| //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements whole program optimization of virtual calls in cases |
| // where we know (via !type metadata) that the list of callees is fixed. This |
| // includes the following: |
| // - Single implementation devirtualization: if a virtual call has a single |
| // possible callee, replace all calls with a direct call to that callee. |
| // - Virtual constant propagation: if the virtual function's return type is an |
| // integer <=64 bits and all possible callees are readnone, for each class and |
| // each list of constant arguments: evaluate the function, store the return |
| // value alongside the virtual table, and rewrite each virtual call as a load |
| // from the virtual table. |
| // - Uniform return value optimization: if the conditions for virtual constant |
| // propagation hold and each function returns the same constant value, replace |
| // each virtual call with that constant. |
| // - Unique return value optimization for i1 return values: if the conditions |
| // for virtual constant propagation hold and a single vtable's function |
| // returns 0, or a single vtable's function returns 1, replace each virtual |
| // call with a comparison of the vptr against that vtable's address. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/WholeProgramDevirt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/TypeMetadataUtils.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/PassRegistry.h" |
| #include "llvm/PassSupport.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/Utils/Evaluator.h" |
| #include <algorithm> |
| #include <cstddef> |
| #include <map> |
| #include <set> |
| #include <string> |
| |
| using namespace llvm; |
| using namespace wholeprogramdevirt; |
| |
| #define DEBUG_TYPE "wholeprogramdevirt" |
| |
| // Find the minimum offset that we may store a value of size Size bits at. If |
| // IsAfter is set, look for an offset before the object, otherwise look for an |
| // offset after the object. |
| uint64_t |
| wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, |
| bool IsAfter, uint64_t Size) { |
| // Find a minimum offset taking into account only vtable sizes. |
| uint64_t MinByte = 0; |
| for (const VirtualCallTarget &Target : Targets) { |
| if (IsAfter) |
| MinByte = std::max(MinByte, Target.minAfterBytes()); |
| else |
| MinByte = std::max(MinByte, Target.minBeforeBytes()); |
| } |
| |
| // Build a vector of arrays of bytes covering, for each target, a slice of the |
| // used region (see AccumBitVector::BytesUsed in |
| // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, |
| // this aligns the used regions to start at MinByte. |
| // |
| // In this example, A, B and C are vtables, # is a byte already allocated for |
| // a virtual function pointer, AAAA... (etc.) are the used regions for the |
| // vtables and Offset(X) is the value computed for the Offset variable below |
| // for X. |
| // |
| // Offset(A) |
| // | | |
| // |MinByte |
| // A: ################AAAAAAAA|AAAAAAAA |
| // B: ########BBBBBBBBBBBBBBBB|BBBB |
| // C: ########################|CCCCCCCCCCCCCCCC |
| // | Offset(B) | |
| // |
| // This code produces the slices of A, B and C that appear after the divider |
| // at MinByte. |
| std::vector<ArrayRef<uint8_t>> Used; |
| for (const VirtualCallTarget &Target : Targets) { |
| ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed |
| : Target.TM->Bits->Before.BytesUsed; |
| uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() |
| : MinByte - Target.minBeforeBytes(); |
| |
| // Disregard used regions that are smaller than Offset. These are |
| // effectively all-free regions that do not need to be checked. |
| if (VTUsed.size() > Offset) |
| Used.push_back(VTUsed.slice(Offset)); |
| } |
| |
| if (Size == 1) { |
| // Find a free bit in each member of Used. |
| for (unsigned I = 0;; ++I) { |
