|  | //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements a hash set that can be used to remove duplication of | 
|  | // nodes in a graph. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/FoldingSet.h" | 
|  | #include "llvm/ADT/Hashing.h" | 
|  | #include "llvm/Support/Allocator.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/Host.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <cassert> | 
|  | #include <cstring> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // FoldingSetNodeIDRef Implementation | 
|  |  | 
|  | /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, | 
|  | /// used to lookup the node in the FoldingSetImpl. | 
|  | unsigned FoldingSetNodeIDRef::ComputeHash() const { | 
|  | return static_cast<unsigned>(hash_combine_range(Data, Data+Size)); | 
|  | } | 
|  |  | 
|  | bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const { | 
|  | if (Size != RHS.Size) return false; | 
|  | return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0; | 
|  | } | 
|  |  | 
|  | /// Used to compare the "ordering" of two nodes as defined by the | 
|  | /// profiled bits and their ordering defined by memcmp(). | 
|  | bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const { | 
|  | if (Size != RHS.Size) | 
|  | return Size < RHS.Size; | 
|  | return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // FoldingSetNodeID Implementation | 
|  |  | 
|  | /// Add* - Add various data types to Bit data. | 
|  | /// | 
|  | void FoldingSetNodeID::AddPointer(const void *Ptr) { | 
|  | // Note: this adds pointers to the hash using sizes and endianness that | 
|  | // depend on the host. It doesn't matter, however, because hashing on | 
|  | // pointer values is inherently unstable. Nothing should depend on the | 
|  | // ordering of nodes in the folding set. | 
|  | Bits.append(reinterpret_cast<unsigned *>(&Ptr), | 
|  | reinterpret_cast<unsigned *>(&Ptr+1)); | 
|  | } | 
|  | void FoldingSetNodeID::AddInteger(signed I) { | 
|  | Bits.push_back(I); | 
|  | } | 
|  | void FoldingSetNodeID::AddInteger(unsigned I) { | 
|  | Bits.push_back(I); | 
|  | } | 
|  | void FoldingSetNodeID::AddInteger(long I) { | 
|  | AddInteger((unsigned long)I); | 
|  | } | 
|  | void FoldingSetNodeID::AddInteger(unsigned long I) { | 
|  | if (sizeof(long) == sizeof(int)) | 
|  | AddInteger(unsigned(I)); | 
|  | else if (sizeof(long) == sizeof(long long)) { | 
|  | AddInteger((unsigned long long)I); | 
|  | } else { | 
|  | llvm_unreachable("unexpected sizeof(long)"); | 
|  | } | 
|  | } | 
|  | void FoldingSetNodeID::AddInteger(long long I) { | 
|  | AddInteger((unsigned long long)I); | 
|  | } | 
|  | void FoldingSetNodeID::AddInteger(unsigned long long I) { | 
|  | AddInteger(unsigned(I)); | 
|  | if ((uint64_t)(unsigned)I != I) | 
|  | Bits.push_back(unsigned(I >> 32)); | 
|  | } | 
|  |  | 
|  | void FoldingSetNodeID::AddString(StringRef String) { | 
|  | unsigned Size =  String.size(); | 
|  | Bits.push_back(Size); | 
|  | if (!Size) return; | 
|  |  | 
|  | unsigned Units = Size / 4; | 
|  | unsigned Pos = 0; | 
|  | const unsigned *Base = (const unsigned*) String.data(); | 
|  |  | 
|  | // If the string is aligned do a bulk transfer. | 
|  | if (!((intptr_t)Base & 3)) { | 
|  | Bits.append(Base, Base + Units); | 
|  | Pos = (Units + 1) * 4; | 
|  | } else { | 
|  | // Otherwise do it the hard way. | 
|  | // To be compatible with above bulk transfer, we need to take endianness | 
|  | // into account. | 
|  | static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost, | 
|  | "Unexpected host endianness"); | 
|  | if (sys::IsBigEndianHost) { | 
|  | for (Pos += 4; Pos <= Size; Pos += 4) { | 
|  | unsigned V = ((unsigned char)String[Pos - 4] << 24) | | 
|  | ((unsigned char)String[Pos - 3] << 16) | | 
|  | ((unsigned char)String[Pos - 2] << 8) | | 
|  | (unsigned char)String[Pos - 1]; | 
|  | Bits.push_back(V); | 
|  | } | 
|  | } else {  // Little-endian host | 
|  | for (Pos += 4; Pos <= Size; Pos += 4) { | 
|  | unsigned V = ((unsigned char)String[Pos - 1] << 24) | | 
|  | ((unsigned char)String[Pos - 2] << 16) | | 
|  | ((unsigned char)String[Pos - 3] << 8) | | 
|  | (unsigned char)String[Pos - 4]; | 
|  | Bits.push_back(V); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // With the leftover bits. | 
