blob: 365b26b98a1e34330d3f64070f77e7f563f8468f [file] [log] [blame]
//===- DWARFCFIProgram.cpp - Parsing the cfi-portions of .debug_frame -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFCFIProgram.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <optional>
using namespace llvm;
using namespace dwarf;
// See DWARF standard v3, section 7.23
const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0;
const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f;
Error CFIProgram::parse(DWARFDataExtractor Data, uint64_t *Offset,
uint64_t EndOffset) {
DataExtractor::Cursor C(*Offset);
while (C && C.tell() < EndOffset) {
uint8_t Opcode = Data.getRelocatedValue(C, 1);
if (!C)
break;
// Some instructions have a primary opcode encoded in the top bits.
if (uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK) {
// If it's a primary opcode, the first operand is encoded in the bottom
// bits of the opcode itself.
uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK;
switch (Primary) {
case DW_CFA_advance_loc:
case DW_CFA_restore:
addInstruction(Primary, Op1);
break;
case DW_CFA_offset:
addInstruction(Primary, Op1, Data.getULEB128(C));
break;
default:
llvm_unreachable("invalid primary CFI opcode");
}
continue;
}
// Extended opcode - its value is Opcode itself.
switch (Opcode) {
default:
return createStringError(errc::illegal_byte_sequence,
"invalid extended CFI opcode 0x%" PRIx8, Opcode);
case DW_CFA_nop:
case DW_CFA_remember_state:
case DW_CFA_restore_state:
case DW_CFA_GNU_window_save:
case DW_CFA_AARCH64_negate_ra_state_with_pc:
// No operands
addInstruction(Opcode);
break;
case DW_CFA_set_loc:
// Operands: Address
addInstruction(Opcode, Data.getRelocatedAddress(C));
break;
case DW_CFA_advance_loc1:
// Operands: 1-byte delta
addInstruction(Opcode, Data.getRelocatedValue(C, 1));
break;
case DW_CFA_advance_loc2:
// Operands: 2-byte delta
addInstruction(Opcode, Data.getRelocatedValue(C, 2));
break;
case DW_CFA_advance_loc4:
// Operands: 4-byte delta
addInstruction(Opcode, Data.getRelocatedValue(C, 4));
break;
case DW_CFA_restore_extended:
case DW_CFA_undefined:
case DW_CFA_same_value:
case DW_CFA_def_cfa_register:
case DW_CFA_def_cfa_offset:
case DW_CFA_GNU_args_size:
// Operands: ULEB128
addInstruction(Opcode, Data.getULEB128(C));
break;
case DW_CFA_def_cfa_offset_sf:
// Operands: SLEB128
addInstruction(Opcode, Data.getSLEB128(C));
break;
case DW_CFA_LLVM_def_aspace_cfa:
case DW_CFA_LLVM_def_aspace_cfa_sf: {
auto RegNum = Data.getULEB128(C);
auto CfaOffset = Opcode == DW_CFA_LLVM_def_aspace_cfa
? Data.getULEB128(C)
: Data.getSLEB128(C);
auto AddressSpace = Data.getULEB128(C);
addInstruction(Opcode, RegNum, CfaOffset, AddressSpace);
break;
}
case DW_CFA_offset_extended:
case DW_CFA_register:
case DW_CFA_def_cfa:
case DW_CFA_val_offset: {
// Operands: ULEB128, ULEB128
// Note: We can not embed getULEB128 directly into function
// argument list. getULEB128 changes Offset and order of evaluation
// for arguments is unspecified.
uint64_t op1 = Data.getULEB128(C);
uint64_t op2 = Data.getULEB128(C);
addInstruction(Opcode, op1, op2);
break;
}
case DW_CFA_offset_extended_sf:
case DW_CFA_def_cfa_sf:
case DW_CFA_val_offset_sf: {
// Operands: ULEB128, SLEB128
// Note: see comment for the previous case
uint64_t op1 = Data.getULEB128(C);
uint64_t op2 = (uint64_t)Data.getSLEB128(C);
addInstruction(Opcode, op1, op2);
break;
}
case DW_CFA_def_cfa_expression: {
uint64_t ExprLength = Data.getULEB128(C);
addInstruction(Opcode, 0);
StringRef Expression = Data.getBytes(C, ExprLength);
DataExtractor Extractor(Expression, Data.isLittleEndian(),
Data.getAddressSize());
// Note. We do not pass the DWARF format to DWARFExpression, because
// DW_OP_call_ref, the only operation which depends on the format, is
// prohibited in call frame instructions, see sec. 6.4.2 in DWARFv5.