| uint8_t BitsUsed = 0; |
| for (auto &&B : Used) |
| if (I < B.size()) |
| BitsUsed |= B[I]; |
| if (BitsUsed != 0xff) |
| return (MinByte + I) * 8 + |
| countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); |
| } |
| } else { |
| // Find a free (Size/8) byte region in each member of Used. |
| // FIXME: see if alignment helps. |
| for (unsigned I = 0;; ++I) { |
| for (auto &&B : Used) { |
| unsigned Byte = 0; |
| while ((I + Byte) < B.size() && Byte < (Size / 8)) { |
| if (B[I + Byte]) |
| goto NextI; |
| ++Byte; |
| } |
| } |
| return (MinByte + I) * 8; |
| NextI:; |
| } |
| } |
| } |
| |
| void wholeprogramdevirt::setBeforeReturnValues( |
| MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, |
| unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { |
| if (BitWidth == 1) |
| OffsetByte = -(AllocBefore / 8 + 1); |
| else |
| OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); |
| OffsetBit = AllocBefore % 8; |
| |
| for (VirtualCallTarget &Target : Targets) { |
| if (BitWidth == 1) |
| Target.setBeforeBit(AllocBefore); |
| else |
| Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); |
| } |
| } |
| |
| void wholeprogramdevirt::setAfterReturnValues( |
| MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, |
| unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { |
| if (BitWidth == 1) |
| OffsetByte = AllocAfter / 8; |
| else |
| OffsetByte = (AllocAfter + 7) / 8; |
| OffsetBit = AllocAfter % 8; |
| |
| for (VirtualCallTarget &Target : Targets) { |
| if (BitWidth == 1) |
| Target.setAfterBit(AllocAfter); |
| else |
| Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); |
| } |
| } |
| |
| VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) |
| : Fn(Fn), TM(TM), |
| IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} |
| |
| namespace { |
| |
| // A slot in a set of virtual tables. The TypeID identifies the set of virtual |
| // tables, and the ByteOffset is the offset in bytes from the address point to |
| // the virtual function pointer. |
| struct VTableSlot { |
| Metadata *TypeID; |
| uint64_t ByteOffset; |
| }; |
| |
| } // end anonymous namespace |
| |
| namespace llvm { |
| |
| template <> struct DenseMapInfo<VTableSlot> { |
| static VTableSlot getEmptyKey() { |
| return {DenseMapInfo<Metadata *>::getEmptyKey(), |
| DenseMapInfo<uint64_t>::getEmptyKey()}; |
| } |
| static VTableSlot getTombstoneKey() { |
| return {DenseMapInfo<Metadata *>::getTombstoneKey(), |
| DenseMapInfo<uint64_t>::getTombstoneKey()}; |
| } |
| static unsigned getHashValue(const VTableSlot &I) { |
| return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ |
| DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); |
| } |
| static bool isEqual(const VTableSlot &LHS, |
| const VTableSlot &RHS) { |
| return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| namespace { |
| |
| // A virtual call site. VTable is the loaded virtual table pointer, and CS is |
| // the indirect virtual call. |
| struct VirtualCallSite { |
| Value *VTable; |
| CallSite CS; |
| |
| // If non-null, this field points to the associated unsafe use count stored in |
| // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description |
| // of that field for details. |
| unsigned *NumUnsafeUses; |
| |
| void emitRemark(const Twine &OptName, const Twine &TargetName) { |
| Function *F = CS.getCaller(); |
| emitOptimizationRemark( |
| F->getContext(), DEBUG_TYPE, *F, |
| CS.getInstruction()->getDebugLoc(), |
| OptName + ": devirtualized a call to " + TargetName); |
| } |
| |
| void replaceAndErase(const Twine &OptName, const Twine &TargetName, |
| bool RemarksEnabled, Value *New) { |
| if (RemarksEnabled) |
| emitRemark(OptName, TargetName); |
| CS->replaceAllUsesWith(New); |
| if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { |
| BranchInst::Create(II->getNormalDest(), CS.getInstruction()); |
| II->getUnwindDest()->removePredecessor(II->getParent()); |
