| //===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a model runner using Tensorflow C APIs, allowing the |
| // loading of a model from a command line option. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "llvm/Config/config.h" |
| #if defined(LLVM_HAVE_TF_API) |
| |
| #include "llvm/Analysis/CallGraph.h" |
| #include "llvm/Analysis/InlineSizeEstimatorAnalysis.h" |
| #include "llvm/Analysis/MLInlineAdvisor.h" |
| #include "llvm/Analysis/Utils/TFUtils.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ManagedStatic.h" |
| |
| #include <vector> |
| |
| using namespace llvm; |
| |
| static cl::opt<std::string> TrainingLog( |
| "training-log", cl::Hidden, |
| cl::desc("Path where the development - mode inlining log is saved.")); |
| |
| static cl::opt<std::string> TFModelUnderTrainingPath( |
| "ml-inliner-model-under-training", cl::Hidden, |
| cl::desc("Path to SavedModel from the previous training iteration.")); |
| |
| static cl::opt<std::string> TFFeedPrefix("ml-inliner-trained-model-feed-prefix", |
| cl::Hidden, cl::init("action_"), |
| cl::desc("Prefix for feature names.")); |
| |
| static cl::opt<std::string> TFDecisionName( |
| "ml-inliner-trained-model-decision-name", cl::Hidden, |
| cl::init("StatefulPartitionedCall"), |
| cl::desc("Name of the graph operation representing the decision.")); |
| |
| namespace { |
| /// An InlineEvent, used by TrainingLogger. |
| struct InlineEvent { |
| /// What the default policy's decision would have been. |
| bool DefaultDecision = false; |
| |
| /// What we advised. When training off the default policy, this is the same as |
| /// DefaultDecision. |
| bool AdvisedDecision = false; |
| |
| /// What actually happened. This would be 'false' in the case of an inline |
| /// error, even if AdvisedDecision were true, otherwise it agrees with |
| /// AdvisedDecision. |
| bool Effect = false; |
| |
| /// What the change in size was: size_after - size_before |
| int64_t Reward = 0; |
| }; |
| |
| /// Collect data we may use for training a model, and write it as a textual |
| /// Tensorflow SequenceExample |
| /// (https://www.tensorflow.org/api_docs/python/tf/train/SequenceExample) |
| /// protobuf (https://developers.google.com/protocol-buffers). |
| /// Because this is a protobuf, we cannot just stream the events as they come. |
| /// Internally, TrainingLogger stores data in column-major format, because that |
| /// lines up with how TF SequenceExample represents it. |
| class TrainingLogger final { |
| public: |
| TrainingLogger() { |
| for (size_t I = 0; I < NumberOfFeatures; ++I) { |
| Features.push_back(InlineFeatures()); |
| } |
| } |
| |
| /// Log one inlining event. |
| void logInlineEvent(const InlineEvent &Event, |
| const MLModelRunner &ModelRunner) { |
| for (size_t I = 0; I < NumberOfFeatures; ++I) { |
| Features[I].push_back(ModelRunner.getFeature(I)); |
| } |
| Decisions.push_back(Event.AdvisedDecision); |
| Effects.push_back(Event.Effect); |
| Rewards.push_back(Event.Reward); |
| DefaultDecisions.push_back(Event.DefaultDecision); |
| } |
| |
| void printTensor(raw_fd_ostream &OutFile) { |
| if (DefaultDecisions.empty()) |
| return; |
| OutFile << "feature_lists: {\n"; |
| |
| for (size_t I = 0; I < Features.size(); I++) { |
| writeTensor(OutFile, FeatureNameMap.at(I), Features[I]); |
| } |
| writeTensor(OutFile, DefaultDecisionName, DefaultDecisions); |
| writeTensor(OutFile, DecisionName, Decisions); |
| writeTensor(OutFile, RewardName, Rewards); |
| |
| OutFile << "}\n"; |
| } |
| |
| private: |
| template <typename T> |
