blob: 5d1fef55f8c466620228589313130e3b1fead607 [file] [log] [blame]
//===- PseudoProbe.cpp - Pseudo Probe Helpers -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the helpers to manipulate pseudo probe IR intrinsic
// calls.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/PseudoProbe.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include <unordered_set>
using namespace llvm;
namespace llvm {
Optional<PseudoProbe> extractProbeFromDiscriminator(const Instruction &Inst) {
assert(isa<CallBase>(&Inst) && !isa<IntrinsicInst>(&Inst) &&
"Only call instructions should have pseudo probe encodes as their "
"Dwarf discriminators");
if (const DebugLoc &DLoc = Inst.getDebugLoc()) {
const DILocation *DIL = DLoc;
auto Discriminator = DIL->getDiscriminator();
if (DILocation::isPseudoProbeDiscriminator(Discriminator)) {
PseudoProbe Probe;
Probe.Id =
PseudoProbeDwarfDiscriminator::extractProbeIndex(Discriminator);
Probe.Type =
PseudoProbeDwarfDiscriminator::extractProbeType(Discriminator);
Probe.Attr =
PseudoProbeDwarfDiscriminator::extractProbeAttributes(Discriminator);
Probe.Factor =
PseudoProbeDwarfDiscriminator::extractProbeFactor(Discriminator) /
(float)PseudoProbeDwarfDiscriminator::FullDistributionFactor;
return Probe;
}
}
return None;
}
Optional<PseudoProbe> extractProbe(const Instruction &Inst) {
if (const auto *II = dyn_cast<PseudoProbeInst>(&Inst)) {
PseudoProbe Probe;
Probe.Id = II->getIndex()->getZExtValue();
Probe.Type = (uint32_t)PseudoProbeType::Block;
Probe.Attr = II->getAttributes()->getZExtValue();
Probe.Factor = II->getFactor()->getZExtValue() /
(float)PseudoProbeFullDistributionFactor;
return Probe;
}
if (isa<CallBase>(&Inst) && !isa<IntrinsicInst>(&Inst))
return extractProbeFromDiscriminator(Inst);
return None;
}
void setProbeDistributionFactor(Instruction &Inst, float Factor) {
assert(Factor >= 0 && Factor <= 1 &&
"Distribution factor must be in [0, 1.0]");
if (auto *II = dyn_cast<PseudoProbeInst>(&Inst)) {
IRBuilder<> Builder(&Inst);
uint64_t IntFactor = PseudoProbeFullDistributionFactor;
if (Factor < 1)
IntFactor *= Factor;
auto OrigFactor = II->getFactor()->getZExtValue();
if (IntFactor != OrigFactor)
II->replaceUsesOfWith(II->getFactor(), Builder.getInt64(IntFactor));
} else if (isa<CallBase>(&Inst) && !isa<IntrinsicInst>(&Inst)) {
if (const DebugLoc &DLoc = Inst.getDebugLoc()) {
const DILocation *DIL = DLoc;
auto Discriminator = DIL->getDiscriminator();
if (DILocation::isPseudoProbeDiscriminator(Discriminator)) {
auto Index =
PseudoProbeDwarfDiscriminator::extractProbeIndex(Discriminator);
auto Type =
PseudoProbeDwarfDiscriminator::extractProbeType(Discriminator);
auto Attr = PseudoProbeDwarfDiscriminator::extractProbeAttributes(
Discriminator);
// Round small factors to 0 to avoid over-counting.
uint32_t IntFactor =
PseudoProbeDwarfDiscriminator::FullDistributionFactor;
if (Factor < 1)
IntFactor *= Factor;
uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData(
Index, Type, Attr, IntFactor);
DIL = DIL->cloneWithDiscriminator(V);
Inst.setDebugLoc(DIL);
}
}
}
}
void addPseudoProbeAttribute(PseudoProbeInst &Inst,
PseudoProbeAttributes Attr) {
IRBuilder<> Builder(&Inst);
uint32_t OldAttr = Inst.getAttributes()->getZExtValue();
uint32_t NewAttr = OldAttr | (uint32_t)Attr;
if (OldAttr != NewAttr)
Inst.replaceUsesOfWith(Inst.getAttributes(), Builder.getInt32(NewAttr));
}
/// A block emptied (i.e., with all instructions moved out of it) won't be
/// sampled at run time. In such cases, AutoFDO will be informed of zero samples
/// collected for the block. This is not accurate and could lead to misleading
/// weights assigned for the block. A way to mitigate that is to treat such
/// block as having unknown counts in the AutoFDO profile loader and allow the
/// counts inference tool a chance to calculate a relatively reasonable weight
/// for it. This can be done by moving all pseudo probes in the emptied block
/// i.e, /c From, to before /c To and tag them dangling. Note that this is
/// not needed for dead blocks which really have a zero weight. It's per
/// transforms to decide whether to call this function or not.
bool moveAndDanglePseudoProbes(BasicBlock *From, Instruction *To) {
SmallVector<PseudoProbeInst *, 4> ToBeMoved;
for (auto &I : *From) {
if (auto *II = dyn_cast<PseudoProbeInst>(&I)) {
addPseudoProbeAttribute(*II, PseudoProbeAttributes::Dangling);
ToBeMoved.push_back(II);
}
}
for (auto *I : ToBeMoved)
I->moveBefore(To);
return !ToBeMoved.empty();
}
/// Same dangling probes in one blocks are redundant since they all have the
/// same semantic that is to rely on the counts inference too to get reasonable
/// count for the same original block. Therefore, there's no need to keep
/// multiple copies of them.
bool removeRedundantPseudoProbes(BasicBlock *Block) {
auto Hash = [](const PseudoProbeInst *I) {
return std::hash<uint64_t>()(I->getFuncGuid()->getZExtValue()) ^
std::hash<uint64_t>()(I->getIndex()->getZExtValue());
};
auto IsEqual = [](const PseudoProbeInst *Left, const PseudoProbeInst *Right) {
return Left->getFuncGuid() == Right->getFuncGuid() &&
Left->getIndex() == Right->getIndex() &&
Left->getAttributes() == Right->getAttributes() &&
Left->getDebugLoc() == Right->getDebugLoc();
};
SmallVector<PseudoProbeInst *, 4> ToBeRemoved;
std::unordered_set<PseudoProbeInst *, decltype(Hash), decltype(IsEqual)>
DanglingProbes(0, Hash, IsEqual);
for (auto &I : *Block) {
if (auto *II = dyn_cast<PseudoProbeInst>(&I)) {
if (II->getAttributes()->getZExtValue() &
(uint32_t)PseudoProbeAttributes::Dangling)
if (!DanglingProbes.insert(II).second)
ToBeRemoved.push_back(II);
}
}
for (auto *I : ToBeRemoved)
I->eraseFromParent();
return !ToBeRemoved.empty();
}
} // namespace llvm