| //===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes Mips64 instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Mips Operand, Complex Patterns and Transformations Definitions. |
| //===----------------------------------------------------------------------===// |
| |
| // Instruction operand types |
| def shamt_64 : Operand<i64>; |
| |
| // Unsigned Operand |
| def uimm16_64 : Operand<i64> { |
| let PrintMethod = "printUnsignedImm"; |
| } |
| |
| // Transformation Function - get Imm - 32. |
| def Subtract32 : SDNodeXForm<imm, [{ |
| return getImm(N, (unsigned)N->getZExtValue() - 32); |
| }]>; |
| |
| // shamt field must fit in 5 bits. |
| def immZExt5_64 : ImmLeaf<i64, [{return Imm == (Imm & 0x1f);}]>; |
| |
| // imm32_63 predicate - True if imm is in range [32, 63]. |
| def imm32_63 : ImmLeaf<i32, |
| [{return (int32_t)Imm >= 32 && (int32_t)Imm < 64;}], |
| Subtract32>; |
| |
| // Is a 32-bit int. |
| def immSExt32 : ImmLeaf<i64, [{return isInt<32>(Imm);}]>; |
| |
| // Transformation Function - get the higher 16 bits. |
| def HIGHER : SDNodeXForm<imm, [{ |
| return getImm(N, (N->getZExtValue() >> 32) & 0xFFFF); |
| }]>; |
| |
| // Transformation Function - get the highest 16 bits. |
| def HIGHEST : SDNodeXForm<imm, [{ |
| return getImm(N, (N->getZExtValue() >> 48) & 0xFFFF); |
| }]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Instructions specific format |
| //===----------------------------------------------------------------------===// |
| // Shifts |
| // 64-bit shift instructions. |
| class shift_rotate_imm64<bits<6> func, bits<5> isRotate, string instr_asm, |
| SDNode OpNode>: |
| shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, |
| CPU64Regs>; |
| |
| class shift_rotate_imm64_32<bits<6> func, bits<5> isRotate, string instr_asm, |
| SDNode OpNode>: |
| shift_rotate_imm<func, isRotate, instr_asm, OpNode, imm32_63, shamt, |
| CPU64Regs>; |
| |
| // Jump and Link (Call) |
| let isCall=1, hasDelaySlot=1, |
| // All calls clobber the non-callee saved registers... |
| Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, |
| K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in { |
| class JumpLink64<bits<6> op, string instr_asm>: |
| FJ<op, (outs), (ins calltarget64:$target, variable_ops), |
| !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)], |
| IIBranch>; |
| |
| class JumpLinkReg64<bits<6> op, bits<6> func, string instr_asm>: |
| FR<op, func, (outs), (ins CPU64Regs:$rs, variable_ops), |
| !strconcat(instr_asm, "\t$rs"), |
| [(MipsJmpLink CPU64Regs:$rs)], IIBranch> { |
| let rt = 0; |
| let rd = 31; |
| let shamt = 0; |
| } |
| |
| class BranchLink64<string instr_asm>: |
| FI<0x1, (outs), (ins CPU64Regs:$rs, brtarget:$imm16, variable_ops), |
| !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch>; |
| } |
| |
| // Mul, Div |
| class Mult64<bits<6> func, string instr_asm, InstrItinClass itin>: |
| Mult<func, instr_asm, itin, CPU64Regs, [HI64, LO64]>; |
| class Div64<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>: |
| Div<op, func, instr_asm, itin, CPU64Regs, [HI64, LO64]>; |
| |
| multiclass Atomic2Ops64<PatFrag Op, string Opstr> { |
| def #NAME# : Atomic2Ops<Op, Opstr, CPU64Regs, CPURegs>, Requires<[NotN64]>; |
| def _P8 : Atomic2Ops<Op, Opstr, CPU64Regs, CPU64Regs>, Requires<[IsN64]>; |
| } |
| |
