| //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the MapValue function, which is shared by various parts of |
| // the lib/Transforms/Utils library. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Operator.h" |
| using namespace llvm; |
| |
| // Out of line method to get vtable etc for class. |
| void ValueMapTypeRemapper::anchor() {} |
| void ValueMaterializer::anchor() {} |
| void ValueMaterializer::materializeInitFor(GlobalValue *New, GlobalValue *Old) { |
| } |
| |
| namespace { |
| |
| /// A GlobalValue whose initializer needs to be materialized. |
| struct DelayedGlobalValueInit { |
| GlobalValue *Old; |
| GlobalValue *New; |
| DelayedGlobalValueInit(const GlobalValue *Old, GlobalValue *New) |
| : Old(const_cast<GlobalValue *>(Old)), New(New) {} |
| }; |
| |
| /// A basic block used in a BlockAddress whose function body is not yet |
| /// materialized. |
| struct DelayedBasicBlock { |
| BasicBlock *OldBB; |
| std::unique_ptr<BasicBlock> TempBB; |
| |
| // Explicit move for MSVC. |
| DelayedBasicBlock(DelayedBasicBlock &&X) |
| : OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {} |
| DelayedBasicBlock &operator=(DelayedBasicBlock &&X) { |
| OldBB = std::move(X.OldBB); |
| TempBB = std::move(X.TempBB); |
| return *this; |
| } |
| |
| DelayedBasicBlock(const BlockAddress &Old) |
| : OldBB(Old.getBasicBlock()), |
| TempBB(BasicBlock::Create(Old.getContext())) {} |
| }; |
| |
| class MDNodeMapper; |
| class Mapper { |
| friend class MDNodeMapper; |
| |
| ValueToValueMapTy &VM; |
| RemapFlags Flags; |
| ValueMapTypeRemapper *TypeMapper; |
| ValueMaterializer *Materializer; |
| |
| SmallVector<DelayedGlobalValueInit, 8> DelayedInits; |
| SmallVector<DelayedBasicBlock, 1> DelayedBBs; |
| |
| public: |
| Mapper(ValueToValueMapTy &VM, RemapFlags Flags, |
| ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) |
| : VM(VM), Flags(Flags), TypeMapper(TypeMapper), |
| Materializer(Materializer) {} |
| |
| ~Mapper(); |
| |
| Value *mapValue(const Value *V); |
| void remapInstruction(Instruction *I); |
| |
| /// Map metadata. |
| /// |
| /// Find the mapping for MD. Guarantees that the return will be resolved |
| /// (not an MDNode, or MDNode::isResolved() returns true). |
| Metadata *mapMetadata(const Metadata *MD); |
| |
| // Map LocalAsMetadata, which never gets memoized. |
| // |
| // If the referenced local is not mapped, the principled return is nullptr. |
| // However, optimization passes sometimes move metadata operands *before* the |
| // SSA values they reference. To prevent crashes in \a RemapInstruction(), |
| // return "!{}" when RF_IgnoreMissingLocals is not set. |
| // |
| // \note Adding a mapping for LocalAsMetadata is unsupported. Add a mapping |
| // to the value map for the SSA value in question instead. |
| // |
| // FIXME: Once we have a verifier check for forward references to SSA values |
| // through metadata operands, always return nullptr on unmapped locals. |
| Metadata *mapLocalAsMetadata(const LocalAsMetadata &LAM); |
| |
| private: |
| Value *mapBlockAddress(const BlockAddress &BA); |
| |
| /// Map metadata that doesn't require visiting operands. |
| Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); |
| |
| Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); |
| Metadata *mapToSelf(const Metadata *MD); |
| }; |
| |
| class MDNodeMapper { |
| Mapper &M; |
| |
| struct Data { |
| bool HasChangedOps = false; |
| bool HasChangedAddress = false; |
| unsigned ID = ~0u; |
| TempMDNode Placeholder; |
| |
| Data() {} |
| Data(Data &&X) |
| : HasChangedOps(std::move(X.HasChangedOps)), |
