| //===-- MemorySSA.cpp - Memory SSA Builder---------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------===// |
| // |
| // This file implements the MemorySSA class. |
| // |
| //===----------------------------------------------------------------===// |
| #include "llvm/Transforms/Utils/MemorySSA.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/GraphTraits.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/IteratedDominanceFrontier.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/PHITransAddr.h" |
| #include "llvm/IR/AssemblyAnnotationWriter.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/FormattedStream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include <algorithm> |
| |
| #define DEBUG_TYPE "memoryssa" |
| using namespace llvm; |
| STATISTIC(NumClobberCacheLookups, "Number of Memory SSA version cache lookups"); |
| STATISTIC(NumClobberCacheHits, "Number of Memory SSA version cache hits"); |
| STATISTIC(NumClobberCacheInserts, "Number of MemorySSA version cache inserts"); |
| INITIALIZE_PASS_WITH_OPTIONS_BEGIN(MemorySSAPrinterPass, "print-memoryssa", |
| "Memory SSA", true, true) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) |
| INITIALIZE_PASS_END(MemorySSAPrinterPass, "print-memoryssa", "Memory SSA", true, |
| true) |
| INITIALIZE_PASS(MemorySSALazy, "memoryssalazy", "Memory SSA", true, true) |
| |
| namespace llvm { |
| |
| /// \brief An assembly annotator class to print Memory SSA information in |
| /// comments. |
| class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { |
| friend class MemorySSA; |
| const MemorySSA *MSSA; |
| |
| public: |
| MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} |
| |
| virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, |
| formatted_raw_ostream &OS) { |
| if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) |
| OS << "; " << *MA << "\n"; |
| } |
| |
| virtual void emitInstructionAnnot(const Instruction *I, |
| formatted_raw_ostream &OS) { |
| if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) |
| OS << "; " << *MA << "\n"; |
| } |
| }; |
| } |
| |
| namespace { |
| struct RenamePassData { |
| DomTreeNode *DTN; |
| DomTreeNode::const_iterator ChildIt; |
| MemoryAccess *IncomingVal; |
| |
| RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, |
| MemoryAccess *M) |
| : DTN(D), ChildIt(It), IncomingVal(M) {} |
| void swap(RenamePassData &RHS) { |
| std::swap(DTN, RHS.DTN); |
| std::swap(ChildIt, RHS.ChildIt); |
| std::swap(IncomingVal, RHS.IncomingVal); |
| } |
| }; |
| } |
| |
| namespace llvm { |
| /// \brief Rename a single basic block into MemorySSA form. |
| /// Uses the standard SSA renaming algorithm. |
| /// \returns The new incoming value. |
| MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, |
| MemoryAccess *IncomingVal) { |
| auto It = PerBlockAccesses.find(BB); |
| // Skip most processing if the list is empty. |
| if (It != PerBlockAccesses.end()) { |
| AccessListType *Accesses = It->second.get(); |
| for (MemoryAccess &L : *Accesses) { |
| switch (L.getValueID()) { |
| case Value::MemoryUseVal: |
| cast<MemoryUse>(&L)->setDefiningAccess(IncomingVal); |
| break; |
| case Value::MemoryDefVal: |
| // We can't legally optimize defs, because we only allow single |
| // memory phis/uses on operations, and if we optimize these, we can |
| // end up with multiple reaching defs. Uses do not have this |
| // problem, since they do not produce a value |
| cast<MemoryDef>(&L)->setDefiningAccess(IncomingVal); |
| IncomingVal = &L; |
| break; |
| case Value::MemoryPhiVal: |
| IncomingVal = &L; |
| break; |
| } |
| } |
| } |
| |
| // Pass through values to our successors |
| for (const BasicBlock *S : successors(BB)) { |
| auto It = PerBlockAccesses.find(S); |
| // Rename the phi nodes in our successor block |
| if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) |
| continue; |
| AccessListType *Accesses = It->second.get(); |
| auto *Phi = cast<MemoryPhi>(&Accesses->front()); |
| assert(std::find(succ_begin(BB), succ_end(BB), S) != succ_end(BB) && |
| "Must be at least one edge from Succ to BB!"); |
| Phi->addIncoming(IncomingVal, BB); |
| } |
| |
| return IncomingVal; |
| } |
| |
| /// \brief This is the standard SSA renaming algorithm. |
| /// |
| /// We walk the dominator tree in preorder, renaming accesses, and then filling |
| /// in phi nodes in our successors. |
| void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, |
| SmallPtrSet<BasicBlock *, 16> &Visited) { |
| SmallVector<RenamePassData, 32> WorkStack; |
| IncomingVal = renameBlock(Root->getBlock(), IncomingVal); |
| WorkStack.push_back({Root, Root->begin(), IncomingVal}); |
| Visited.insert(Root->getBlock()); |
| |
| while (!WorkStack.empty()) { |
| DomTreeNode *Node = WorkStack.back().DTN; |
| DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; |
| IncomingVal = WorkStack.back().IncomingVal; |
| |
| if (ChildIt == Node->end()) { |
| WorkStack.pop_back(); |
| } else { |
| DomTreeNode *Child = *ChildIt; |
| ++WorkStack.back().ChildIt; |
| BasicBlock *BB = Child->getBlock(); |
| Visited.insert(BB); |
| IncomingVal = renameBlock(BB, IncomingVal); |
| WorkStack.push_back({Child, Child->begin(), IncomingVal}); |
| } |
| } |
| } |
| |
| /// \brief Compute dominator levels, used by the phi insertion algorithm above. |
| void MemorySSA::computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels) { |
| for (auto DFI = df_begin(DT->getRootNode()), DFE = df_end(DT->getRootNode()); |
| DFI != DFE; ++DFI) |
| DomLevels[*DFI] = DFI.getPathLength() - 1; |
| } |
| |
| /// \brief This handles unreachable block acccesses by deleting phi nodes in |
| /// unreachable blocks, and marking all other unreachable MemoryAccess's as |
| /// being uses of the live on entry definition. |
| void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { |
| assert(!DT->isReachableFromEntry(BB) && |
| "Reachable block found while handling unreachable blocks"); |
| |
| auto It = PerBlockAccesses.find(BB); |
| if (It == PerBlockAccesses.end()) |
| return; |
| |
| auto &Accesses = It->second; |
| for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { |
| auto Next = std::next(AI); |
| // If we have a phi, just remove it. We are going to replace all |
| // users with live on entry. |
| if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) |
| UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); |
| else |
| Accesses->erase(AI); |
| AI = Next; |
| } |
| } |
| |
| MemorySSA::MemorySSA(Function &Func) |
| : AA(nullptr), DT(nullptr), F(Func), LiveOnEntryDef(nullptr), |
| Walker(nullptr), NextID(0) {} |
| |
| MemorySSA::~MemorySSA() { |
| // Drop all our references |
| for (const auto &Pair : PerBlockAccesses) |
| for (MemoryAccess &MA : *Pair.second) |
| MA.dropAllReferences(); |
| } |
| |
| MemorySSA::AccessListType *MemorySSA::getOrCreateAccessList(BasicBlock *BB) { |
| auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); |
| |
| if (Res.second) |
| Res.first->second = make_unique<AccessListType>(); |
| return Res.first->second.get(); |
| } |
| |
| MemorySSAWalker *MemorySSA::buildMemorySSA(AliasAnalysis *AA, |
| DominatorTree *DT) { |
| if (Walker) |
| return Walker; |
| |
| assert(!this->AA && !this->DT && |
| "MemorySSA without a walker already has AA or DT?"); |
| |
| Walker = new CachingMemorySSAWalker(this, AA, DT); |
| this->AA = AA; |
| this->DT = DT; |
| |
| // We create an access to represent "live on entry", for things like |
| // arguments or users of globals, where the memory they use is defined before |
| // the beginning of the function. We do not actually insert it into the IR. |
| // We do not define a live on exit for the immediate uses, and thus our |
| // semantics do *not* imply that something with no immediate uses can simply |
| // be removed. |
| BasicBlock &StartingPoint = F.getEntryBlock(); |
| LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr, |
| &StartingPoint, NextID++); |
| |
| // We maintain lists of memory accesses per-block, trading memory for time. We |
| // could just look up the memory access for every possible instruction in the |
| // stream. |
| SmallPtrSet<BasicBlock *, 32> DefiningBlocks; |
| SmallPtrSet<BasicBlock *, 32> DefUseBlocks; |
| // Go through each block, figure out where defs occur, and chain together all |
| // the accesses. |
| for (BasicBlock &B : F) { |
| bool InsertIntoDef = false; |
| AccessListType *Accesses = nullptr; |
| for (Instruction &I : B) { |
| MemoryUseOrDef *MUD = createNewAccess(&I, true); |
| if (!MUD) |
| continue; |
| InsertIntoDef |= isa<MemoryDef>(MUD); |
| |
| if (!Accesses) |
| Accesses = getOrCreateAccessList(&B); |
| Accesses->push_back(MUD); |
| } |
| if (InsertIntoDef) |
| DefiningBlocks.insert(&B); |
| if (Accesses) |
| DefUseBlocks.insert(&B); |
| } |
| |
| // Compute live-in. |
| // Live in is normally defined as "all the blocks on the path from each def to |
| // each of it's uses". |
| // MemoryDef's are implicit uses of previous state, so they are also uses. |
| // This means we don't really have def-only instructions. The only |
| // MemoryDef's that are not really uses are those that are of the LiveOnEntry |
| // variable (because LiveOnEntry can reach anywhere, and every def is a |
| // must-kill of LiveOnEntry). |
| // In theory, you could precisely compute live-in by using alias-analysis to |
| // disambiguate defs and uses to see which really pair up with which. |
| // In practice, this would be really expensive and difficult. So we simply |
| // assume all defs are also uses that need to be kept live. |