| multiclass AtomicCmpSwap64<PatFrag Op, string Width> { |
| def #NAME# : AtomicCmpSwap<Op, Width, CPU64Regs, CPURegs>, Requires<[NotN64]>; |
| def _P8 : AtomicCmpSwap<Op, Width, CPU64Regs, CPU64Regs>, |
| Requires<[IsN64]>; |
| } |
| |
| let usesCustomInserter = 1, Predicates = [HasMips64] in { |
| defm ATOMIC_LOAD_ADD_I64 : Atomic2Ops64<atomic_load_add_64, "load_add_64">; |
| defm ATOMIC_LOAD_SUB_I64 : Atomic2Ops64<atomic_load_sub_64, "load_sub_64">; |
| defm ATOMIC_LOAD_AND_I64 : Atomic2Ops64<atomic_load_and_64, "load_and_64">; |
| defm ATOMIC_LOAD_OR_I64 : Atomic2Ops64<atomic_load_or_64, "load_or_64">; |
| defm ATOMIC_LOAD_XOR_I64 : Atomic2Ops64<atomic_load_xor_64, "load_xor_64">; |
| defm ATOMIC_LOAD_NAND_I64 : Atomic2Ops64<atomic_load_nand_64, "load_nand_64">; |
| defm ATOMIC_SWAP_I64 : Atomic2Ops64<atomic_swap_64, "swap_64">; |
| defm ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap64<atomic_cmp_swap_64, "64">; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction definition |
| //===----------------------------------------------------------------------===// |
| |
| /// Arithmetic Instructions (ALU Immediate) |
| def DADDiu : ArithLogicI<0x19, "daddiu", add, simm16_64, immSExt16, |
| CPU64Regs>; |
| def DANDi : ArithLogicI<0x0c, "andi", and, uimm16_64, immZExt16, CPU64Regs>; |
| def SLTi64 : SetCC_I<0x0a, "slti", setlt, simm16_64, immSExt16, CPU64Regs>; |
| def SLTiu64 : SetCC_I<0x0b, "sltiu", setult, simm16_64, immSExt16, CPU64Regs>; |
| def ORi64 : ArithLogicI<0x0d, "ori", or, uimm16_64, immZExt16, CPU64Regs>; |
| def XORi64 : ArithLogicI<0x0e, "xori", xor, uimm16_64, immZExt16, CPU64Regs>; |
| def LUi64 : LoadUpper<0x0f, "lui", CPU64Regs, uimm16_64>; |
| |
| /// Arithmetic Instructions (3-Operand, R-Type) |
| def DADDu : ArithLogicR<0x00, 0x2d, "daddu", add, IIAlu, CPU64Regs, 1>; |
| def DSUBu : ArithLogicR<0x00, 0x2f, "dsubu", sub, IIAlu, CPU64Regs>; |
| def SLT64 : SetCC_R<0x00, 0x2a, "slt", setlt, CPU64Regs>; |
| def SLTu64 : SetCC_R<0x00, 0x2b, "sltu", setult, CPU64Regs>; |
| def AND64 : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPU64Regs, 1>; |
| def OR64 : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPU64Regs, 1>; |
| def XOR64 : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPU64Regs, 1>; |
| def NOR64 : LogicNOR<0x00, 0x27, "nor", CPU64Regs>; |
| |
| /// Shift Instructions |
| def DSLL : shift_rotate_imm64<0x38, 0x00, "dsll", shl>; |
| def DSRL : shift_rotate_imm64<0x3a, 0x00, "dsrl", srl>; |
| def DSRA : shift_rotate_imm64<0x3b, 0x00, "dsra", sra>; |
| def DSLL32 : shift_rotate_imm64_32<0x3c, 0x00, "dsll32", shl>; |
| def DSRL32 : shift_rotate_imm64_32<0x3e, 0x00, "dsrl32", srl>; |
| def DSRA32 : shift_rotate_imm64_32<0x3f, 0x00, "dsra32", sra>; |
| def DSLLV : shift_rotate_reg<0x24, 0x00, "dsllv", shl, CPU64Regs>; |
| def DSRLV : shift_rotate_reg<0x26, 0x00, "dsrlv", srl, CPU64Regs>; |
| def DSRAV : shift_rotate_reg<0x27, 0x00, "dsrav", sra, CPU64Regs>; |
| |
| // Rotate Instructions |
| let Predicates = [HasMips64r2] in { |
| def DROTR : shift_rotate_imm64<0x3a, 0x01, "drotr", rotr>; |
| def DROTR32 : shift_rotate_imm64_32<0x3e, 0x01, "drotr32", rotr>; |
| def DROTRV : shift_rotate_reg<0x16, 0x01, "drotrv", rotr, CPU64Regs>; |
| } |
| |
| /// Load and Store Instructions |
| /// aligned |
| defm LB64 : LoadM64<0x20, "lb", sextloadi8>; |