| } |
| CS->eraseFromParent(); |
| // This use is no longer unsafe. |
| if (NumUnsafeUses) |
| --*NumUnsafeUses; |
| } |
| }; |
| |
| struct DevirtModule { |
| Module &M; |
| IntegerType *Int8Ty; |
| PointerType *Int8PtrTy; |
| IntegerType *Int32Ty; |
| |
| bool RemarksEnabled; |
| |
| MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots; |
| |
| // This map keeps track of the number of "unsafe" uses of a loaded function |
| // pointer. The key is the associated llvm.type.test intrinsic call generated |
| // by this pass. An unsafe use is one that calls the loaded function pointer |
| // directly. Every time we eliminate an unsafe use (for example, by |
| // devirtualizing it or by applying virtual constant propagation), we |
| // decrement the value stored in this map. If a value reaches zero, we can |
| // eliminate the type check by RAUWing the associated llvm.type.test call with |
| // true. |
| std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; |
| |
| DevirtModule(Module &M) |
| : M(M), Int8Ty(Type::getInt8Ty(M.getContext())), |
| Int8PtrTy(Type::getInt8PtrTy(M.getContext())), |
| Int32Ty(Type::getInt32Ty(M.getContext())), |
| RemarksEnabled(areRemarksEnabled()) {} |
| |
| bool areRemarksEnabled(); |
| |
| void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); |
| void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); |
| |
| void buildTypeIdentifierMap( |
| std::vector<VTableBits> &Bits, |
| DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); |
| bool |
| tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, |
| const std::set<TypeMemberInfo> &TypeMemberInfos, |
| uint64_t ByteOffset); |
| bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| MutableArrayRef<VirtualCallSite> CallSites); |
| bool tryEvaluateFunctionsWithArgs( |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| ArrayRef<ConstantInt *> Args); |
| bool tryUniformRetValOpt(IntegerType *RetType, |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| MutableArrayRef<VirtualCallSite> CallSites); |
| bool tryUniqueRetValOpt(unsigned BitWidth, |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| MutableArrayRef<VirtualCallSite> CallSites); |
| bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| ArrayRef<VirtualCallSite> CallSites); |
| |
| void rebuildGlobal(VTableBits &B); |
| |
| bool run(); |
| }; |
| |
| struct WholeProgramDevirt : public ModulePass { |
| static char ID; |
| |
| WholeProgramDevirt() : ModulePass(ID) { |
| initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnModule(Module &M) override { |
| if (skipModule(M)) |
| return false; |
| |
| return DevirtModule(M).run(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt", |
| "Whole program devirtualization", false, false) |
| char WholeProgramDevirt::ID = 0; |
| |
| ModulePass *llvm::createWholeProgramDevirtPass() { |
| return new WholeProgramDevirt; |
| } |
| |
| PreservedAnalyses WholeProgramDevirtPass::run(Module &M, |
| ModuleAnalysisManager &) { |
| if (!DevirtModule(M).run()) |
| return PreservedAnalyses::all(); |
| return PreservedAnalyses::none(); |
| } |
| |
| void DevirtModule::buildTypeIdentifierMap( |
| std::vector<VTableBits> &Bits, |
| DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { |
| DenseMap<GlobalVariable *, VTableBits *> GVToBits; |
| Bits.reserve(M.getGlobalList().size()); |
| SmallVector<MDNode *, 2> Types; |
| for (GlobalVariable &GV : M.globals()) { |
| Types.clear(); |
| GV.getMetadata(LLVMContext::MD_type, Types); |
| if (Types.empty()) |
| continue; |
| |
| VTableBits *&BitsPtr = GVToBits[&GV]; |
| if (!BitsPtr) { |
| Bits.emplace_back(); |
| Bits.back().GV = &GV; |
| Bits.back().ObjectSize = |
| M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); |
| BitsPtr = &Bits.back(); |
| } |
| |
| for (MDNode *Type : Types) { |
| auto TypeID = Type->getOperand(1).get(); |
| |