| // Because of this, the end result of this live-in computation will be "the |
| // entire set of basic blocks that reach any use". |
| |
| SmallPtrSet<BasicBlock *, 32> LiveInBlocks; |
| SmallVector<BasicBlock *, 64> LiveInBlockWorklist(DefUseBlocks.begin(), |
| DefUseBlocks.end()); |
| // Now that we have a set of blocks where a value is live-in, recursively add |
| // predecessors until we find the full region the value is live. |
| while (!LiveInBlockWorklist.empty()) { |
| BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); |
| |
| // The block really is live in here, insert it into the set. If already in |
| // the set, then it has already been processed. |
| if (!LiveInBlocks.insert(BB).second) |
| continue; |
| |
| // Since the value is live into BB, it is either defined in a predecessor or |
| // live into it to. |
| LiveInBlockWorklist.append(pred_begin(BB), pred_end(BB)); |
| } |
| |
| // Determine where our MemoryPhi's should go |
| ForwardIDFCalculator IDFs(*DT); |
| IDFs.setDefiningBlocks(DefiningBlocks); |
| IDFs.setLiveInBlocks(LiveInBlocks); |
| SmallVector<BasicBlock *, 32> IDFBlocks; |
| IDFs.calculate(IDFBlocks); |
| |
| // Now place MemoryPhi nodes. |
| for (auto &BB : IDFBlocks) { |
| // Insert phi node |
| AccessListType *Accesses = getOrCreateAccessList(BB); |
| MemoryPhi *Phi = new MemoryPhi(F.getContext(), BB, NextID++); |
| ValueToMemoryAccess.insert(std::make_pair(BB, Phi)); |
| // Phi's always are placed at the front of the block. |
| Accesses->push_front(Phi); |
| } |
| |
| // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get |
| // filled in with all blocks. |
| SmallPtrSet<BasicBlock *, 16> Visited; |
| renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); |
| |
| // Now optimize the MemoryUse's defining access to point to the nearest |
| // dominating clobbering def. |
| // This ensures that MemoryUse's that are killed by the same store are |
| // immediate users of that store, one of the invariants we guarantee. |
| for (auto DomNode : depth_first(DT)) { |
| BasicBlock *BB = DomNode->getBlock(); |
| auto AI = PerBlockAccesses.find(BB); |
| if (AI == PerBlockAccesses.end()) |
| continue; |
| AccessListType *Accesses = AI->second.get(); |
| for (auto &MA : *Accesses) { |
| if (auto *MU = dyn_cast<MemoryUse>(&MA)) { |
| Instruction *Inst = MU->getMemoryInst(); |
| MU->setDefiningAccess(Walker->getClobberingMemoryAccess(Inst)); |
| } |
| } |
| } |
| |
| // Mark the uses in unreachable blocks as live on entry, so that they go |
| // somewhere. |
| for (auto &BB : F) |
| if (!Visited.count(&BB)) |
| markUnreachableAsLiveOnEntry(&BB); |
| |
| return Walker; |
| } |
| |
| /// \brief Helper function to create new memory accesses |
| MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, |
| bool IgnoreNonMemory) { |
| // Find out what affect this instruction has on memory. |
| ModRefInfo ModRef = AA->getModRefInfo(I); |
| bool Def = bool(ModRef & MRI_Mod); |
| bool Use = bool(ModRef & MRI_Ref); |
| |
| // It's possible for an instruction to not modify memory at all. During |
| // construction, we ignore them. |
| if (IgnoreNonMemory && !Def && !Use) |
| return nullptr; |
| |
| assert((Def || Use) && |
| "Trying to create a memory access with a non-memory instruction"); |
| |
| MemoryUseOrDef *MUD; |
| if (Def) |
| MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); |
| else |
| MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); |
| ValueToMemoryAccess.insert(std::make_pair(I, MUD)); |
| return MUD; |
| } |
| |
| MemoryAccess *MemorySSA::findDominatingDef(BasicBlock *UseBlock, |
| enum InsertionPlace Where) { |
| // Handle the initial case |
| if (Where == Beginning) |
| // The only thing that could define us at the beginning is a phi node |
| if (MemoryPhi *Phi = getMemoryAccess(UseBlock)) |
| return Phi; |
| |
| DomTreeNode *CurrNode = DT->getNode(UseBlock); |
| // Need to be defined by our dominator |
| if (Where == Beginning) |
| CurrNode = CurrNode->getIDom(); |
| Where = End; |
| while (CurrNode) { |
| auto It = PerBlockAccesses.find(CurrNode->getBlock()); |
| if (It != PerBlockAccesses.end()) { |
| auto &Accesses = It->second; |
| for (auto RAI = Accesses->rbegin(), RAE = Accesses->rend(); RAI != RAE; |
| ++RAI) { |
| if (isa<MemoryDef>(*RAI) || isa<MemoryPhi>(*RAI)) |
| return &*RAI; |
| } |
| } |
| CurrNode = CurrNode->getIDom(); |
| } |
| return LiveOnEntryDef.get(); |
| } |
| |
| /// \brief Returns true if \p Replacer dominates \p Replacee . |
| bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, |
| const MemoryAccess *Replacee) const { |
| if (isa<MemoryUseOrDef>(Replacee)) |
| return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); |
| const auto *MP = cast<MemoryPhi>(Replacee); |
| // For a phi node, the use occurs in the predecessor block of the phi node. |