| defm LBu64 : LoadM64<0x24, "lbu", zextloadi8>; |
| defm LH64 : LoadM64<0x21, "lh", sextloadi16_a>; |
| defm LHu64 : LoadM64<0x25, "lhu", zextloadi16_a>; |
| defm LW64 : LoadM64<0x23, "lw", sextloadi32_a>; |
| defm LWu64 : LoadM64<0x27, "lwu", zextloadi32_a>; |
| defm SB64 : StoreM64<0x28, "sb", truncstorei8>; |
| defm SH64 : StoreM64<0x29, "sh", truncstorei16_a>; |
| defm SW64 : StoreM64<0x2b, "sw", truncstorei32_a>; |
| defm LD : LoadM64<0x37, "ld", load_a>; |
| defm SD : StoreM64<0x3f, "sd", store_a>; |
| |
| /// unaligned |
| defm ULH64 : LoadM64<0x21, "ulh", sextloadi16_u, 1>; |
| defm ULHu64 : LoadM64<0x25, "ulhu", zextloadi16_u, 1>; |
| defm ULW64 : LoadM64<0x23, "ulw", sextloadi32_u, 1>; |
| defm USH64 : StoreM64<0x29, "ush", truncstorei16_u, 1>; |
| defm USW64 : StoreM64<0x2b, "usw", truncstorei32_u, 1>; |
| defm ULD : LoadM64<0x37, "uld", load_u, 1>; |
| defm USD : StoreM64<0x3f, "usd", store_u, 1>; |
| |
| /// Load-linked, Store-conditional |
| def LLD : LLBase<0x34, "lld", CPU64Regs, mem>, Requires<[NotN64]>; |
| def LLD_P8 : LLBase<0x34, "lld", CPU64Regs, mem64>, Requires<[IsN64]>; |
| def SCD : SCBase<0x3c, "scd", CPU64Regs, mem>, Requires<[NotN64]>; |
| def SCD_P8 : SCBase<0x3c, "scd", CPU64Regs, mem64>, Requires<[IsN64]>; |
| |
| /// Jump and Branch Instructions |
| def JR64 : JumpFR<0x00, 0x08, "jr", CPU64Regs>; |
| def JAL64 : JumpLink64<0x03, "jal">; |
| def JALR64 : JumpLinkReg64<0x00, 0x09, "jalr">; |
| def BEQ64 : CBranch<0x04, "beq", seteq, CPU64Regs>; |
| def BNE64 : CBranch<0x05, "bne", setne, CPU64Regs>; |
| def BGEZ64 : CBranchZero<0x01, 1, "bgez", setge, CPU64Regs>; |
| def BGTZ64 : CBranchZero<0x07, 0, "bgtz", setgt, CPU64Regs>; |
| def BLEZ64 : CBranchZero<0x07, 0, "blez", setle, CPU64Regs>; |
| def BLTZ64 : CBranchZero<0x01, 0, "bltz", setlt, CPU64Regs>; |
| |
| /// Multiply and Divide Instructions. |
| def DMULT : Mult64<0x1c, "dmult", IIImul>; |
| def DMULTu : Mult64<0x1d, "dmultu", IIImul>; |
| def DSDIV : Div64<MipsDivRem, 0x1e, "ddiv", IIIdiv>; |
| def DUDIV : Div64<MipsDivRemU, 0x1f, "ddivu", IIIdiv>; |
| |
| def MTHI64 : MoveToLOHI<0x11, "mthi", CPU64Regs, [HI64]>; |
| def MTLO64 : MoveToLOHI<0x13, "mtlo", CPU64Regs, [LO64]>; |
| def MFHI64 : MoveFromLOHI<0x10, "mfhi", CPU64Regs, [HI64]>; |
| def MFLO64 : MoveFromLOHI<0x12, "mflo", CPU64Regs, [LO64]>; |
| |
| /// Count Leading |
| def DCLZ : CountLeading0<0x24, "dclz", CPU64Regs>; |
| def DCLO : CountLeading1<0x25, "dclo", CPU64Regs>; |
| |
| def LEA_ADDiu64 : EffectiveAddress<"addiu\t$rt, $addr", CPU64Regs, mem_ea_64>; |
| |
| let Uses = [SP_64] in |
| def DynAlloc64 : EffectiveAddress<"daddiu\t$rt, $addr", CPU64Regs, mem_ea_64>, |
| Requires<[IsN64]>; |
| |
| def RDHWR64 : ReadHardware<CPU64Regs, HWRegs64>; |
| |
| def DEXT : ExtBase<3, "dext", CPU64Regs>; |
| def DINS : InsBase<7, "dins", CPU64Regs>; |
| |
| def DSLL64_32 : FR<0x3c, 0x00, (outs CPU64Regs:$rd), (ins CPURegs:$rt), |
| "dsll32\t$rd, $rt, 0", [], IIAlu>; |
| |
| def SLL64_32 : FR<0x0, 0x00, (outs CPU64Regs:$rd), (ins CPURegs:$rt), |
| "sll\t$rd, $rt, 0", [], IIAlu>; |
| |
| //===----------------------------------------------------------------------===// |
| // Arbitrary patterns that map to one or more instructions |
| //===----------------------------------------------------------------------===// |
| |