| void writeTensor(raw_fd_ostream &OutFile, StringRef TensorName, |
| const std::vector<T> &Tensor) { |
| OutFile << " feature_list: {\n"; |
| OutFile << " key: " |
| << "\"" << TensorName << "\" "; |
| OutFile << "value: {\n"; |
| for (const auto &Feature : Tensor) { |
| OutFile << " feature: { int64_list: { value: [" << Feature |
| << "] } }\n"; |
| } |
| OutFile << " }\n"; |
| OutFile << " }\n"; |
| } |
| |
| std::vector<InlineFeatures> Features; |
| std::vector<bool> DefaultDecisions; |
| std::vector<bool> Decisions; |
| std::vector<bool> Effects; |
| std::vector<int64_t> Rewards; |
| std::vector<bool> Mandatory; |
| }; |
| |
| /// An extension of the MLInlineAdvisor for the 'development' mode, targeting |
| /// the offline training scenario. Note that training happens outside of the |
| /// compiler, this facility is concerned with producing training data ("logs"). |
| /// This InlineAdvisor can operate in the following modes: |
| /// |
| /// 1) collect logs for the default policy. This is useful for bootstrapping |
| /// training, which will be considerably faster by starting from a reasonable |
| /// policy. |
| /// |
| /// 2) collect logs for the ML policy, using a model from a previous |
| /// training. Potentially, that model uses internally some small random |
| /// perturbation of its weights, to induce exploration (setting this up is the |
| /// responsibility of the training algorithm). The logs would then be used to |
| /// retrain and improve on this model. |
| /// |
| /// 3) use the provided model, with no logging. This is useful for end to end |
| /// validation - the model, in this case, is a release candidate and shouldn't |
| /// have random perturbations. It is a convenience feature: rather than needing |
| /// to take the release candidate model and compile it in 'release' mode, |
| /// validate it, then potentially discard it, it's easier to just pass the model |
| /// to the compiler, albeit compilation would be slower, as a one-off. Once the |
| /// model behaves satisfactorily, it can be compiled AOT, for efficiency, in |
| /// release mode. The expectation is that a well-trained model provides a good |
| /// policy over a sufficiently diverse codebase, over many changes (i.e. |
| /// training happens seldom). |
| class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor { |
| public: |
| DevelopmentModeMLInlineAdvisor( |
| Module &M, ModuleAnalysisManager &MAM, |
| std::unique_ptr<MLModelRunner> ModelRunner, |
| std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference); |
| |
| size_t getTotalSizeEstimate(); |
| |
| virtual ~DevelopmentModeMLInlineAdvisor(); |
| void updateNativeSizeEstimate(int64_t Change) { CurrentNativeSize += Change; } |
| void resetNativeSize(Function *F) { |
| FAM.invalidate<InlineSizeEstimatorAnalysis>(*F); |
| } |
| |
| std::unique_ptr<MLInlineAdvice> |
| getMandatoryAdvice(CallBase &CB, OptimizationRemarkEmitter &ORE) override; |
| std::unique_ptr<MLInlineAdvice> |
| getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override; |
| |
| size_t getNativeSizeEstimate(const Function &F) const; |
| |
| private: |
| bool isLogging() const { return !TrainingLog.empty(); } |
| |
| std::function<bool(CallBase &)> GetDefaultAdvice; |
| TrainingLogger Logger; |
| const bool IsDoingInference; |
| |
| const int32_t InitialNativeSize; |
| int32_t CurrentNativeSize = 0; |
| }; |
| |
| /// A variant of MLInlineAdvice that tracks all non-trivial inlining |
| /// decisions, for training/logging. |