| // Since we may occur multiple times in the phi node, we have to check each |
| // operand to ensure Replacer dominates each operand where Replacee occurs. |
| for (const Use &Arg : MP->operands()) { |
| if (Arg.get() != Replacee && |
| !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) |
| return false; |
| } |
| return true; |
| } |
| |
| /// \brief If all arguments of a MemoryPHI are defined by the same incoming |
| /// argument, return that argument. |
| static MemoryAccess *onlySingleValue(MemoryPhi *MP) { |
| MemoryAccess *MA = nullptr; |
| |
| for (auto &Arg : MP->operands()) { |
| if (!MA) |
| MA = cast<MemoryAccess>(Arg); |
| else if (MA != Arg) |
| return nullptr; |
| } |
| return MA; |
| } |
| |
| /// \brief Properly remove \p MA from all of MemorySSA's lookup tables. |
| /// |
| /// Because of the way the intrusive list and use lists work, it is important to |
| /// do removal in the right order. |
| void MemorySSA::removeFromLookups(MemoryAccess *MA) { |
| assert(MA->use_empty() && |
| "Trying to remove memory access that still has uses"); |
| if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) |
| MUD->setDefiningAccess(nullptr); |
| // Invalidate our walker's cache if necessary |
| if (!isa<MemoryUse>(MA)) |
| Walker->invalidateInfo(MA); |
| // The call below to erase will destroy MA, so we can't change the order we |
| // are doing things here |
| Value *MemoryInst; |
| if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) { |
| MemoryInst = MUD->getMemoryInst(); |
| } else { |
| MemoryInst = MA->getBlock(); |
| } |
| ValueToMemoryAccess.erase(MemoryInst); |
| |
| auto AccessIt = PerBlockAccesses.find(MA->getBlock()); |
| std::unique_ptr<AccessListType> &Accesses = AccessIt->second; |
| Accesses->erase(MA); |
| if (Accesses->empty()) |
| PerBlockAccesses.erase(AccessIt); |
| } |
| |
| void MemorySSA::removeMemoryAccess(MemoryAccess *MA) { |
| assert(!isLiveOnEntryDef(MA) && "Trying to remove the live on entry def"); |
| // We can only delete phi nodes if they have no uses, or we can replace all |
| // uses with a single definition. |
| MemoryAccess *NewDefTarget = nullptr; |
| if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { |
| // Note that it is sufficient to know that all edges of the phi node have |
| // the same argument. If they do, by the definition of dominance frontiers |
| // (which we used to place this phi), that argument must dominate this phi, |
| // and thus, must dominate the phi's uses, and so we will not hit the assert |
| // below. |
| NewDefTarget = onlySingleValue(MP); |
| assert((NewDefTarget || MP->use_empty()) && |
| "We can't delete this memory phi"); |
| } else { |
| NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); |
| } |
| |
| // Re-point the uses at our defining access |
| if (!MA->use_empty()) |
| MA->replaceAllUsesWith(NewDefTarget); |
| |
| // The call below to erase will destroy MA, so we can't change the order we |
| // are doing things here |
| removeFromLookups(MA); |
| } |
| |
| void MemorySSA::print(raw_ostream &OS) const { |
| MemorySSAAnnotatedWriter Writer(this); |
| F.print(OS, &Writer); |
| } |
| |
| void MemorySSA::dump() const { |
| MemorySSAAnnotatedWriter Writer(this); |
| F.print(dbgs(), &Writer); |
| } |
| |
| void MemorySSA::verifyMemorySSA() const { |
| verifyDefUses(F); |
| verifyDomination(F); |
| } |
| |
| /// \brief Verify the domination properties of MemorySSA by checking that each |
| /// definition dominates all of its uses. |
| void MemorySSA::verifyDomination(Function &F) const { |
| for (BasicBlock &B : F) { |
| // Phi nodes are attached to basic blocks |
| if (MemoryPhi *MP = getMemoryAccess(&B)) { |
| for (User *U : MP->users()) { |
| BasicBlock *UseBlock; |
| // Phi operands are used on edges, we simulate the right domination by |
| // acting as if the use occurred at the end of the predecessor block. |
| if (MemoryPhi *P = dyn_cast<MemoryPhi>(U)) { |
| for (const auto &Arg : P->operands()) { |
| if (Arg == MP) { |
| UseBlock = P->getIncomingBlock(Arg); |
| break; |
| } |
| } |
| } else { |
| UseBlock = cast<MemoryAccess>(U)->getBlock(); |
| } |
| (void)UseBlock; |
| assert(DT->dominates(MP->getBlock(), UseBlock) && |
| "Memory PHI does not dominate it's uses"); |
| } |
| } |
| |
| for (Instruction &I : B) { |
| MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); |
| if (!MD) |
| continue; |
| |
| for (User *U : MD->users()) { |
| BasicBlock *UseBlock; (void)UseBlock; |
| // Things are allowed to flow to phi nodes over their predecessor edge. |
| if (auto *P = dyn_cast<MemoryPhi>(U)) { |
| for (const auto &Arg : P->operands()) { |
| if (Arg == MD) { |
| UseBlock = P->getIncomingBlock(Arg); |
| break; |
| } |
| } |
| } else { |
| UseBlock = cast<MemoryAccess>(U)->getBlock(); |
| } |