| // Small immediates |
| def : Pat<(i64 immSExt16:$in), |
| (DADDiu ZERO_64, imm:$in)>; |
| def : Pat<(i64 immZExt16:$in), |
| (ORi64 ZERO_64, imm:$in)>; |
| |
| // 32-bit immediates |
| def : Pat<(i64 immSExt32:$imm), |
| (ORi64 (LUi64 (HI16 imm:$imm)), (LO16 imm:$imm))>; |
| |
| // Arbitrary immediates |
| def : Pat<(i64 imm:$imm), |
| (ORi64 (DSLL (ORi64 (DSLL (ORi64 (LUi64 (HIGHEST imm:$imm)), |
| (HIGHER imm:$imm)), 16), (HI16 imm:$imm)), 16), |
| (LO16 imm:$imm))>; |
| |
| // extended loads |
| let Predicates = [NotN64] in { |
| def : Pat<(extloadi32_a addr:$a), (DSRL32 (DSLL32 (LW64 addr:$a), 0), 0)>; |
| def : Pat<(zextloadi32_u addr:$a), (DSRL32 (DSLL32 (ULW64 addr:$a), 0), 0)>; |
| } |
| let Predicates = [IsN64] in { |
| def : Pat<(extloadi32_a addr:$a), (DSRL32 (DSLL32 (LW64_P8 addr:$a), 0), 0)>; |
| def : Pat<(zextloadi32_u addr:$a), |
| (DSRL32 (DSLL32 (ULW64_P8 addr:$a), 0), 0)>; |
| } |
| |
| // hi/lo relocs |
| def : Pat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>; |
| def : Pat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>; |
| def : Pat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>; |
| def : Pat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>; |
| def : Pat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>; |
| |
| def : Pat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>; |
| def : Pat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>; |
| def : Pat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>; |
| def : Pat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>; |
| def : Pat<(MipsLo tglobaltlsaddr:$in), (DADDiu ZERO_64, tglobaltlsaddr:$in)>; |
| |
| def : Pat<(add CPU64Regs:$hi, (MipsLo tglobaladdr:$lo)), |
| (DADDiu CPU64Regs:$hi, tglobaladdr:$lo)>; |
| def : Pat<(add CPU64Regs:$hi, (MipsLo tblockaddress:$lo)), |
| (DADDiu CPU64Regs:$hi, tblockaddress:$lo)>; |
| def : Pat<(add CPU64Regs:$hi, (MipsLo tjumptable:$lo)), |
| (DADDiu CPU64Regs:$hi, tjumptable:$lo)>; |
| def : Pat<(add CPU64Regs:$hi, (MipsLo tconstpool:$lo)), |
| (DADDiu CPU64Regs:$hi, tconstpool:$lo)>; |
| def : Pat<(add CPU64Regs:$hi, (MipsLo tglobaltlsaddr:$lo)), |
| (DADDiu CPU64Regs:$hi, tglobaltlsaddr:$lo)>; |
| |
| def : WrapperPat<tglobaladdr, DADDiu, GP_64>; |
| def : WrapperPat<tconstpool, DADDiu, GP_64>; |
| def : WrapperPat<texternalsym, DADDiu, GP_64>; |
| def : WrapperPat<tblockaddress, DADDiu, GP_64>; |
| def : WrapperPat<tjumptable, DADDiu, GP_64>; |
| def : WrapperPat<tglobaltlsaddr, DADDiu, GP_64>; |
| |
| defm : BrcondPats<CPU64Regs, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64, |
| ZERO_64>; |
| |
| // setcc patterns |
| defm : SeteqPats<CPU64Regs, SLTiu64, XOR64, SLTu64, ZERO_64>; |
| defm : SetlePats<CPU64Regs, SLT64, SLTu64>; |
| defm : SetgtPats<CPU64Regs, SLT64, SLTu64>; |
| defm : SetgePats<CPU64Regs, SLT64, SLTu64>; |
| defm : SetgeImmPats<CPU64Regs, SLTi64, SLTiu64>; |
| |
| // select MipsDynAlloc |
| def : Pat<(MipsDynAlloc addr:$f), (DynAlloc64 addr:$f)>, Requires<[IsN64]>; |
| |
| // truncate |
| def : Pat<(i32 (trunc CPU64Regs:$src)), |
| (SLL (EXTRACT_SUBREG CPU64Regs:$src, sub_32), 0)>, Requires<[IsN64]>; |
| |
| // 32-to-64-bit extension |
| def : Pat<(i64 (anyext CPURegs:$src)), (SLL64_32 CPURegs:$src)>; |
| def : Pat<(i64 (zext CPURegs:$src)), (DSRL32 (DSLL64_32 CPURegs:$src), 0)>; |