, m` -> `vunpckhqdq r, m, k`
// `vunpcklpd r, m, k` -> `vunpcklqdq r, m, k`
// `vunpckhpd r, m, k` -> `vunpckhqdq r, m, k`
// 1) If no bypass delay and `vunpck{l|h}qdq` faster than `vunpck{l|h}pd`
// -> `vunpck{l|h}qdq`
// 2) If `vshufpd` faster than `vunpck{l|h}pd`
// -> `vshufpd`
//
// `vunpcklps` -> `vunpckldq` (for all operand types if no bypass delay)
auto ProcessUNPCK = [&](unsigned NewOpc, unsigned MaskImm) -> bool {
if (!NewOpcPreferable(NewOpc, /*ReplaceInTie*/ false))
return false;
MI.setDesc(TII->get(NewOpc));
MI.addOperand(MachineOperand::CreateImm(MaskImm));
return true;
};
auto ProcessUNPCKToIntDomain = [&](unsigned NewOpc) -> bool {
// TODO it may be worth it to set ReplaceInTie to `true` as there is no real
// downside to the integer unpck, but if someone doesn't specify exact
// target we won't find it faster.
if (!ST->hasNoDomainDelayShuffle() ||
!NewOpcPreferable(NewOpc, /*ReplaceInTie*/ false))
return false;
MI.setDesc(TII->get(NewOpc));
return true;
};
auto ProcessUNPCKLPDrr = [&](unsigned NewOpcIntDomain,
unsigned NewOpc) -> bool {
if (ProcessUNPCKToIntDomain(NewOpcIntDomain))
return true;
return ProcessUNPCK(NewOpc, 0x00);
};
auto ProcessUNPCKHPDrr = [&](unsigned NewOpcIntDomain,
unsigned NewOpc) -> bool {
if (ProcessUNPCKToIntDomain(NewOpcIntDomain))
return true;
return ProcessUNPCK(NewOpc, 0xff);
};
auto ProcessUNPCKPDrm = [&](unsigned NewOpcIntDomain) -> bool {
return ProcessUNPCKToIntDomain(NewOpcIntDomain);
};
auto ProcessUNPCKPS = [&](unsigned NewOpc) -> bool {
return ProcessUNPCKToIntDomain(NewOpc);
};
switch (Opc) {
case X86::VPERMILPDri:
return ProcessVPERMILPDri(X86::VSHUFPDrri);
case X86::VPERMILPDYri:
return ProcessVPERMILPDri(X86::VSHUFPDYrri);
case X86::VPERMILPDZ128ri:
return ProcessVPERMILPDri(X86::VSHUFPDZ128rri);
case X86::VPERMILPDZ256ri:
return ProcessVPERMILPDri(X86::VSHUFPDZ256rri);
case X86::VPERMILPDZri:
return ProcessVPERMILPDri(X86::VSHUFPDZrri);
case X86::VPERMILPDZ128rikz:
return ProcessVPERMILPDri(X86::VSHUFPDZ128rrikz);
case X86::VPERMILPDZ256rikz:
return ProcessVPERMILPDri(X86::VSHUFPDZ256rrikz);
case X86::VPERMILPDZrikz:
return ProcessVPERMILPDri(X86::VSHUFPDZrrikz);
case X86::VPERMILPDZ128rik:
return ProcessVPERMILPDri(X86::VSHUFPDZ128rrik);
case X86::VPERMILPDZ256rik:
return ProcessVPERMILPDri(X86::VSHUFPDZ256rrik);
case X86::VPERMILPDZrik:
return ProcessVPERMILPDri(X86::VSHUFPDZrrik);
case X86::VPERMILPSri:
return ProcessVPERMILPSri(X86::VSHUFPSrri);
case X86::VPERMILPSYri:
return ProcessVPERMILPSri(X86::VSHUFPSYrri);
case X86::VPERMILPSZ128ri:
return ProcessVPERMILPSri(X86::VSHUFPSZ128rri);
case X86::VPERMILPSZ256ri:
return ProcessVPERMILPSri(X86::VSHUFPSZ256rri);
case X86::VPERMILPSZri:
return ProcessVPERMILPSri(X86::VSHUFPSZrri);
case X86::VPERMILPSZ128rikz:
return ProcessVPERMILPSri(X86::VSHUFPSZ128rrikz);
case X86::VPERMILPSZ256rikz:
return ProcessVPERMILPSri(X86::VSHUFPSZ256rrikz);
case X86::VPERMILPSZrikz:
return ProcessVPERMILPSri(X86::VSHUFPSZrrikz);
case X86::VPERMILPSZ128rik:
return ProcessVPERMILPSri(X86::VSHUFPSZ128rrik);
case X86::VPERMILPSZ256rik:
return ProcessVPERMILPSri(X86::VSHUFPSZ256rrik);
case X86::VPERMILPSZrik:
return ProcessVPERMILPSri(X86::VSHUFPSZrrik);
case X86::VPERMILPSmi:
return ProcessVPERMILPSmi(X86::VPSHUFDmi);
case X86::VPERMILPSYmi:
// TODO: See if there is a more generic way we can test if the replacement
// instruction is supported.