| assert(DT->dominates(MD->getBlock(), UseBlock) && |
| "Memory Def does not dominate it's uses"); |
| } |
| } |
| } |
| } |
| |
| /// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use |
| /// appears in the use list of \p Def. |
| /// |
| /// llvm_unreachable is used instead of asserts because this may be called in |
| /// a build without asserts. In that case, we don't want this to turn into a |
| /// nop. |
| void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { |
| // The live on entry use may cause us to get a NULL def here |
| if (!Def) { |
| if (!isLiveOnEntryDef(Use)) |
| llvm_unreachable("Null def but use not point to live on entry def"); |
| } else if (std::find(Def->user_begin(), Def->user_end(), Use) == |
| Def->user_end()) { |
| llvm_unreachable("Did not find use in def's use list"); |
| } |
| } |
| |
| /// \brief Verify the immediate use information, by walking all the memory |
| /// accesses and verifying that, for each use, it appears in the |
| /// appropriate def's use list |
| void MemorySSA::verifyDefUses(Function &F) const { |
| for (BasicBlock &B : F) { |
| // Phi nodes are attached to basic blocks |
| if (MemoryPhi *Phi = getMemoryAccess(&B)) |
| for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) |
| verifyUseInDefs(Phi->getIncomingValue(I), Phi); |
| |
| for (Instruction &I : B) { |
| if (MemoryAccess *MA = getMemoryAccess(&I)) { |
| assert(isa<MemoryUseOrDef>(MA) && |
| "Found a phi node not attached to a bb"); |
| verifyUseInDefs(cast<MemoryUseOrDef>(MA)->getDefiningAccess(), MA); |
| } |
| } |
| } |
| } |
| |
| MemoryAccess *MemorySSA::getMemoryAccess(const Value *I) const { |
| return ValueToMemoryAccess.lookup(I); |
| } |
| |
| MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { |
| return cast_or_null<MemoryPhi>(getMemoryAccess((const Value *)BB)); |
| } |
| |
| /// \brief Determine, for two memory accesses in the same block, |
| /// whether \p Dominator dominates \p Dominatee. |
| /// \returns True if \p Dominator dominates \p Dominatee. |
| bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, |
| const MemoryAccess *Dominatee) const { |
| |
| assert((Dominator->getBlock() == Dominatee->getBlock()) && |
| "Asking for local domination when accesses are in different blocks!"); |
| // Get the access list for the block |
| const AccessListType *AccessList = getBlockAccesses(Dominator->getBlock()); |
| AccessListType::const_reverse_iterator It(Dominator->getIterator()); |
| |
| // If we hit the beginning of the access list before we hit dominatee, we must |
| // dominate it |
| return std::none_of(It, AccessList->rend(), |
| [&](const MemoryAccess &MA) { return &MA == Dominatee; }); |
| } |
| |
| const static char LiveOnEntryStr[] = "liveOnEntry"; |
| |
| void MemoryDef::print(raw_ostream &OS) const { |
| MemoryAccess *UO = getDefiningAccess(); |
| |
| OS << getID() << " = MemoryDef("; |
| if (UO && UO->getID()) |
| OS << UO->getID(); |
| else |
| OS << LiveOnEntryStr; |
| OS << ')'; |
| } |
| |
| void MemoryPhi::print(raw_ostream &OS) const { |
| bool First = true; |
| OS << getID() << " = MemoryPhi("; |
| for (const auto &Op : operands()) { |
| BasicBlock *BB = getIncomingBlock(Op); |
| MemoryAccess *MA = cast<MemoryAccess>(Op); |
| if (!First) |
| OS << ','; |
| else |
| First = false; |
| |
| OS << '{'; |
| if (BB->hasName()) |
| OS << BB->getName(); |
| else |
| BB->printAsOperand(OS, false); |
| OS << ','; |
| if (unsigned ID = MA->getID()) |
| OS << ID; |
| else |
| OS << LiveOnEntryStr; |
| OS << '}'; |
| } |
| OS << ')'; |
| } |
| |
| MemoryAccess::~MemoryAccess() {} |
| |
| void MemoryUse::print(raw_ostream &OS) const { |
| MemoryAccess *UO = getDefiningAccess(); |
| OS << "MemoryUse("; |
| if (UO && UO->getID()) |
| OS << UO->getID(); |
| else |
| OS << LiveOnEntryStr; |
| OS << ')'; |
| } |
| |
| void MemoryAccess::dump() const { |
| print(dbgs()); |
| dbgs() << "\n"; |
| } |
| |
| char MemorySSAPrinterPass::ID = 0; |
| |
| MemorySSAPrinterPass::MemorySSAPrinterPass() : FunctionPass(ID) { |
| initializeMemorySSAPrinterPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void MemorySSAPrinterPass::releaseMemory() { |
| // Subtlety: Be sure to delete the walker before MSSA, because the walker's |
| // dtor may try to access MemorySSA. |
| Walker.reset(); |
| MSSA.reset(); |
| } |
| |
| void MemorySSAPrinterPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| } |
| |
| bool MemorySSAPrinterPass::doInitialization(Module &M) { |
| VerifyMemorySSA = M.getContext() |
| .getOption<bool, MemorySSAPrinterPass, |
| &MemorySSAPrinterPass::VerifyMemorySSA>(); |
| return false; |
| } |
| |
| void MemorySSAPrinterPass::registerOptions() { |
| OptionRegistry::registerOption<bool, MemorySSAPrinterPass, |
| &MemorySSAPrinterPass::VerifyMemorySSA>( |