| uint64_t Offset = |
| cast<ConstantInt>( |
| cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) |
| ->getZExtValue(); |
| |
| TypeIdMap[TypeID].insert({BitsPtr, Offset}); |
| } |
| } |
| } |
| |
| bool DevirtModule::tryFindVirtualCallTargets( |
| std::vector<VirtualCallTarget> &TargetsForSlot, |
| const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { |
| for (const TypeMemberInfo &TM : TypeMemberInfos) { |
| if (!TM.Bits->GV->isConstant()) |
| return false; |
| |
| auto Init = dyn_cast<ConstantArray>(TM.Bits->GV->getInitializer()); |
| if (!Init) |
| return false; |
| ArrayType *VTableTy = Init->getType(); |
| |
| uint64_t ElemSize = |
| M.getDataLayout().getTypeAllocSize(VTableTy->getElementType()); |
| uint64_t GlobalSlotOffset = TM.Offset + ByteOffset; |
| if (GlobalSlotOffset % ElemSize != 0) |
| return false; |
| |
| unsigned Op = GlobalSlotOffset / ElemSize; |
| if (Op >= Init->getNumOperands()) |
| return false; |
| |
| auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts()); |
| if (!Fn) |
| return false; |
| |
| // We can disregard __cxa_pure_virtual as a possible call target, as |
| // calls to pure virtuals are UB. |
| if (Fn->getName() == "__cxa_pure_virtual") |
| continue; |
| |
| TargetsForSlot.push_back({Fn, &TM}); |
| } |
| |
| // Give up if we couldn't find any targets. |
| return !TargetsForSlot.empty(); |
| } |
| |
| bool DevirtModule::trySingleImplDevirt( |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| MutableArrayRef<VirtualCallSite> CallSites) { |
| // See if the program contains a single implementation of this virtual |
| // function. |
| Function *TheFn = TargetsForSlot[0].Fn; |
| for (auto &&Target : TargetsForSlot) |
| if (TheFn != Target.Fn) |
| return false; |
| |
| if (RemarksEnabled) |
| TargetsForSlot[0].WasDevirt = true; |
| // If so, update each call site to call that implementation directly. |
| for (auto &&VCallSite : CallSites) { |
| if (RemarksEnabled) |
| VCallSite.emitRemark("single-impl", TheFn->getName()); |
| VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( |
| TheFn, VCallSite.CS.getCalledValue()->getType())); |
| // This use is no longer unsafe. |
| if (VCallSite.NumUnsafeUses) |
| --*VCallSite.NumUnsafeUses; |
| } |
| return true; |
| } |
| |
| bool DevirtModule::tryEvaluateFunctionsWithArgs( |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| ArrayRef<ConstantInt *> Args) { |
| // Evaluate each function and store the result in each target's RetVal |
| // field. |
| for (VirtualCallTarget &Target : TargetsForSlot) { |
| if (Target.Fn->arg_size() != Args.size() + 1) |
| return false; |
| for (unsigned I = 0; I != Args.size(); ++I) |
| if (Target.Fn->getFunctionType()->getParamType(I + 1) != |
| Args[I]->getType()) |
| return false; |
| |
| Evaluator Eval(M.getDataLayout(), nullptr); |
| SmallVector<Constant *, 2> EvalArgs; |
| EvalArgs.push_back( |
| Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); |
| EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end()); |
| Constant *RetVal; |
| if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || |
| !isa<ConstantInt>(RetVal)) |
| return false; |
| Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); |
| } |
| return true; |
| } |
| |
| bool DevirtModule::tryUniformRetValOpt( |
| IntegerType *RetType, MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| MutableArrayRef<VirtualCallSite> CallSites) { |
| // Uniform return value optimization. If all functions return the same |
| // constant, replace all calls with that constant. |
| uint64_t TheRetVal = TargetsForSlot[0].RetVal; |
| for (const VirtualCallTarget &Target : TargetsForSlot) |
| if (Target.RetVal != TheRetVal) |
| return false; |
| |
| auto TheRetValConst = ConstantInt::get(RetType, TheRetVal); |
| for (auto Call : CallSites) |
| Call.replaceAndErase("uniform-ret-val", TargetsForSlot[0].Fn->getName(), |
| RemarksEnabled, TheRetValConst); |