Instructions.back().Expression =
DWARFExpression(Extractor, Data.getAddressSize());
break;
}
case DW_CFA_expression:
case DW_CFA_val_expression: {
uint64_t RegNum = Data.getULEB128(C);
addInstruction(Opcode, RegNum, 0);
uint64_t BlockLength = Data.getULEB128(C);
StringRef Expression = Data.getBytes(C, BlockLength);
DataExtractor Extractor(Expression, Data.isLittleEndian(),
Data.getAddressSize());
// Note. We do not pass the DWARF format to DWARFExpression, because
// DW_OP_call_ref, the only operation which depends on the format, is
// prohibited in call frame instructions, see sec. 6.4.2 in DWARFv5.
Instructions.back().Expression =
DWARFExpression(Extractor, Data.getAddressSize());
break;
}
}
}
*Offset = C.tell();
return C.takeError();
}
StringRef CFIProgram::callFrameString(unsigned Opcode) const {
return dwarf::CallFrameString(Opcode, Arch);
}
const char *CFIProgram::operandTypeString(CFIProgram::OperandType OT) {
#define ENUM_TO_CSTR(e) \
case e: \
return #e;
switch (OT) {
ENUM_TO_CSTR(OT_Unset);
ENUM_TO_CSTR(OT_None);
ENUM_TO_CSTR(OT_Address);
ENUM_TO_CSTR(OT_Offset);
ENUM_TO_CSTR(OT_FactoredCodeOffset);
ENUM_TO_CSTR(OT_SignedFactDataOffset);
ENUM_TO_CSTR(OT_UnsignedFactDataOffset);
ENUM_TO_CSTR(OT_Register);
ENUM_TO_CSTR(OT_AddressSpace);
ENUM_TO_CSTR(OT_Expression);
}
return "<unknown CFIProgram::OperandType>";
}
llvm::Expected<uint64_t>
CFIProgram::Instruction::getOperandAsUnsigned(const CFIProgram &CFIP,
uint32_t OperandIdx) const {
if (OperandIdx >= MaxOperands)
return createStringError(errc::invalid_argument,
"operand index %" PRIu32 " is not valid",
OperandIdx);
OperandType Type = CFIP.getOperandTypes()[Opcode][OperandIdx];
uint64_t Operand = Ops[OperandIdx];
switch (Type) {
case OT_Unset:
case OT_None:
case OT_Expression:
return createStringError(errc::invalid_argument,
"op[%" PRIu32 "] has type %s which has no value",
OperandIdx, CFIProgram::operandTypeString(Type));
case OT_Offset:
case OT_SignedFactDataOffset:
case OT_UnsignedFactDataOffset:
return createStringError(
errc::invalid_argument,
"op[%" PRIu32 "] has OperandType OT_Offset which produces a signed "
"result, call getOperandAsSigned instead",
OperandIdx);
case OT_Address:
case OT_Register:
case OT_AddressSpace:
return Operand;
case OT_FactoredCodeOffset: {
const uint64_t CodeAlignmentFactor = CFIP.codeAlign();
if (CodeAlignmentFactor == 0)
return createStringError(
errc::invalid_argument,
"op[%" PRIu32 "] has type OT_FactoredCodeOffset but code alignment "
"is zero",
OperandIdx);
return Operand * CodeAlignmentFactor;
}
}
llvm_unreachable("invalid operand type");
}
llvm::Expected<int64_t>
CFIProgram::Instruction::getOperandAsSigned(const CFIProgram &CFIP,
uint32_t OperandIdx) const {
if (OperandIdx >= MaxOperands)
return createStringError(errc::invalid_argument,
"operand index %" PRIu32 " is not valid",
OperandIdx);
OperandType Type = CFIP.getOperandTypes()[Opcode][OperandIdx];
uint64_t Operand = Ops[OperandIdx];
switch (Type) {
case OT_Unset:
case OT_None:
case OT_Expression:
return createStringError(errc::invalid_argument,
"op[%" PRIu32 "] has type %s which has no value",
OperandIdx, CFIProgram::operandTypeString(Type));
case OT_Address:
case OT_Register:
case OT_AddressSpace:
return createStringError(
errc::invalid_argument,