| "verify-memoryssa", "Run the Memory SSA verifier", false); |
| } |
| |
| void MemorySSAPrinterPass::print(raw_ostream &OS, const Module *M) const { |
| MSSA->print(OS); |
| } |
| |
| bool MemorySSAPrinterPass::runOnFunction(Function &F) { |
| this->F = &F; |
| MSSA.reset(new MemorySSA(F)); |
| AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| Walker.reset(MSSA->buildMemorySSA(AA, DT)); |
| |
| if (VerifyMemorySSA) { |
| MSSA->verifyMemorySSA(); |
| } |
| |
| return false; |
| } |
| |
| char MemorySSALazy::ID = 0; |
| |
| MemorySSALazy::MemorySSALazy() : FunctionPass(ID) { |
| initializeMemorySSALazyPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void MemorySSALazy::releaseMemory() { MSSA.reset(); } |
| |
| bool MemorySSALazy::runOnFunction(Function &F) { |
| MSSA.reset(new MemorySSA(F)); |
| return false; |
| } |
| |
| MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} |
| |
| CachingMemorySSAWalker::CachingMemorySSAWalker(MemorySSA *M, AliasAnalysis *A, |
| DominatorTree *D) |
| : MemorySSAWalker(M), AA(A), DT(D) {} |
| |
| CachingMemorySSAWalker::~CachingMemorySSAWalker() {} |
| |
| struct CachingMemorySSAWalker::UpwardsMemoryQuery { |
| // True if we saw a phi whose predecessor was a backedge |
| bool SawBackedgePhi; |
| // True if our original query started off as a call |
| bool IsCall; |
| // The pointer location we started the query with. This will be empty if |
| // IsCall is true. |
| MemoryLocation StartingLoc; |
| // This is the instruction we were querying about. |
| const Instruction *Inst; |
| // Set of visited Instructions for this query. |
| DenseSet<MemoryAccessPair> Visited; |
| // Vector of visited call accesses for this query. This is separated out |
| // because you can always cache and lookup the result of call queries (IE when |
| // IsCall == true) for every call in the chain. The calls have no AA location |
| // associated with them with them, and thus, no context dependence. |
| SmallVector<const MemoryAccess *, 32> VisitedCalls; |
| // The MemoryAccess we actually got called with, used to test local domination |
| const MemoryAccess *OriginalAccess; |
| // The Datalayout for the module we started in |
| const DataLayout *DL; |
| |
| UpwardsMemoryQuery() |
| : SawBackedgePhi(false), IsCall(false), Inst(nullptr), |
| OriginalAccess(nullptr), DL(nullptr) {} |
| }; |
| |
| void CachingMemorySSAWalker::invalidateInfo(MemoryAccess *MA) { |
| |
| // TODO: We can do much better cache invalidation with differently stored |
| // caches. For now, for MemoryUses, we simply remove them |
| // from the cache, and kill the entire call/non-call cache for everything |
| // else. The problem is for phis or defs, currently we'd need to follow use |
| // chains down and invalidate anything below us in the chain that currently |
| // terminates at this access. |
| |
| // See if this is a MemoryUse, if so, just remove the cached info. MemoryUse |
| // is by definition never a barrier, so nothing in the cache could point to |
| // this use. In that case, we only need invalidate the info for the use |
| // itself. |
| |
| if (MemoryUse *MU = dyn_cast<MemoryUse>(MA)) { |
| UpwardsMemoryQuery Q; |
| Instruction *I = MU->getMemoryInst(); |
| Q.IsCall = bool(ImmutableCallSite(I)); |
| Q.Inst = I; |
| if (!Q.IsCall) |
| Q.StartingLoc = MemoryLocation::get(I); |
| doCacheRemove(MA, Q, Q.StartingLoc); |
| } else { |
| // If it is not a use, the best we can do right now is destroy the cache. |
| CachedUpwardsClobberingCall.clear(); |
| CachedUpwardsClobberingAccess.clear(); |
| } |
| |
| #ifdef EXPENSIVE_CHECKS |
| // Run this only when expensive checks are enabled. |
| verifyRemoved(MA); |
| #endif |
| } |
| |
| void CachingMemorySSAWalker::doCacheRemove(const MemoryAccess *M, |
| const UpwardsMemoryQuery &Q, |
| const MemoryLocation &Loc) { |
| if (Q.IsCall) |
| CachedUpwardsClobberingCall.erase(M); |
| else |
| CachedUpwardsClobberingAccess.erase({M, Loc}); |
| } |
| |
| void CachingMemorySSAWalker::doCacheInsert(const MemoryAccess *M, |
| MemoryAccess *Result, |
| const UpwardsMemoryQuery &Q, |
| const MemoryLocation &Loc) { |
| ++NumClobberCacheInserts; |
| if (Q.IsCall) |
| CachedUpwardsClobberingCall[M] = Result; |
| else |
| CachedUpwardsClobberingAccess[{M, Loc}] = Result; |
| } |
| |
| MemoryAccess *CachingMemorySSAWalker::doCacheLookup(const MemoryAccess *M, |
| const UpwardsMemoryQuery &Q, |
| const MemoryLocation &Loc) { |
| ++NumClobberCacheLookups; |
| MemoryAccess *Result = nullptr; |
| |
| if (Q.IsCall) |
| Result = CachedUpwardsClobberingCall.lookup(M); |
| else |
| Result = CachedUpwardsClobberingAccess.lookup({M, Loc}); |
| |
| if (Result) |
| ++NumClobberCacheHits; |
| return Result; |
| } |
| |
| bool CachingMemorySSAWalker::instructionClobbersQuery( |
| const MemoryDef *MD, UpwardsMemoryQuery &Q, |