return ST->hasAVX2() ? ProcessVPERMILPSmi(X86::VPSHUFDYmi) : false;
case X86::VPERMILPSZ128mi:
return ProcessVPERMILPSmi(X86::VPSHUFDZ128mi);
case X86::VPERMILPSZ256mi:
return ProcessVPERMILPSmi(X86::VPSHUFDZ256mi);
case X86::VPERMILPSZmi:
return ProcessVPERMILPSmi(X86::VPSHUFDZmi);
case X86::VPERMILPSZ128mikz:
return ProcessVPERMILPSmi(X86::VPSHUFDZ128mikz);
case X86::VPERMILPSZ256mikz:
return ProcessVPERMILPSmi(X86::VPSHUFDZ256mikz);
case X86::VPERMILPSZmikz:
return ProcessVPERMILPSmi(X86::VPSHUFDZmikz);
case X86::VPERMILPSZ128mik:
return ProcessVPERMILPSmi(X86::VPSHUFDZ128mik);
case X86::VPERMILPSZ256mik:
return ProcessVPERMILPSmi(X86::VPSHUFDZ256mik);
case X86::VPERMILPSZmik:
return ProcessVPERMILPSmi(X86::VPSHUFDZmik);
case X86::MOVLHPSrr:
case X86::UNPCKLPDrr:
return ProcessUNPCKLPDrr(X86::PUNPCKLQDQrr, X86::SHUFPDrri);
case X86::VMOVLHPSrr:
case X86::VUNPCKLPDrr:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQrr, X86::VSHUFPDrri);
case X86::VUNPCKLPDYrr:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQYrr, X86::VSHUFPDYrri);
// VMOVLHPS is always 128 bits.
case X86::VMOVLHPSZrr:
case X86::VUNPCKLPDZ128rr:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ128rr, X86::VSHUFPDZ128rri);
case X86::VUNPCKLPDZ256rr:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ256rr, X86::VSHUFPDZ256rri);
case X86::VUNPCKLPDZrr:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZrr, X86::VSHUFPDZrri);
case X86::VUNPCKLPDZ128rrk:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ128rrk, X86::VSHUFPDZ128rrik);
case X86::VUNPCKLPDZ256rrk:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ256rrk, X86::VSHUFPDZ256rrik);
case X86::VUNPCKLPDZrrk:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZrrk, X86::VSHUFPDZrrik);
case X86::VUNPCKLPDZ128rrkz:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ128rrkz, X86::VSHUFPDZ128rrikz);
case X86::VUNPCKLPDZ256rrkz:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZ256rrkz, X86::VSHUFPDZ256rrikz);
case X86::VUNPCKLPDZrrkz:
return ProcessUNPCKLPDrr(X86::VPUNPCKLQDQZrrkz, X86::VSHUFPDZrrikz);
case X86::UNPCKHPDrr:
return ProcessUNPCKHPDrr(X86::PUNPCKHQDQrr, X86::SHUFPDrri);
case X86::VUNPCKHPDrr:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQrr, X86::VSHUFPDrri);
case X86::VUNPCKHPDYrr:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQYrr, X86::VSHUFPDYrri);
case X86::VUNPCKHPDZ128rr:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ128rr, X86::VSHUFPDZ128rri);
case X86::VUNPCKHPDZ256rr:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ256rr, X86::VSHUFPDZ256rri);
case X86::VUNPCKHPDZrr:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZrr, X86::VSHUFPDZrri);
case X86::VUNPCKHPDZ128rrk:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ128rrk, X86::VSHUFPDZ128rrik);
case X86::VUNPCKHPDZ256rrk:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ256rrk, X86::VSHUFPDZ256rrik);
case X86::VUNPCKHPDZrrk:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZrrk, X86::VSHUFPDZrrik);
case X86::VUNPCKHPDZ128rrkz:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ128rrkz, X86::VSHUFPDZ128rrikz);