"op[%" PRIu32 "] has OperandType %s which produces an unsigned result, "
"call getOperandAsUnsigned instead",
OperandIdx, CFIProgram::operandTypeString(Type));
case OT_Offset:
return (int64_t)Operand;
case OT_FactoredCodeOffset:
case OT_SignedFactDataOffset: {
const int64_t DataAlignmentFactor = CFIP.dataAlign();
if (DataAlignmentFactor == 0)
return createStringError(errc::invalid_argument,
"op[%" PRIu32 "] has type %s but data "
"alignment is zero",
OperandIdx, CFIProgram::operandTypeString(Type));
return int64_t(Operand) * DataAlignmentFactor;
}
case OT_UnsignedFactDataOffset: {
const int64_t DataAlignmentFactor = CFIP.dataAlign();
if (DataAlignmentFactor == 0)
return createStringError(errc::invalid_argument,
"op[%" PRIu32
"] has type OT_UnsignedFactDataOffset but data "
"alignment is zero",
OperandIdx);
return Operand * DataAlignmentFactor;
}
}
llvm_unreachable("invalid operand type");
}
ArrayRef<CFIProgram::OperandType[CFIProgram::MaxOperands]>
CFIProgram::getOperandTypes() {
static OperandType OpTypes[DW_CFA_restore + 1][MaxOperands];
static bool Initialized = false;
if (Initialized) {
return ArrayRef<OperandType[MaxOperands]>(&OpTypes[0], DW_CFA_restore + 1);
}
Initialized = true;
#define DECLARE_OP3(OP, OPTYPE0, OPTYPE1, OPTYPE2) \
do { \
OpTypes[OP][0] = OPTYPE0; \
OpTypes[OP][1] = OPTYPE1; \
OpTypes[OP][2] = OPTYPE2; \
} while (false)
#define DECLARE_OP2(OP, OPTYPE0, OPTYPE1) \
DECLARE_OP3(OP, OPTYPE0, OPTYPE1, OT_None)
#define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None)
#define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None)
DECLARE_OP1(DW_CFA_set_loc, OT_Address);
DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset);
DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset);
DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset);
DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register);
DECLARE_OP3(DW_CFA_LLVM_def_aspace_cfa, OT_Register, OT_Offset,
OT_AddressSpace);
DECLARE_OP3(DW_CFA_LLVM_def_aspace_cfa_sf, OT_Register,
OT_SignedFactDataOffset, OT_AddressSpace);
DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset);
DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset);
DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression);
DECLARE_OP1(DW_CFA_undefined, OT_Register);
DECLARE_OP1(DW_CFA_same_value, OT_Register);
DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset);
DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset);
DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset);
DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset);
DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset);
DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register);
DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression);
DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression);
DECLARE_OP1(DW_CFA_restore, OT_Register);
DECLARE_OP1(DW_CFA_restore_extended, OT_Register);
DECLARE_OP0(DW_CFA_remember_state);
DECLARE_OP0(DW_CFA_restore_state);
DECLARE_OP0(DW_CFA_GNU_window_save);
DECLARE_OP0(DW_CFA_AARCH64_negate_ra_state_with_pc);
DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset);
DECLARE_OP0(DW_CFA_nop);
#undef DECLARE_OP0
#undef DECLARE_OP1
#undef DECLARE_OP2
return ArrayRef<OperandType[MaxOperands]>(&OpTypes[0], DW_CFA_restore + 1);
}