|  | unsigned V = 0; | 
|  | // Pos will have overshot size by 4 - #bytes left over. | 
|  | // No need to take endianness into account here - this is always executed. | 
|  | switch (Pos - Size) { | 
|  | case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru. | 
|  | case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru. | 
|  | case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break; | 
|  | default: return; // Nothing left. | 
|  | } | 
|  |  | 
|  | Bits.push_back(V); | 
|  | } | 
|  |  | 
|  | // AddNodeID - Adds the Bit data of another ID to *this. | 
|  | void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) { | 
|  | Bits.append(ID.Bits.begin(), ID.Bits.end()); | 
|  | } | 
|  |  | 
|  | /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to | 
|  | /// lookup the node in the FoldingSetImpl. | 
|  | unsigned FoldingSetNodeID::ComputeHash() const { | 
|  | return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash(); | 
|  | } | 
|  |  | 
|  | /// operator== - Used to compare two nodes to each other. | 
|  | /// | 
|  | bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const { | 
|  | return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size()); | 
|  | } | 
|  |  | 
|  | /// operator== - Used to compare two nodes to each other. | 
|  | /// | 
|  | bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const { | 
|  | return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS; | 
|  | } | 
|  |  | 
|  | /// Used to compare the "ordering" of two nodes as defined by the | 
|  | /// profiled bits and their ordering defined by memcmp(). | 
|  | bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const { | 
|  | return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size()); | 
|  | } | 
|  |  | 
|  | bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const { | 
|  | return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS; | 
|  | } | 
|  |  | 
|  | /// Intern - Copy this node's data to a memory region allocated from the | 
|  | /// given allocator and return a FoldingSetNodeIDRef describing the | 
|  | /// interned data. | 
|  | FoldingSetNodeIDRef | 
|  | FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const { | 
|  | unsigned *New = Allocator.Allocate<unsigned>(Bits.size()); | 
|  | std::uninitialized_copy(Bits.begin(), Bits.end(), New); | 
|  | return FoldingSetNodeIDRef(New, Bits.size()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// Helper functions for FoldingSetImpl. | 
|  |  | 
|  | /// GetNextPtr - In order to save space, each bucket is a | 
|  | /// singly-linked-list. In order to make deletion more efficient, we make | 
|  | /// the list circular, so we can delete a node without computing its hash. | 
|  | /// The problem with this is that the start of the hash buckets are not | 
|  | /// Nodes.  If NextInBucketPtr is a bucket pointer, this method returns null: | 
|  | /// use GetBucketPtr when this happens. | 
|  | static FoldingSetImpl::Node *GetNextPtr(void *NextInBucketPtr) { | 
|  | // The low bit is set if this is the pointer back to the bucket. | 
|  | if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1) | 
|  | return nullptr; | 
|  |  | 
|  | return static_cast<FoldingSetImpl::Node*>(NextInBucketPtr); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// testing. | 
|  | static void **GetBucketPtr(void *NextInBucketPtr) { | 
|  | intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr); | 
|  | assert((Ptr & 1) && "Not a bucket pointer"); | 
|  | return reinterpret_cast<void**>(Ptr & ~intptr_t(1)); | 
|  | } | 
|  |  | 
|  | /// GetBucketFor - Hash the specified node ID and return the hash bucket for | 
|  | /// the specified ID. | 
|  | static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) { | 
|  | // NumBuckets is always a power of 2. | 
|  | unsigned BucketNum = Hash & (NumBuckets-1); | 
|  | return Buckets + BucketNum; | 
|  | } | 
|  |  | 
|  | /// AllocateBuckets - Allocated initialized bucket memory. | 
|  | static void **AllocateBuckets(unsigned NumBuckets) { | 
|  | void **Buckets = static_cast<void**>(calloc(NumBuckets+1, sizeof(void*))); | 
|  | // Set the very last bucket to be a non-null "pointer". | 
|  | Buckets[NumBuckets] = reinterpret_cast<void*>(-1); | 