case X86::VUNPCKHPDZ256rrkz:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZ256rrkz, X86::VSHUFPDZ256rrikz);
case X86::VUNPCKHPDZrrkz:
return ProcessUNPCKHPDrr(X86::VPUNPCKHQDQZrrkz, X86::VSHUFPDZrrikz);
case X86::UNPCKLPDrm:
return ProcessUNPCKPDrm(X86::PUNPCKLQDQrm);
case X86::VUNPCKLPDrm:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQrm);
case X86::VUNPCKLPDYrm:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQYrm);
case X86::VUNPCKLPDZ128rm:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ128rm);
case X86::VUNPCKLPDZ256rm:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ256rm);
case X86::VUNPCKLPDZrm:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZrm);
case X86::VUNPCKLPDZ128rmk:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ128rmk);
case X86::VUNPCKLPDZ256rmk:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ256rmk);
case X86::VUNPCKLPDZrmk:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZrmk);
case X86::VUNPCKLPDZ128rmkz:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ128rmkz);
case X86::VUNPCKLPDZ256rmkz:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZ256rmkz);
case X86::VUNPCKLPDZrmkz:
return ProcessUNPCKPDrm(X86::VPUNPCKLQDQZrmkz);
case X86::UNPCKHPDrm:
return ProcessUNPCKPDrm(X86::PUNPCKHQDQrm);
case X86::VUNPCKHPDrm:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQrm);
case X86::VUNPCKHPDYrm:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQYrm);
case X86::VUNPCKHPDZ128rm:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ128rm);
case X86::VUNPCKHPDZ256rm:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ256rm);
case X86::VUNPCKHPDZrm:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZrm);
case X86::VUNPCKHPDZ128rmk:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ128rmk);
case X86::VUNPCKHPDZ256rmk:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ256rmk);
case X86::VUNPCKHPDZrmk:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZrmk);
case X86::VUNPCKHPDZ128rmkz:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ128rmkz);
case X86::VUNPCKHPDZ256rmkz:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZ256rmkz);
case X86::VUNPCKHPDZrmkz:
return ProcessUNPCKPDrm(X86::VPUNPCKHQDQZrmkz);
case X86::UNPCKLPSrr:
return ProcessUNPCKPS(X86::PUNPCKLDQrr);
case X86::VUNPCKLPSrr:
return ProcessUNPCKPS(X86::VPUNPCKLDQrr);
case X86::VUNPCKLPSYrr:
return ProcessUNPCKPS(X86::VPUNPCKLDQYrr);
case X86::VUNPCKLPSZ128rr:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rr);
case X86::VUNPCKLPSZ256rr:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rr);
case X86::VUNPCKLPSZrr:
return ProcessUNPCKPS(X86::VPUNPCKLDQZrr);
case X86::VUNPCKLPSZ128rrk:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rrk);
case X86::VUNPCKLPSZ256rrk:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rrk);
case X86::VUNPCKLPSZrrk:
return ProcessUNPCKPS(X86::VPUNPCKLDQZrrk);
case X86::VUNPCKLPSZ128rrkz:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rrkz);
case X86::VUNPCKLPSZ256rrkz:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rrkz);
case X86::VUNPCKLPSZrrkz:
return ProcessUNPCKPS(X86::VPUNPCKLDQZrrkz);
case X86::UNPCKHPSrr:
return ProcessUNPCKPS(X86::PUNPCKHDQrr);