| HasChangedAddress(std::move(X.HasChangedAddress)), |
| ID(std::move(X.ID)), Placeholder(std::move(X.Placeholder)) {} |
| Data &operator=(Data &&X) { |
| HasChangedOps = std::move(X.HasChangedOps); |
| HasChangedAddress = std::move(X.HasChangedAddress); |
| ID = std::move(X.ID); |
| Placeholder = std::move(X.Placeholder); |
| return *this; |
| } |
| }; |
| |
| SmallDenseMap<const Metadata *, Data, 32> Info; |
| SmallVector<std::pair<MDNode *, bool>, 16> Worklist; |
| SmallVector<MDNode *, 16> POT; |
| |
| public: |
| MDNodeMapper(Mapper &M) : M(M) {} |
| |
| /// Map a metadata node (and its transitive operands). |
| /// |
| /// This is the only entry point into MDNodeMapper. It works as follows: |
| /// |
| /// 1. \a createPOT(): use a worklist to perform a post-order traversal of |
| /// the transitively referenced unmapped nodes. |
| /// |
| /// 2. \a propagateChangedOperands(): track which nodes will change |
| /// operands, and which will have new addresses in the mapped scheme. |
| /// Propagate the changes through the POT until fixed point, to pick up |
| /// uniquing cycles that need to change. |
| /// |
| /// 3. \a mapDistinctNodes(): map all the distinct nodes without touching |
| /// their operands. If RF_MoveDistinctMetadata, they get mapped to |
| /// themselves; otherwise, they get mapped to clones. |
| /// |
| /// 4. \a mapUniquedNodes(): map the uniqued nodes (bottom-up), lazily |
| /// creating temporaries for forward references as needed. |
| /// |
| /// 5. \a remapDistinctOperands(): remap the operands of the distinct nodes. |
| Metadata *map(const MDNode &FirstN); |
| |
| private: |
| /// Return \c true as long as there's work to do. |
| bool hasWork() const { return !Worklist.empty(); } |
| |
| /// Get the current node in the worklist. |
| MDNode &getCurrentNode() const { return *Worklist.back().first; } |
| |
| /// Push a node onto the worklist. |
| /// |
| /// Adds \c N to \a Worklist and \a Info, unless it's already inserted. If |
| /// \c N.isDistinct(), \a Data::HasChangedAddress will be set based on \a |
| /// RF_MoveDistinctMDs. |
| /// |
| /// Returns the data for the node. |
| /// |
| /// \post Data::HasChangedAddress iff !RF_MoveDistinctMDs && N.isDistinct(). |
| /// \post Worklist.back().first == &N. |
| /// \post Worklist.back().second == false. |
| Data &push(const MDNode &N); |
| |
| /// Map a node operand, and return true if it changes. |
| /// |
| /// \post getMappedOp(Op) does not return None. |
| bool mapOperand(const Metadata *Op); |
| |
| /// Get a previously mapped node. |
| Optional<Metadata *> getMappedOp(const Metadata *Op) const; |
| |
| /// Try to pop a node off the worklist and store it in POT. |
| /// |
| /// Returns \c true if it popped; \c false if its operands need to be |
| /// visited. |
| /// |
| /// \post If Worklist.back().second == false: Worklist.back().second == true. |
| /// \post Else: Worklist.back() has been popped off and added to \a POT. |
| bool tryToPop(); |
| |
| /// Get a forward reference to a node to use as an operand. |
| /// |
| /// Returns \c Op if it's not changing; otherwise, lazily creates a temporary |
| /// node and returns it. |
| Metadata &getFwdReference(const Data &D, MDNode &Op); |
| |
| /// Create a post-order traversal from the given node. |
| /// |
| /// This traverses the metadata graph deeply enough to map \c FirstN. It |
| /// uses \a mapOperand() (indirectly, \a Mapper::mapSimplifiedNode()), so any |
| /// metadata that has already been mapped will not be part of the POT. |
| /// |
| /// \post \a POT is a post-order traversal ending with \c FirstN. |