|  | return Buckets; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // FoldingSetImpl Implementation | 
|  |  | 
|  | void FoldingSetImpl::anchor() {} | 
|  |  | 
|  | FoldingSetImpl::FoldingSetImpl(unsigned Log2InitSize) { | 
|  | assert(5 < Log2InitSize && Log2InitSize < 32 && | 
|  | "Initial hash table size out of range"); | 
|  | NumBuckets = 1 << Log2InitSize; | 
|  | Buckets = AllocateBuckets(NumBuckets); | 
|  | NumNodes = 0; | 
|  | } | 
|  |  | 
|  | FoldingSetImpl::FoldingSetImpl(FoldingSetImpl &&Arg) | 
|  | : Buckets(Arg.Buckets), NumBuckets(Arg.NumBuckets), NumNodes(Arg.NumNodes) { | 
|  | Arg.Buckets = nullptr; | 
|  | Arg.NumBuckets = 0; | 
|  | Arg.NumNodes = 0; | 
|  | } | 
|  |  | 
|  | FoldingSetImpl &FoldingSetImpl::operator=(FoldingSetImpl &&RHS) { | 
|  | free(Buckets); // This may be null if the set is in a moved-from state. | 
|  | Buckets = RHS.Buckets; | 
|  | NumBuckets = RHS.NumBuckets; | 
|  | NumNodes = RHS.NumNodes; | 
|  | RHS.Buckets = nullptr; | 
|  | RHS.NumBuckets = 0; | 
|  | RHS.NumNodes = 0; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | FoldingSetImpl::~FoldingSetImpl() { | 
|  | free(Buckets); | 
|  | } | 
|  |  | 
|  | void FoldingSetImpl::clear() { | 
|  | // Set all but the last bucket to null pointers. | 
|  | memset(Buckets, 0, NumBuckets*sizeof(void*)); | 
|  |  | 
|  | // Set the very last bucket to be a non-null "pointer". | 
|  | Buckets[NumBuckets] = reinterpret_cast<void*>(-1); | 
|  |  | 
|  | // Reset the node count to zero. | 
|  | NumNodes = 0; | 
|  | } | 
|  |  | 
|  | void FoldingSetImpl::GrowBucketCount(unsigned NewBucketCount) { | 
|  | assert((NewBucketCount > NumBuckets) && "Can't shrink a folding set with GrowBucketCount"); | 
|  | assert(isPowerOf2_32(NewBucketCount) && "Bad bucket count!"); | 
|  | void **OldBuckets = Buckets; | 
|  | unsigned OldNumBuckets = NumBuckets; | 
|  | NumBuckets = NewBucketCount; | 
|  |  | 
|  | // Clear out new buckets. | 
|  | Buckets = AllocateBuckets(NumBuckets); | 
|  | NumNodes = 0; | 
|  |  | 
|  | // Walk the old buckets, rehashing nodes into their new place. | 
|  | FoldingSetNodeID TempID; | 
|  | for (unsigned i = 0; i != OldNumBuckets; ++i) { | 
|  | void *Probe = OldBuckets[i]; | 
|  | if (!Probe) continue; | 
|  | while (Node *NodeInBucket = GetNextPtr(Probe)) { | 
|  | // Figure out the next link, remove NodeInBucket from the old link. | 
|  | Probe = NodeInBucket->getNextInBucket(); | 
|  | NodeInBucket->SetNextInBucket(nullptr); | 
|  |  | 
|  | // Insert the node into the new bucket, after recomputing the hash. | 
|  | InsertNode(NodeInBucket, | 
|  | GetBucketFor(ComputeNodeHash(NodeInBucket, TempID), | 
|  | Buckets, NumBuckets)); | 
|  | TempID.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | free(OldBuckets); | 
|  | } | 
|  |  | 
|  | /// GrowHashTable - Double the size of the hash table and rehash everything. | 
|  | /// | 
|  | void FoldingSetImpl::GrowHashTable() { | 
|  | GrowBucketCount(NumBuckets * 2); | 
|  | } | 
|  |  | 
|  | void FoldingSetImpl::reserve(unsigned EltCount) { | 
|  | // This will give us somewhere between EltCount / 2 and | 
|  | // EltCount buckets.  This puts us in the load factor | 
|  | // range of 1.0 - 2.0. | 
|  | if(EltCount < capacity()) | 
|  | return; | 
|  | GrowBucketCount(PowerOf2Floor(EltCount)); | 
|  | } | 
|  |  | 
|  | /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists, | 
|  | /// return it.  If not, return the insertion token that will make insertion | 
|  | /// faster. | 
|  | FoldingSetImpl::Node | 
|  | *FoldingSetImpl::FindNodeOrInsertPos(const FoldingSetNodeID &ID, | 
|  | void *&InsertPos) { | 
|  | unsigned IDHash = ID.ComputeHash(); | 
|  | void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets); | 
|  | void *Probe = *Bucket; | 
|  |  | 
|  | InsertPos = nullptr; | 
|  |  | 
|  | FoldingSetNodeID TempID; | 
|  | while (Node *NodeInBucket = GetNextPtr(Probe)) { | 
|  | if (NodeEquals(NodeInBucket, ID, IDHash, TempID)) | 
|  | return NodeInBucket; | 
|  | TempID.clear(); | 
|  |  | 
|  | Probe = NodeInBucket->getNextInBucket(); | 
|  | } | 
|  |  | 
|  | // Didn't find the node, return null with the bucket as the InsertPos. | 
|  | InsertPos = Bucket; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// InsertNode - Insert the specified node into the folding set, knowing that it | 