| class LoggingMLInlineAdvice : public MLInlineAdvice { |
| public: |
| LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB, |
| OptimizationRemarkEmitter &ORE, bool Recommendation, |
| TrainingLogger &Logger, size_t CallerSizeEstimateBefore, |
| size_t CalleeSizeEstimateBefore, bool DefaultDecision) |
| : MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger), |
| CallerSizeEstimateBefore(CallerSizeEstimateBefore), |
| CalleeSizeEstimateBefore(CalleeSizeEstimateBefore), |
| DefaultDecision(DefaultDecision) {} |
| |
| virtual ~LoggingMLInlineAdvice() = default; |
| |
| private: |
| DevelopmentModeMLInlineAdvisor *getAdvisor() const { |
| return static_cast<DevelopmentModeMLInlineAdvisor *>(Advisor); |
| } |
| void recordInliningImpl() override { |
| MLInlineAdvice::recordInliningImpl(); |
| getAdvisor()->resetNativeSize(Caller); |
| int Reward = std::numeric_limits<int>::max(); |
| if (!getAdvisor()->isForcedToStop()) { |
| int NativeSizeAfter = getAdvisor()->getNativeSizeEstimate(*Caller) + |
| CalleeSizeEstimateBefore; |
| Reward = NativeSizeAfter - |
| (CallerSizeEstimateBefore + CalleeSizeEstimateBefore); |
| getAdvisor()->updateNativeSizeEstimate(Reward); |
| } |
| log(Reward, /*Success=*/true); |
| } |
| |
| void recordInliningWithCalleeDeletedImpl() override { |
| MLInlineAdvice::recordInliningWithCalleeDeletedImpl(); |
| getAdvisor()->resetNativeSize(Caller); |
| if (!getAdvisor()->isForcedToStop()) { |
| int NativeSizeAfter = getAdvisor()->getNativeSizeEstimate(*Caller); |
| int Reward = NativeSizeAfter - |
| (CallerSizeEstimateBefore + CalleeSizeEstimateBefore); |
| getAdvisor()->updateNativeSizeEstimate(Reward); |
| log(Reward, /*Success=*/true); |
| } |
| } |
| |
| void recordUnsuccessfulInliningImpl(const InlineResult &Result) override { |
| MLInlineAdvice::recordUnsuccessfulInliningImpl(Result); |
| log(NoReward, /*Success=*/false); |
| } |
| |
| void recordUnattemptedInliningImpl() override { |
| MLInlineAdvice::recordUnattemptedInliningImpl(); |
| log(NoReward, /*Success=*/false); |
| } |
| |
| void log(int64_t Reward, bool Success) { |
| InlineEvent Event; |
| Event.AdvisedDecision = isInliningRecommended(); |
| Event.DefaultDecision = DefaultDecision; |
| Event.Effect = Success; |
| Event.Reward = Reward; |
| Logger.logInlineEvent(Event, getAdvisor()->getModelRunner()); |
| } |
| |
| static const int64_t NoReward = 0; |
| TrainingLogger &Logger; |
| const size_t CallerSizeEstimateBefore; |
| const size_t CalleeSizeEstimateBefore; |
| const bool DefaultDecision; |
| }; |
| |
| /// A pseudo model runner. We use it to store feature values when collecting |
| /// logs for the default policy, but never ask it to 'run'. |
| class NoInferenceModelRunner : public MLModelRunner { |
| public: |
| NoInferenceModelRunner(LLVMContext &Ctx) |
| : MLModelRunner(Ctx), Features(NumberOfFeatures) {} |
| void setFeature(FeatureIndex Index, int64_t Value) override { |
| Features[static_cast<int>(Index)] = Value; |
| } |
| |
| int64_t getFeature(int Index) const override { return Features[Index]; } |
| bool run() override { |
| llvm_unreachable("We shouldn't call run on this model runner."); |
| } |
| |
| private: |
| InlineFeatures Features; |
| }; |
| |
| /// ModelUnderTrainingRunner - training mode implementation. It uses TF C APIs |
| /// to dynamically load and evaluate a TF SavedModel |
| /// (https://www.tensorflow.org/guide/saved_model). Runtime performance is |
| /// sacrificed for ease of use while training. |
| class ModelUnderTrainingRunner final : public MLModelRunner { |
| public: |