| bool createPOT(const MDNode &FirstN); |
| |
| /// Propagate changed operands through post-order traversal. |
| /// |
| /// Until fixed point, iteratively update: |
| /// |
| /// - \a Data::HasChangedOps based on \a Data::HasChangedAddress of operands; |
| /// - \a Data::HasChangedAddress based on Data::HasChangedOps. |
| /// |
| /// This algorithm never changes \a Data::HasChangedAddress for distinct |
| /// nodes. |
| /// |
| /// \post \a POT is a post-order traversal ending with \c FirstN. |
| void propagateChangedOperands(); |
| |
| /// Map all distinct nodes in POT. |
| /// |
| /// \post \a getMappedOp() returns the correct node for every distinct node. |
| void mapDistinctNodes(); |
| |
| /// Map all uniqued nodes in POT with the correct operands. |
| /// |
| /// \pre Distinct nodes are mapped (\a mapDistinctNodes() has been called). |
| /// \post \a getMappedOp() returns the correct node for every node. |
| /// \post \a MDNode::operands() is correct for every uniqued node. |
| /// \post \a MDNode::isResolved() returns true for every node. |
| void mapUniquedNodes(); |
| |
| /// Re-map the operands for distinct nodes in POT. |
| /// |
| /// \pre Distinct nodes are mapped (\a mapDistinctNodes() has been called). |
| /// \pre Uniqued nodes are mapped (\a mapUniquedNodes() has been called). |
| /// \post \a MDNode::operands() is correct for every distinct node. |
| void remapDistinctOperands(); |
| |
| /// Remap a node's operands. |
| /// |
| /// Iterate through operands and update them in place using \a getMappedOp() |
| /// and \a getFwdReference(). |
| /// |
| /// \pre N.isDistinct() or N.isTemporary(). |
| /// \pre Distinct nodes are mapped (\a mapDistinctNodes() has been called). |
| /// \pre If \c N is distinct, all uniqued nodes are already mapped. |
| void remapOperands(const Data &D, MDNode &N); |
| }; |
| |
| } // end namespace |
| |
| Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags, |
| ValueMapTypeRemapper *TypeMapper, |
| ValueMaterializer *Materializer) { |
| return Mapper(VM, Flags, TypeMapper, Materializer).mapValue(V); |
| } |
| |
| Value *Mapper::mapValue(const Value *V) { |
| ValueToValueMapTy::iterator I = VM.find(V); |
| |
| // If the value already exists in the map, use it. |
| if (I != VM.end() && I->second) return I->second; |
| |
| // If we have a materializer and it can materialize a value, use that. |
| if (Materializer) { |
| if (Value *NewV = |
| Materializer->materializeDeclFor(const_cast<Value *>(V))) { |
| VM[V] = NewV; |
| if (auto *NewGV = dyn_cast<GlobalValue>(NewV)) |
| DelayedInits.push_back( |
| DelayedGlobalValueInit(cast<GlobalValue>(V), NewGV)); |
| return NewV; |
| } |
| } |
| |
| // Global values do not need to be seeded into the VM if they |
| // are using the identity mapping. |
| if (isa<GlobalValue>(V)) { |
| if (Flags & RF_NullMapMissingGlobalValues) |
| return nullptr; |
| return VM[V] = const_cast<Value*>(V); |
| } |
| |
| if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { |
| // Inline asm may need *type* remapping. |
| FunctionType *NewTy = IA->getFunctionType(); |
| if (TypeMapper) { |
| NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); |
| |
| if (NewTy != IA->getFunctionType()) |
| V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), |
| IA->hasSideEffects(), IA->isAlignStack()); |
| } |
| |
| return VM[V] = const_cast<Value*>(V); |
| } |
| |
| if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { |
| const Metadata *MD = MDV->getMetadata(); |
| |
| if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { |
| // Look through to grab the local value. |
| if (Value *LV = mapValue(LAM->getValue())) { |
| if (V == LAM->getValue()) |
| return const_cast<Value *>(V); |
| return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); |
| } |
| |
| // FIXME: always return nullptr once Verifier::verifyDominatesUse() |
| // ensures metadata operands only reference defined SSA values. |
| return (Flags & RF_IgnoreMissingLocals) |
| ? nullptr |
| : MetadataAsValue::get(V->getContext(), |
| MDTuple::get(V->getContext(), None)); |
| } |
| |
| // If this is a module-level metadata and we know that nothing at the module |
| // level is changing, then use an identity mapping. |
| if (Flags & RF_NoModuleLevelChanges) |
| return VM[V] = const_cast<Value *>(V); |
| |
| // Map the metadata and turn it into a value. |
| auto *MappedMD = mapMetadata(MD); |
| if (MD == MappedMD) |
| return VM[V] = const_cast<Value *>(V); |
| return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD); |
| } |
| |
| // Okay, this either must be a constant (which may or may not be mappable) or |
| // is something that is not in the mapping table. |
| Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); |
| if (!C) |
| return nullptr; |
| |
| if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) |
| return mapBlockAddress(*BA); |
| |
| // Otherwise, we have some other constant to remap. Start by checking to see |
| // if all operands have an identity remapping. |
| unsigned OpNo = 0, NumOperands = C->getNumOperands(); |
| Value *Mapped = nullptr; |
| for (; OpNo != NumOperands; ++OpNo) { |
| Value *Op = C->getOperand(OpNo); |
| Mapped = mapValue(Op); |
| if (Mapped != C) break; |
| } |
| |
| // See if the type mapper wants to remap the type as well. |
| Type *NewTy = C->getType(); |
| if (TypeMapper) |
| NewTy = TypeMapper->remapType(NewTy); |
| |
| // If the result type and all operands match up, then just insert an identity |
| // mapping. |
| if (OpNo == NumOperands && NewTy == C->getType()) |
| return VM[V] = C; |
| |
| // Okay, we need to create a new constant. We've already processed some or |
| // all of the operands, set them all up now. |
| SmallVector<Constant*, 8> Ops; |
| Ops.reserve(NumOperands); |
| for (unsigned j = 0; j != OpNo; ++j) |
| Ops.push_back(cast<Constant>(C->getOperand(j))); |
| |
| // If one of the operands mismatch, push it and the other mapped operands. |
| if (OpNo != NumOperands) { |
| Ops.push_back(cast<Constant>(Mapped)); |
| |
| // Map the rest of the operands that aren't processed yet. |
| for (++OpNo; OpNo != NumOperands; ++OpNo) |
| Ops.push_back(cast<Constant>(mapValue(C->getOperand(OpNo)))); |
| } |
| Type *NewSrcTy = nullptr; |
| if (TypeMapper) |
| if (auto *GEPO = dyn_cast<GEPOperator>(C)) |
| NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); |
| |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) |
| return VM[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); |
| if (isa<ConstantArray>(C)) |
| return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); |
| if (isa<ConstantStruct>(C)) |
| return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); |
| if (isa<ConstantVector>(C)) |
| return VM[V] = ConstantVector::get(Ops); |
| // If this is a no-operand constant, it must be because the type was remapped. |
| if (isa<UndefValue>(C)) |
| return VM[V] = UndefValue::get(NewTy); |
| if (isa<ConstantAggregateZero>(C)) |
| return VM[V] = ConstantAggregateZero::get(NewTy); |
| assert(isa<ConstantPointerNull>(C)); |
| return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); |
| } |
| |
| Value *Mapper::mapBlockAddress(const BlockAddress &BA) { |