| const MemoryLocation &Loc) const { |
| Instruction *DefMemoryInst = MD->getMemoryInst(); |
| assert(DefMemoryInst && "Defining instruction not actually an instruction"); |
| |
| if (!Q.IsCall) |
| return AA->getModRefInfo(DefMemoryInst, Loc) & MRI_Mod; |
| |
| // If this is a call, mark it for caching |
| if (ImmutableCallSite(DefMemoryInst)) |
| Q.VisitedCalls.push_back(MD); |
| ModRefInfo I = AA->getModRefInfo(DefMemoryInst, ImmutableCallSite(Q.Inst)); |
| return I != MRI_NoModRef; |
| } |
| |
| MemoryAccessPair CachingMemorySSAWalker::UpwardsDFSWalk( |
| MemoryAccess *StartingAccess, const MemoryLocation &Loc, |
| UpwardsMemoryQuery &Q, bool FollowingBackedge) { |
| MemoryAccess *ModifyingAccess = nullptr; |
| |
| auto DFI = df_begin(StartingAccess); |
| for (auto DFE = df_end(StartingAccess); DFI != DFE;) { |
| MemoryAccess *CurrAccess = *DFI; |
| if (MSSA->isLiveOnEntryDef(CurrAccess)) |
| return {CurrAccess, Loc}; |
| if (auto CacheResult = doCacheLookup(CurrAccess, Q, Loc)) |
| return {CacheResult, Loc}; |
| // If this is a MemoryDef, check whether it clobbers our current query. |
| if (auto *MD = dyn_cast<MemoryDef>(CurrAccess)) { |
| // If we hit the top, stop following this path. |
| // While we can do lookups, we can't sanely do inserts here unless we were |
| // to track everything we saw along the way, since we don't know where we |
| // will stop. |
| if (instructionClobbersQuery(MD, Q, Loc)) { |
| ModifyingAccess = CurrAccess; |
| break; |
| } |
| } |
| |
| // We need to know whether it is a phi so we can track backedges. |
| // Otherwise, walk all upward defs. |
| if (!isa<MemoryPhi>(CurrAccess)) { |
| ++DFI; |
| continue; |
| } |
| |
| #ifndef NDEBUG |
| // The loop below visits the phi's children for us. Because phis are the |
| // only things with multiple edges, skipping the children should always lead |
| // us to the end of the loop. |
| // |
| // Use a copy of DFI because skipChildren would kill our search stack, which |
| // would make caching anything on the way back impossible. |
| auto DFICopy = DFI; |
| assert(DFICopy.skipChildren() == DFE && |
| "Skipping phi's children doesn't end the DFS?"); |
| #endif |
| |
| const MemoryAccessPair PHIPair(CurrAccess, Loc); |
| |
| // Don't try to optimize this phi again if we've already tried to do so. |
| if (!Q.Visited.insert(PHIPair).second) { |
| ModifyingAccess = CurrAccess; |
| break; |
| } |
| |
| std::size_t InitialVisitedCallSize = Q.VisitedCalls.size(); |
| |
| // Recurse on PHI nodes, since we need to change locations. |
| // TODO: Allow graphtraits on pairs, which would turn this whole function |
| // into a normal single depth first walk. |
| MemoryAccess *FirstDef = nullptr; |
| for (auto MPI = upward_defs_begin(PHIPair), MPE = upward_defs_end(); |
| MPI != MPE; ++MPI) { |
| bool Backedge = |
| !FollowingBackedge && |
| DT->dominates(CurrAccess->getBlock(), MPI.getPhiArgBlock()); |
| |
| MemoryAccessPair CurrentPair = |
| UpwardsDFSWalk(MPI->first, MPI->second, Q, Backedge); |
| // All the phi arguments should reach the same point if we can bypass |
| // this phi. The alternative is that they hit this phi node, which |
| // means we can skip this argument. |
| if (FirstDef && CurrentPair.first != PHIPair.first && |
| CurrentPair.first != FirstDef) { |
| ModifyingAccess = CurrAccess; |
| break; |
| } |
| |
| if (!FirstDef) |
| FirstDef = CurrentPair.first; |
| } |
| |
| // If we exited the loop early, go with the result it gave us. |
| if (!ModifyingAccess) { |
| assert(FirstDef && "Found a Phi with no upward defs?"); |
| ModifyingAccess = FirstDef; |
| } else { |
| // If we can't optimize this Phi, then we can't safely cache any of the |
| // calls we visited when trying to optimize it. Wipe them out now. |
| Q.VisitedCalls.resize(InitialVisitedCallSize); |
| } |
| break; |
| } |
| |
| if (!ModifyingAccess) |
| return {MSSA->getLiveOnEntryDef(), Q.StartingLoc}; |
| |
| const BasicBlock *OriginalBlock = StartingAccess->getBlock(); |
| unsigned N = DFI.getPathLength(); |
| for (; N != 0; --N) { |
| MemoryAccess *CacheAccess = DFI.getPath(N - 1); |
| BasicBlock *CurrBlock = CacheAccess->getBlock(); |
| if (!FollowingBackedge) |
| doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc); |
| if (DT->dominates(CurrBlock, OriginalBlock) && |
| (CurrBlock != OriginalBlock || !FollowingBackedge || |
| MSSA->locallyDominates(CacheAccess, StartingAccess))) |
| break; |
| } |
| |
| // Cache everything else on the way back. The caller should cache |
| // Q.OriginalAccess for us. |
| for (; N != 0; --N) { |
| MemoryAccess *CacheAccess = DFI.getPath(N - 1); |
| doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc); |
| } |
| assert(Q.Visited.size() < 1000 && "Visited too much"); |
| |
| return {ModifyingAccess, Loc}; |