| if (RemarksEnabled) |
| for (auto &&Target : TargetsForSlot) |
| Target.WasDevirt = true; |
| return true; |
| } |
| |
| bool DevirtModule::tryUniqueRetValOpt( |
| unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| MutableArrayRef<VirtualCallSite> CallSites) { |
| // IsOne controls whether we look for a 0 or a 1. |
| auto tryUniqueRetValOptFor = [&](bool IsOne) { |
| const TypeMemberInfo *UniqueMember = nullptr; |
| for (const VirtualCallTarget &Target : TargetsForSlot) { |
| if (Target.RetVal == (IsOne ? 1 : 0)) { |
| if (UniqueMember) |
| return false; |
| UniqueMember = Target.TM; |
| } |
| } |
| |
| // We should have found a unique member or bailed out by now. We already |
| // checked for a uniform return value in tryUniformRetValOpt. |
| assert(UniqueMember); |
| |
| // Replace each call with the comparison. |
| for (auto &&Call : CallSites) { |
| IRBuilder<> B(Call.CS.getInstruction()); |
| Value *OneAddr = B.CreateBitCast(UniqueMember->Bits->GV, Int8PtrTy); |
| OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueMember->Offset); |
| Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, |
| Call.VTable, OneAddr); |
| Call.replaceAndErase("unique-ret-val", TargetsForSlot[0].Fn->getName(), |
| RemarksEnabled, Cmp); |
| } |
| // Update devirtualization statistics for targets. |
| if (RemarksEnabled) |
| for (auto &&Target : TargetsForSlot) |
| Target.WasDevirt = true; |
| |
| return true; |
| }; |
| |
| if (BitWidth == 1) { |
| if (tryUniqueRetValOptFor(true)) |
| return true; |
| if (tryUniqueRetValOptFor(false)) |
| return true; |
| } |
| return false; |
| } |
| |
| bool DevirtModule::tryVirtualConstProp( |
| MutableArrayRef<VirtualCallTarget> TargetsForSlot, |
| ArrayRef<VirtualCallSite> CallSites) { |
| // This only works if the function returns an integer. |
| auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); |
| if (!RetType) |
| return false; |
| unsigned BitWidth = RetType->getBitWidth(); |
| if (BitWidth > 64) |
| return false; |
| |
| // Make sure that each function does not access memory, takes at least one |
| // argument, does not use its first argument (which we assume is 'this'), |
| // and has the same return type. |
| for (VirtualCallTarget &Target : TargetsForSlot) { |
| if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() || |
| !Target.Fn->arg_begin()->use_empty() || |
| Target.Fn->getReturnType() != RetType) |
| return false; |
| } |
| |
| // Group call sites by the list of constant arguments they pass. |
| // The comparator ensures deterministic ordering. |
| struct ByAPIntValue { |
| bool operator()(const std::vector<ConstantInt *> &A, |
| const std::vector<ConstantInt *> &B) const { |
| return std::lexicographical_compare( |
| A.begin(), A.end(), B.begin(), B.end(), |
| [](ConstantInt *AI, ConstantInt *BI) { |
| return AI->getValue().ult(BI->getValue()); |
| }); |
| } |
| }; |
| std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>, |
| ByAPIntValue> |
| VCallSitesByConstantArg; |
| for (auto &&VCallSite : CallSites) { |
| std::vector<ConstantInt *> Args; |
| if (VCallSite.CS.getType() != RetType) |
| continue; |
| for (auto &&Arg : |
| make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) { |
| if (!isa<ConstantInt>(Arg)) |
| break; |
| Args.push_back(cast<ConstantInt>(&Arg)); |
| } |
| if (Args.size() + 1 != VCallSite.CS.arg_size()) |
| continue; |
| |
| VCallSitesByConstantArg[Args].push_back(VCallSite); |
| } |
| |
| for (auto &&CSByConstantArg : VCallSitesByConstantArg) { |
| if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) |
| continue; |
| |
| if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second)) |
| continue; |
| |
| if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second)) |
| continue; |
| |
| // Find an allocation offset in bits in all vtables associated with the |
| // type. |
| uint64_t AllocBefore = |
| findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); |
| uint64_t AllocAfter = |
| findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); |
| |
| // Calculate the total amount of padding needed to store a value at both |
| // ends of the object. |
| uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; |
| for (auto &&Target : TargetsForSlot) { |
| TotalPaddingBefore += std::max<int64_t>( |
| (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); |
| TotalPaddingAfter += std::max<int64_t>( |
| (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); |
| } |
| |
| // If the amount of padding is too large, give up. |
| // FIXME: do something smarter here. |
| if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) |
| continue; |
| |
| // Calculate the offset to the value as a (possibly negative) byte offset |
| // and (if applicable) a bit offset, and store the values in the targets. |
| int64_t OffsetByte; |
| uint64_t OffsetBit; |
| if (TotalPaddingBefore <= TotalPaddingAfter) |
| setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, |
| OffsetBit); |
| else |
| setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, |
| OffsetBit); |
| |
| if (RemarksEnabled) |
| for (auto &&Target : TargetsForSlot) |
| Target.WasDevirt = true; |
| |
| // Rewrite each call to a load from OffsetByte/OffsetBit. |
| for (auto Call : CSByConstantArg.second) { |
| IRBuilder<> B(Call.CS.getInstruction()); |
| Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte); |
| if (BitWidth == 1) { |
| Value *Bits = B.CreateLoad(Addr); |
| Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); |
| Value *BitsAndBit = B.CreateAnd(Bits, Bit); |
| auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); |
| Call.replaceAndErase("virtual-const-prop-1-bit", |
| TargetsForSlot[0].Fn->getName(), |
| RemarksEnabled, IsBitSet); |
| } else { |
| Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); |
| Value *Val = B.CreateLoad(RetType, ValAddr); |
| Call.replaceAndErase("virtual-const-prop", |
| TargetsForSlot[0].Fn->getName(), |
| RemarksEnabled, Val); |
| } |
| } |
| } |
| return true; |
| } |
| |
| void DevirtModule::rebuildGlobal(VTableBits &B) { |
| if (B.Before.Bytes.empty() && B.After.Bytes.empty()) |
| return; |
| |
| // Align each byte array to pointer width. |
| unsigned PointerSize = M.getDataLayout().getPointerSize(); |
| B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); |
| B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); |
| |
| // Before was stored in reverse order; flip it now. |
| for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) |
| std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); |
| |
| // Build an anonymous global containing the before bytes, followed by the |
| // original initializer, followed by the after bytes. |
| auto NewInit = ConstantStruct::getAnon( |
| {ConstantDataArray::get(M.getContext(), B.Before.Bytes), |
| B.GV->getInitializer(), |
| ConstantDataArray::get(M.getContext(), B.After.Bytes)}); |
| auto NewGV = |
| new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), |
| GlobalVariable::PrivateLinkage, NewInit, "", B.GV); |
| NewGV->setSection(B.GV->getSection()); |
| NewGV->setComdat(B.GV->getComdat()); |
| |
| // Copy the original vtable's metadata to the anonymous global, adjusting |
| // offsets as required. |
| NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); |
| |
| // Build an alias named after the original global, pointing at the second |
| // element (the original initializer). |
| auto Alias = GlobalAlias::create( |
| B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", |
| ConstantExpr::getGetElementPtr( |
| NewInit->getType(), NewGV, |
| ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), |
| ConstantInt::get(Int32Ty, 1)}), |
| &M); |
| Alias->setVisibility(B.GV->getVisibility()); |
| Alias->takeName(B.GV); |
| |