case X86::VUNPCKHPSrr:
return ProcessUNPCKPS(X86::VPUNPCKHDQrr);
case X86::VUNPCKHPSYrr:
return ProcessUNPCKPS(X86::VPUNPCKHDQYrr);
case X86::VUNPCKHPSZ128rr:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rr);
case X86::VUNPCKHPSZ256rr:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rr);
case X86::VUNPCKHPSZrr:
return ProcessUNPCKPS(X86::VPUNPCKHDQZrr);
case X86::VUNPCKHPSZ128rrk:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rrk);
case X86::VUNPCKHPSZ256rrk:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rrk);
case X86::VUNPCKHPSZrrk:
return ProcessUNPCKPS(X86::VPUNPCKHDQZrrk);
case X86::VUNPCKHPSZ128rrkz:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rrkz);
case X86::VUNPCKHPSZ256rrkz:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rrkz);
case X86::VUNPCKHPSZrrkz:
return ProcessUNPCKPS(X86::VPUNPCKHDQZrrkz);
case X86::UNPCKLPSrm:
return ProcessUNPCKPS(X86::PUNPCKLDQrm);
case X86::VUNPCKLPSrm:
return ProcessUNPCKPS(X86::VPUNPCKLDQrm);
case X86::VUNPCKLPSYrm:
return ProcessUNPCKPS(X86::VPUNPCKLDQYrm);
case X86::VUNPCKLPSZ128rm:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rm);
case X86::VUNPCKLPSZ256rm:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rm);
case X86::VUNPCKLPSZrm:
return ProcessUNPCKPS(X86::VPUNPCKLDQZrm);
case X86::VUNPCKLPSZ128rmk:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rmk);
case X86::VUNPCKLPSZ256rmk:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rmk);
case X86::VUNPCKLPSZrmk:
return ProcessUNPCKPS(X86::VPUNPCKLDQZrmk);
case X86::VUNPCKLPSZ128rmkz:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ128rmkz);
case X86::VUNPCKLPSZ256rmkz:
return ProcessUNPCKPS(X86::VPUNPCKLDQZ256rmkz);
case X86::VUNPCKLPSZrmkz:
return ProcessUNPCKPS(X86::VPUNPCKLDQZrmkz);
case X86::UNPCKHPSrm:
return ProcessUNPCKPS(X86::PUNPCKHDQrm);
case X86::VUNPCKHPSrm:
return ProcessUNPCKPS(X86::VPUNPCKHDQrm);
case X86::VUNPCKHPSYrm:
return ProcessUNPCKPS(X86::VPUNPCKHDQYrm);
case X86::VUNPCKHPSZ128rm:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rm);
case X86::VUNPCKHPSZ256rm:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rm);
case X86::VUNPCKHPSZrm:
return ProcessUNPCKPS(X86::VPUNPCKHDQZrm);
case X86::VUNPCKHPSZ128rmk:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rmk);
case X86::VUNPCKHPSZ256rmk:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rmk);
case X86::VUNPCKHPSZrmk:
return ProcessUNPCKPS(X86::VPUNPCKHDQZrmk);
case X86::VUNPCKHPSZ128rmkz:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ128rmkz);
case X86::VUNPCKHPSZ256rmkz:
return ProcessUNPCKPS(X86::VPUNPCKHDQZ256rmkz);
case X86::VUNPCKHPSZrmkz:
return ProcessUNPCKPS(X86::VPUNPCKHDQZrmkz);
default:
return false;
}
}
bool X86FixupInstTuningPass::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "Start X86FixupInstTuning\n";);
bool Changed = false;
ST = &MF.getSubtarget<X86Subtarget>();
TII = ST->getInstrInfo();
SM = &ST->getSchedModel();
for (MachineBasicBlock &MBB : MF) {
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
if (processInstruction(MF, MBB, I)) {
++NumInstChanges;
Changed = true;
}
}
}
LLVM_DEBUG(dbgs() << "End X86FixupInstTuning\n";);
return Changed;
}