| } |
| |
| /// \brief Walk the use-def chains starting at \p MA and find |
| /// the MemoryAccess that actually clobbers Loc. |
| /// |
| /// \returns our clobbering memory access |
| MemoryAccess * |
| CachingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *StartingAccess, |
| UpwardsMemoryQuery &Q) { |
| return UpwardsDFSWalk(StartingAccess, Q.StartingLoc, Q, false).first; |
| } |
| |
| MemoryAccess * |
| CachingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *StartingAccess, |
| MemoryLocation &Loc) { |
| if (isa<MemoryPhi>(StartingAccess)) |
| return StartingAccess; |
| |
| auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); |
| if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) |
| return StartingUseOrDef; |
| |
| Instruction *I = StartingUseOrDef->getMemoryInst(); |
| |
| // Conservatively, fences are always clobbers, so don't perform the walk if we |
| // hit a fence. |
| if (isa<FenceInst>(I)) |
| return StartingUseOrDef; |
| |
| UpwardsMemoryQuery Q; |
| Q.OriginalAccess = StartingUseOrDef; |
| Q.StartingLoc = Loc; |
| Q.Inst = StartingUseOrDef->getMemoryInst(); |
| Q.IsCall = false; |
| Q.DL = &Q.Inst->getModule()->getDataLayout(); |
| |
| if (auto CacheResult = doCacheLookup(StartingUseOrDef, Q, Q.StartingLoc)) |
| return CacheResult; |
| |
| // Unlike the other function, do not walk to the def of a def, because we are |
| // handed something we already believe is the clobbering access. |
| MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) |
| ? StartingUseOrDef->getDefiningAccess() |
| : StartingUseOrDef; |
| |
| MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); |
| doCacheInsert(Q.OriginalAccess, Clobber, Q, Q.StartingLoc); |
| DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); |
| DEBUG(dbgs() << *StartingUseOrDef << "\n"); |
| DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); |
| DEBUG(dbgs() << *Clobber << "\n"); |
| return Clobber; |
| } |
| |
| MemoryAccess * |
| CachingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) { |
| // There should be no way to lookup an instruction and get a phi as the |
| // access, since we only map BB's to PHI's. So, this must be a use or def. |
| auto *StartingAccess = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(I)); |
| |
| // We can't sanely do anything with a FenceInst, they conservatively |
| // clobber all memory, and have no locations to get pointers from to |
| // try to disambiguate |
| if (isa<FenceInst>(I)) |
| return StartingAccess; |
| |
| UpwardsMemoryQuery Q; |
| Q.OriginalAccess = StartingAccess; |
| Q.IsCall = bool(ImmutableCallSite(I)); |
| if (!Q.IsCall) |
| Q.StartingLoc = MemoryLocation::get(I); |
| Q.Inst = I; |
| Q.DL = &Q.Inst->getModule()->getDataLayout(); |
| if (auto CacheResult = doCacheLookup(StartingAccess, Q, Q.StartingLoc)) |
| return CacheResult; |
| |
| // Start with the thing we already think clobbers this location |
| MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); |
| |
| // At this point, DefiningAccess may be the live on entry def. |
| // If it is, we will not get a better result. |
| if (MSSA->isLiveOnEntryDef(DefiningAccess)) |
| return DefiningAccess; |
| |
| MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); |
| doCacheInsert(Q.OriginalAccess, Result, Q, Q.StartingLoc); |
| // TODO: When this implementation is more mature, we may want to figure out |
| // what this additional caching buys us. It's most likely A Good Thing. |
| if (Q.IsCall) |
| for (const MemoryAccess *MA : Q.VisitedCalls) |
| doCacheInsert(MA, Result, Q, Q.StartingLoc); |
| |
| DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); |
| DEBUG(dbgs() << *DefiningAccess << "\n"); |
| DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); |
| DEBUG(dbgs() << *Result << "\n"); |
| |
| return Result; |
| } |
| |
| // Verify that MA doesn't exist in any of the caches. |
| void CachingMemorySSAWalker::verifyRemoved(MemoryAccess *MA) { |
| #ifndef NDEBUG |
| for (auto &P : CachedUpwardsClobberingAccess) |
| assert(P.first.first != MA && P.second != MA && |
| "Found removed MemoryAccess in cache."); |
| for (auto &P : CachedUpwardsClobberingCall) |
| assert(P.first != MA && P.second != MA && |
| "Found removed MemoryAccess in cache."); |
| #endif // !NDEBUG |
| } |
| |
| MemoryAccess * |
| DoNothingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) { |
| MemoryAccess *MA = MSSA->getMemoryAccess(I); |
| if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) |
| return Use->getDefiningAccess(); |
| return MA; |
| } |
| |
| MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( |
| MemoryAccess *StartingAccess, MemoryLocation &) { |
| if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) |
| return Use->getDefiningAccess(); |
| return StartingAccess; |
| } |
| } |