| ModelUnderTrainingRunner(LLVMContext &Ctx, const std::string &ModelPath); |
| |
| bool run() override; |
| |
| // Disallows copy and assign. |
| ModelUnderTrainingRunner(const ModelUnderTrainingRunner &) = delete; |
| ModelUnderTrainingRunner & |
| operator=(const ModelUnderTrainingRunner &) = delete; |
| |
| void setFeature(FeatureIndex Index, int64_t Value) override; |
| int64_t getFeature(int Index) const override; |
| bool isValid() const { return !!Evaluator; } |
| |
| private: |
| std::unique_ptr<TFModelEvaluator> Evaluator; |
| |
| // The training framework needs some additional features, that just need to |
| // be set to 0. |
| struct TensorSpec { |
| std::string Name; |
| std::function<void(TFModelEvaluator *, size_t Index, |
| const std::vector<int64_t> &Dim)> |
| Initializer; |
| }; |
| |
| const std::vector<TensorSpec> TrainingOnlyFeatures{ |
| {"inlining_default", |
| [](TFModelEvaluator *Evaluator, size_t Index, |
| const std::vector<int64_t> &Dim) { |
| Evaluator->initInput<int64_t>(Index, Dim); |
| }}, |
| {"discount", |
| [](TFModelEvaluator *Evaluator, size_t Index, |
| const std::vector<int64_t> &Dim) { |
| Evaluator->initInput<float>(Index, Dim); |
| }}, |
| {"reward", |
| [](TFModelEvaluator *Evaluator, size_t Index, |
| const std::vector<int64_t> &Dim) { |
| Evaluator->initInput<float>(Index, Dim); |
| }}, |
| {"step_type", [](TFModelEvaluator *Evaluator, size_t Index, |
| const std::vector<int64_t> &Dim) { |
| Evaluator->initInput<int32_t>(Index, Dim); |
| }}}; |
| }; |
| } // namespace |
| |
| DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor( |
| Module &M, ModuleAnalysisManager &MAM, |
| std::unique_ptr<MLModelRunner> ModelRunner, |
| std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference) |
| : MLInlineAdvisor(M, MAM, std::move(ModelRunner)), |
| GetDefaultAdvice(GetDefaultAdvice), IsDoingInference(IsDoingInference), |
| InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0), |
| CurrentNativeSize(InitialNativeSize) { |
| // We cannot have the case of neither inference nor logging. |
| assert(IsDoingInference || isLogging()); |
| } |
| |
| DevelopmentModeMLInlineAdvisor::~DevelopmentModeMLInlineAdvisor() { |
| if (TrainingLog.empty()) |
| return; |
| std::error_code ErrorCode; |
| raw_fd_ostream OutFile(TrainingLog, ErrorCode); |
| Logger.printTensor(OutFile); |
| } |
| |
| size_t |
| DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const { |
| auto &R = |
| FAM.getResult<InlineSizeEstimatorAnalysis>(const_cast<Function &>(F)); |
| if (!R) { |
| F.getParent()->getContext().emitError( |
| "Native size estimator is not present."); |
| return 0; |
| } |
| return *R; |
| } |
| |
| std::unique_ptr<MLInlineAdvice> |
| DevelopmentModeMLInlineAdvisor::getMandatoryAdvice( |
| CallBase &CB, OptimizationRemarkEmitter &ORE) { |
| if (!isLogging()) |
| return MLInlineAdvisor::getMandatoryAdvice(CB, ORE); |
| return std::make_unique<LoggingMLInlineAdvice>( |
| /*Advisor=*/this, |
| /*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/true, /*Logger=*/Logger, |
| /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), |
| /*CalleeSizeEstimateBefore=*/ |
| getNativeSizeEstimate(*CB.getCalledFunction()), |
| /*DefaultDecision=*/true); |
| } |
| |
| std::unique_ptr<MLInlineAdvice> |
| DevelopmentModeMLInlineAdvisor::getAdviceFromModel( |
| CallBase &CB, OptimizationRemarkEmitter &ORE) { |
| if (IsDoingInference && !isLogging()) |
| return MLInlineAdvisor::getAdviceFromModel(CB, ORE); |
| |
| bool DefaultAdvice = GetDefaultAdvice(CB); |