| Function *F = cast<Function>(mapValue(BA.getFunction())); |
| |
| // F may not have materialized its initializer. In that case, create a |
| // dummy basic block for now, and replace it once we've materialized all |
| // the initializers. |
| BasicBlock *BB; |
| if (F->empty()) { |
| DelayedBBs.push_back(DelayedBasicBlock(BA)); |
| BB = DelayedBBs.back().TempBB.get(); |
| } else { |
| BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); |
| } |
| |
| return VM[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); |
| } |
| |
| Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { |
| VM.MD()[Key].reset(Val); |
| return Val; |
| } |
| |
| Metadata *Mapper::mapToSelf(const Metadata *MD) { |
| return mapToMetadata(MD, const_cast<Metadata *>(MD)); |
| } |
| |
| bool MDNodeMapper::mapOperand(const Metadata *Op) { |
| if (!Op) |
| return false; |
| |
| if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { |
| assert((isa<MDString>(Op) || M.VM.getMappedMD(Op)) && |
| "Expected result to be memoized"); |
| return *MappedOp != Op; |
| } |
| |
| return push(*cast<MDNode>(Op)).HasChangedAddress; |
| } |
| |
| Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { |
| if (!Op) |
| return nullptr; |
| |
| if (Optional<Metadata *> MappedOp = M.VM.getMappedMD(Op)) |
| return *MappedOp; |
| |
| if (isa<MDString>(Op)) |
| return const_cast<Metadata *>(Op); |
| |
| return None; |
| } |
| |
| Metadata &MDNodeMapper::getFwdReference(const Data &D, MDNode &Op) { |
| auto Where = Info.find(&Op); |
| assert(Where != Info.end() && "Expected a valid reference"); |
| |
| auto &OpD = Where->second; |
| assert(OpD.ID > D.ID && "Expected a forward reference"); |
| |
| if (!OpD.HasChangedAddress) |
| return Op; |
| |
| // Lazily construct a temporary node. |
| if (!OpD.Placeholder) |
| OpD.Placeholder = Op.clone(); |
| |
| return *OpD.Placeholder; |
| } |
| |
| void MDNodeMapper::remapOperands(const Data &D, MDNode &N) { |
| for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { |
| Metadata *Old = N.getOperand(I); |
| Metadata *New; |
| if (Optional<Metadata *> MappedOp = getMappedOp(Old)){ |
| New = *MappedOp; |
| } else { |
| assert(!N.isDistinct() && |
| "Expected all nodes to be pre-mapped for distinct operands"); |
| MDNode &OldN = *cast<MDNode>(Old); |
| assert(!OldN.isDistinct() && "Expected distinct nodes to be pre-mapped"); |
| New = &getFwdReference(D, OldN); |
| } |
| |
| if (Old != New) |
| N.replaceOperandWith(I, New); |
| } |
| } |
| |
| MDNodeMapper::Data &MDNodeMapper::push(const MDNode &N) { |
| auto Insertion = Info.insert(std::make_pair(&N, Data())); |
| auto &D = Insertion.first->second; |
| if (!Insertion.second) |
| return D; |
| |
| // Add to the worklist; check for distinct nodes that are required to be |
| // copied. |
| Worklist.push_back(std::make_pair(&const_cast<MDNode &>(N), false)); |
| D.HasChangedAddress = !(M.Flags & RF_MoveDistinctMDs) && N.isDistinct(); |
| return D; |
| } |
| |
| bool MDNodeMapper::tryToPop() { |
| if (!Worklist.back().second) { |
| Worklist.back().second = true; |
| return false; |
| } |
| |
| MDNode *N = Worklist.pop_back_val().first; |
| Info[N].ID = POT.size(); |
| POT.push_back(N); |
| return true; |
| } |
| |
| bool MDNodeMapper::createPOT(const MDNode &FirstN) { |
| bool AnyChanges = false; |
| |
| // Do a traversal of the unmapped subgraph, tracking whether operands change. |
| // In some cases, these changes will propagate naturally, but |
| // propagateChangedOperands() catches the general case. |
| AnyChanges |= push(FirstN).HasChangedAddress; |
| while (hasWork()) { |