|  | /// is not already in the map.  InsertPos must be obtained from | 
|  | /// FindNodeOrInsertPos. | 
|  | void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) { | 
|  | assert(!N->getNextInBucket()); | 
|  | // Do we need to grow the hashtable? | 
|  | if (NumNodes+1 > capacity()) { | 
|  | GrowHashTable(); | 
|  | FoldingSetNodeID TempID; | 
|  | InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets); | 
|  | } | 
|  |  | 
|  | ++NumNodes; | 
|  |  | 
|  | /// The insert position is actually a bucket pointer. | 
|  | void **Bucket = static_cast<void**>(InsertPos); | 
|  |  | 
|  | void *Next = *Bucket; | 
|  |  | 
|  | // If this is the first insertion into this bucket, its next pointer will be | 
|  | // null.  Pretend as if it pointed to itself, setting the low bit to indicate | 
|  | // that it is a pointer to the bucket. | 
|  | if (!Next) | 
|  | Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1); | 
|  |  | 
|  | // Set the node's next pointer, and make the bucket point to the node. | 
|  | N->SetNextInBucket(Next); | 
|  | *Bucket = N; | 
|  | } | 
|  |  | 
|  | /// RemoveNode - Remove a node from the folding set, returning true if one was | 
|  | /// removed or false if the node was not in the folding set. | 
|  | bool FoldingSetImpl::RemoveNode(Node *N) { | 
|  | // Because each bucket is a circular list, we don't need to compute N's hash | 
|  | // to remove it. | 
|  | void *Ptr = N->getNextInBucket(); | 
|  | if (!Ptr) return false;  // Not in folding set. | 
|  |  | 
|  | --NumNodes; | 
|  | N->SetNextInBucket(nullptr); | 
|  |  | 
|  | // Remember what N originally pointed to, either a bucket or another node. | 
|  | void *NodeNextPtr = Ptr; | 
|  |  | 
|  | // Chase around the list until we find the node (or bucket) which points to N. | 
|  | while (true) { | 
|  | if (Node *NodeInBucket = GetNextPtr(Ptr)) { | 
|  | // Advance pointer. | 
|  | Ptr = NodeInBucket->getNextInBucket(); | 
|  |  | 
|  | // We found a node that points to N, change it to point to N's next node, | 
|  | // removing N from the list. | 
|  | if (Ptr == N) { | 
|  | NodeInBucket->SetNextInBucket(NodeNextPtr); | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | void **Bucket = GetBucketPtr(Ptr); | 
|  | Ptr = *Bucket; | 
|  |  | 
|  | // If we found that the bucket points to N, update the bucket to point to | 
|  | // whatever is next. | 
|  | if (Ptr == N) { | 
|  | *Bucket = NodeNextPtr; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GetOrInsertNode - If there is an existing simple Node exactly | 
|  | /// equal to the specified node, return it.  Otherwise, insert 'N' and it | 
|  | /// instead. | 
|  | FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) { | 
|  | FoldingSetNodeID ID; | 
|  | GetNodeProfile(N, ID); | 
|  | void *IP; | 
|  | if (Node *E = FindNodeOrInsertPos(ID, IP)) | 
|  | return E; | 
|  | InsertNode(N, IP); | 
|  | return N; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // FoldingSetIteratorImpl Implementation | 
|  |  | 
|  | FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) { | 
|  | // Skip to the first non-null non-self-cycle bucket. | 
|  | while (*Bucket != reinterpret_cast<void*>(-1) && | 
|  | (!*Bucket || !GetNextPtr(*Bucket))) | 
|  | ++Bucket; | 
|  |  | 
|  | NodePtr = static_cast<FoldingSetNode*>(*Bucket); | 
|  | } | 
|  |  | 
|  | void FoldingSetIteratorImpl::advance() { | 
|  | // If there is another link within this bucket, go to it. | 
|  | void *Probe = NodePtr->getNextInBucket(); | 
|  |  | 
|  | if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe)) | 
|  | NodePtr = NextNodeInBucket; | 
|  | else { | 
|  | // Otherwise, this is the last link in this bucket. | 
|  | void **Bucket = GetBucketPtr(Probe); | 
|  |  | 
|  | // Skip to the next non-null non-self-cycle bucket. | 
|  | do { | 
|  | ++Bucket; | 
|  | } while (*Bucket != reinterpret_cast<void*>(-1) && | 
|  | (!*Bucket || !GetNextPtr(*Bucket))); | 
|  |  | 
|  | NodePtr = static_cast<FoldingSetNode*>(*Bucket); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // FoldingSetBucketIteratorImpl Implementation | 
|  |  | 
|  | FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) { | 
|  | Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket; | 
|  | } |