| auto Recommendation = IsDoingInference ? ModelRunner->run() : DefaultAdvice; |
| return std::make_unique<LoggingMLInlineAdvice>( |
| /*Advisor=*/this, |
| /*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation, |
| /*Logger=*/Logger, |
| /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), |
| /*CalleeSizeEstimateBefore=*/ |
| getNativeSizeEstimate(*CB.getCalledFunction()), |
| /*DefaultDecision=*/DefaultAdvice); |
| } |
| |
| size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() { |
| size_t Ret = 0; |
| for (auto &F : M) { |
| if (F.isDeclaration()) |
| continue; |
| if (isFunctionDeleted(&F)) |
| continue; |
| Ret += getNativeSizeEstimate(F); |
| } |
| return Ret; |
| } |
| |
| ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx, |
| const std::string &ModelPath) |
| : MLModelRunner(Ctx) { |
| std::vector<std::string> InputNames; |
| std::vector<std::string> OutputNames; |
| for (size_t I = 0; I < NumberOfFeatures; ++I) |
| InputNames.push_back(TFFeedPrefix + FeatureNameMap[I]); |
| for (size_t I = 0; I < TrainingOnlyFeatures.size(); ++I) |
| InputNames.push_back(TFFeedPrefix + TrainingOnlyFeatures[I].Name); |
| OutputNames.push_back(TFDecisionName); |
| |
| Evaluator = |
| std::make_unique<TFModelEvaluator>(ModelPath, InputNames, OutputNames); |
| if (!Evaluator || !Evaluator->isValid()) { |
| Ctx.emitError("Failed to create inliner saved model evaluator"); |
| Evaluator.reset(); |
| return; |
| } |
| |
| static const std::vector<int64_t> Dim{1}; |
| |
| size_t InputIndex = 0; |
| for (; InputIndex < NumberOfFeatures; ++InputIndex) { |
| Evaluator->initInput<int64_t>(InputIndex, Dim); |
| } |
| |
| for (; InputIndex < InputNames.size(); ++InputIndex) { |
| TrainingOnlyFeatures[InputIndex - NumberOfFeatures].Initializer( |
| Evaluator.get(), InputIndex, Dim); |
| } |
| } |
| |
| bool ModelUnderTrainingRunner::run() { |
| auto ER = Evaluator->evaluate(); |
| if (!ER.hasValue()) { |
| Ctx.emitError("Error evaluating model."); |
| return false; |
| } |
| int64_t Decision = *ER->getTensorValue<int64_t>(0); |
| return static_cast<bool>(Decision); |
| } |
| |
| int64_t ModelUnderTrainingRunner::getFeature(int Index) const { |
| return *Evaluator->getInput<int64_t>(Index); |
| } |
| |
| void ModelUnderTrainingRunner::setFeature(FeatureIndex Index, int64_t Value) { |
| size_t NumericIndex = static_cast<size_t>(Index); |
| *(Evaluator->getInput<int64_t>(NumericIndex)) = Value; |
| } |
| |
| std::unique_ptr<InlineAdvisor> llvm::getDevelopmentModeAdvisor( |
| Module &M, ModuleAnalysisManager &MAM, |
| std::function<bool(CallBase &)> GetDefaultAdvice) { |
| auto &Ctx = M.getContext(); |
| if (TrainingLog.empty() != |
| !InlineSizeEstimatorAnalysis::isEvaluatorRequested()) { |
| Ctx.emitError("For development mode, if training logs are requested, then " |
| "a size estimator must be available; either that, or neither " |
| "are specified."); |
| return nullptr; |
| } |
| |
| std::unique_ptr<MLModelRunner> Runner; |
| |
| bool IsDoingInference = false; |
| if (TFModelUnderTrainingPath.empty()) |
| Runner.reset(new NoInferenceModelRunner(Ctx)); |
| else { |
| Runner = std::make_unique<ModelUnderTrainingRunner>( |
| Ctx, TFModelUnderTrainingPath); |
| if (!Runner) { |
| Ctx.emitError("Could not load the policy model from the provided path"); |
| return nullptr; |
| } |
| IsDoingInference = true; |
| } |
| return std::make_unique<DevelopmentModeMLInlineAdvisor>( |
| M, MAM, std::move(Runner), GetDefaultAdvice, IsDoingInference); |
| } |
| #endif // defined(LLVM_HAVE_TF_API) |