| B.GV->replaceAllUsesWith(Alias); |
| B.GV->eraseFromParent(); |
| } |
| |
| bool DevirtModule::areRemarksEnabled() { |
| const auto &FL = M.getFunctionList(); |
| if (FL.empty()) |
| return false; |
| const Function &Fn = FL.front(); |
| auto DI = DiagnosticInfoOptimizationRemark(DEBUG_TYPE, Fn, DebugLoc(), ""); |
| return DI.isEnabled(); |
| } |
| |
| void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, |
| Function *AssumeFunc) { |
| // Find all virtual calls via a virtual table pointer %p under an assumption |
| // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p |
| // points to a member of the type identifier %md. Group calls by (type ID, |
| // offset) pair (effectively the identity of the virtual function) and store |
| // to CallSlots. |
| DenseSet<Value *> SeenPtrs; |
| for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); |
| I != E;) { |
| auto CI = dyn_cast<CallInst>(I->getUser()); |
| ++I; |
| if (!CI) |
| continue; |
| |
| // Search for virtual calls based on %p and add them to DevirtCalls. |
| SmallVector<DevirtCallSite, 1> DevirtCalls; |
| SmallVector<CallInst *, 1> Assumes; |
| findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI); |
| |
| // If we found any, add them to CallSlots. Only do this if we haven't seen |
| // the vtable pointer before, as it may have been CSE'd with pointers from |
| // other call sites, and we don't want to process call sites multiple times. |
| if (!Assumes.empty()) { |
| Metadata *TypeId = |
| cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); |
| Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); |
| if (SeenPtrs.insert(Ptr).second) { |
| for (DevirtCallSite Call : DevirtCalls) { |
| CallSlots[{TypeId, Call.Offset}].push_back( |
| {CI->getArgOperand(0), Call.CS, nullptr}); |
| } |
| } |
| } |
| |
| // We no longer need the assumes or the type test. |
| for (auto Assume : Assumes) |
| Assume->eraseFromParent(); |
| // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we |
| // may use the vtable argument later. |
| if (CI->use_empty()) |
| CI->eraseFromParent(); |
| } |
| } |
| |
| void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { |
| Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); |
| |
| for (auto I = TypeCheckedLoadFunc->use_begin(), |
| E = TypeCheckedLoadFunc->use_end(); |
| I != E;) { |
| auto CI = dyn_cast<CallInst>(I->getUser()); |
| ++I; |
| if (!CI) |
| continue; |
| |
| Value *Ptr = CI->getArgOperand(0); |
| Value *Offset = CI->getArgOperand(1); |
| Value *TypeIdValue = CI->getArgOperand(2); |
| Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); |
| |
| SmallVector<DevirtCallSite, 1> DevirtCalls; |
| SmallVector<Instruction *, 1> LoadedPtrs; |
| SmallVector<Instruction *, 1> Preds; |
| bool HasNonCallUses = false; |
| findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, |
| HasNonCallUses, CI); |
| |
| // Start by generating "pessimistic" code that explicitly loads the function |
| // pointer from the vtable and performs the type check. If possible, we will |
| // eliminate the load and the type check later. |
| |
| // If possible, only generate the load at the point where it is used. |
| // This helps avoid unnecessary spills. |
| IRBuilder<> LoadB( |
| (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); |
| Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); |
| Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); |
| Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); |
| |
| for (Instruction *LoadedPtr : LoadedPtrs) { |
| LoadedPtr->replaceAllUsesWith(LoadedValue); |
| LoadedPtr->eraseFromParent(); |
| } |
| |
| // Likewise for the type test. |
| IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); |
| CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); |
| |
| for (Instruction *Pred : Preds) { |
| Pred->replaceAllUsesWith(TypeTestCall); |
| Pred->eraseFromParent(); |
| } |
| |
| // We have already erased any extractvalue instructions that refer to the |
| // intrinsic call, but the intrinsic may have other non-extractvalue uses |
| // (although this is unlikely). In that case, explicitly build a pair and |
| // RAUW it. |
| if (!CI->use_empty()) { |
| Value *Pair = UndefValue::get(CI->getType()); |
| IRBuilder<> B(CI); |
| Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); |
| Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); |
| CI->replaceAllUsesWith(Pair); |
| } |
| |
| // The number of unsafe uses is initially the number of uses. |
| auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; |
| NumUnsafeUses = DevirtCalls.size(); |
| |
| // If the function pointer has a non-call user, we cannot eliminate the type |
| // check, as one of those users may eventually call the pointer. Increment |
| // the unsafe use count to make sure it cannot reach zero. |
| if (HasNonCallUses) |
| ++NumUnsafeUses; |
| for (DevirtCallSite Call : DevirtCalls) { |
| CallSlots[{TypeId, Call.Offset}].push_back( |
| {Ptr, Call.CS, &NumUnsafeUses}); |
| } |
| |
| CI->eraseFromParent(); |
| } |
| } |
| |
| bool DevirtModule::run() { |
| Function *TypeTestFunc = |
| M.getFunction(Intrinsic::getName(Intrinsic::type_test)); |
| Function *TypeCheckedLoadFunc = |
| M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); |
| Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); |
| |
| if ((!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || |
| AssumeFunc->use_empty()) && |
| (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) |
| return false; |
| |
| if (TypeTestFunc && AssumeFunc) |
| scanTypeTestUsers(TypeTestFunc, AssumeFunc); |
| |
| if (TypeCheckedLoadFunc) |
| scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); |
| |
| // Rebuild type metadata into a map for easy lookup. |
| std::vector<VTableBits> Bits; |
| DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; |
| buildTypeIdentifierMap(Bits, TypeIdMap); |
| if (TypeIdMap.empty()) |
| return true; |
| |
| // For each (type, offset) pair: |
| bool DidVirtualConstProp = false; |
| std::map<std::string, Function*> DevirtTargets; |
| for (auto &S : CallSlots) { |
| // Search each of the members of the type identifier for the virtual |
| // function implementation at offset S.first.ByteOffset, and add to |
| // TargetsForSlot. |
| std::vector<VirtualCallTarget> TargetsForSlot; |
| if (!tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], |
| S.first.ByteOffset)) |
| continue; |
| |
| if (!trySingleImplDevirt(TargetsForSlot, S.second) && |
| tryVirtualConstProp(TargetsForSlot, S.second)) |
| DidVirtualConstProp = true; |
| |
| // Collect functions devirtualized at least for one call site for stats. |
| if (RemarksEnabled) |
| for (const auto &T : TargetsForSlot) |
| if (T.WasDevirt) |
| DevirtTargets[T.Fn->getName()] = T.Fn; |
| } |
| |
| if (RemarksEnabled) { |
| // Generate remarks for each devirtualized function. |
| for (const auto &DT : DevirtTargets) { |
| Function *F = DT.second; |
| DISubprogram *SP = F->getSubprogram(); |
| DebugLoc DL = SP ? DebugLoc::get(SP->getScopeLine(), 0, SP) : DebugLoc(); |
| emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, DL, |
| Twine("devirtualized ") + F->getName()); |
| } |
| } |
| |
| // If we were able to eliminate all unsafe uses for a type checked load, |
| // eliminate the type test by replacing it with true. |
| if (TypeCheckedLoadFunc) { |
| auto True = ConstantInt::getTrue(M.getContext()); |
| for (auto &&U : NumUnsafeUsesForTypeTest) { |
| if (U.second == 0) { |
| U.first->replaceAllUsesWith(True); |
| U.first->eraseFromParent(); |
| } |
| } |
| } |
| |
| // Rebuild each global we touched as part of virtual constant propagation to |
| // include the before and after bytes. |
| if (DidVirtualConstProp) |
| for (VTableBits &B : Bits) |
| rebuildGlobal(B); |
| |
| return true; |
| } |