| if (tryToPop()) |
| continue; |
| |
| MDNode &N = getCurrentNode(); |
| bool LocalChanges = false; |
| for (const Metadata *Op : N.operands()) |
| LocalChanges |= mapOperand(Op); |
| |
| if (!LocalChanges) |
| continue; |
| |
| AnyChanges = true; |
| auto &D = Info[&N]; |
| D.HasChangedOps = true; |
| |
| // Uniqued nodes change address when operands change. |
| if (!N.isDistinct()) |
| D.HasChangedAddress = true; |
| } |
| return AnyChanges; |
| } |
| |
| void MDNodeMapper::propagateChangedOperands() { |
| bool AnyChangedAddresses; |
| do { |
| AnyChangedAddresses = false; |
| for (MDNode *N : POT) { |
| auto &NI = Info[N]; |
| if (NI.HasChangedOps) |
| continue; |
| |
| if (!llvm::any_of(N->operands(), [&](const Metadata *Op) { |
| auto Where = Info.find(Op); |
| return Where != Info.end() && Where->second.HasChangedAddress; |
| })) |
| continue; |
| |
| NI.HasChangedOps = true; |
| if (!N->isDistinct()) { |
| NI.HasChangedAddress = true; |
| AnyChangedAddresses = true; |
| } |
| } |
| } while (AnyChangedAddresses); |
| } |
| |
| void MDNodeMapper::mapDistinctNodes() { |
| // Map all the distinct nodes in POT. |
| for (MDNode *N : POT) { |
| if (!N->isDistinct()) |
| continue; |
| |
| if (M.Flags & RF_MoveDistinctMDs) |
| M.mapToSelf(N); |
| else |
| M.mapToMetadata(N, MDNode::replaceWithDistinct(N->clone())); |
| } |
| } |
| |
| void MDNodeMapper::mapUniquedNodes() { |
| // Construct uniqued nodes, building forward references as necessary. |
| for (auto *N : POT) { |
| if (N->isDistinct()) |
| continue; |
| |
| auto &D = Info[N]; |
| assert(D.HasChangedAddress == D.HasChangedOps && |
| "Uniqued nodes should change address iff ops change"); |
| if (!D.HasChangedAddress) { |
| M.mapToSelf(N); |
| continue; |
| } |
| |
| TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); |
| remapOperands(D, *ClonedN); |
| M.mapToMetadata(N, MDNode::replaceWithUniqued(std::move(ClonedN))); |
| } |
| |
| // Resolve cycles. |
| for (auto *N : POT) |
| if (!N->isResolved()) |
| N->resolveCycles(); |
| } |
| |
| void MDNodeMapper::remapDistinctOperands() { |
| for (auto *N : POT) { |
| if (!N->isDistinct()) |
| continue; |
| |
| auto &D = Info[N]; |
| if (!D.HasChangedOps) |
| continue; |
| |
| assert(D.HasChangedAddress == !bool(M.Flags & RF_MoveDistinctMDs) && |
| "Distinct nodes should change address iff they cannot be moved"); |
| remapOperands(D, D.HasChangedAddress ? *cast<MDNode>(*getMappedOp(N)) : *N); |
| } |
| } |
| |
| Metadata *MDNodeMapper::map(const MDNode &FirstN) { |
| assert(!(M.Flags & RF_NoModuleLevelChanges) && |
| "MDNodeMapper::map assumes module-level changes"); |
| assert(POT.empty() && "MDNodeMapper::map is not re-entrant"); |
| |
| // Require resolved nodes whenever metadata might be remapped. |
| assert(FirstN.isResolved() && "Unexpected unresolved node"); |
| |
| // Return early if nothing at all changed. |
| if (!createPOT(FirstN)) { |
| for (const MDNode *N : POT) |
| M.mapToSelf(N); |
| return &const_cast<MDNode &>(FirstN); |
| } |
| |
| propagateChangedOperands(); |
| mapDistinctNodes(); |
| mapUniquedNodes(); |
| remapDistinctOperands(); |
| |
| // Return the original node, remapped. |
| return *getMappedOp(&FirstN); |
| } |
| |
| Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { |
| // If the value already exists in the map, use it. |
| if (Optional<Metadata *> NewMD = VM.getMappedMD(MD)) |
| return *NewMD; |
| |
| if (isa<MDString>(MD)) |
| return const_cast<Metadata *>(MD); |
| |
| // This is a module-level metadata. If nothing at the module level is |
| // changing, use an identity mapping. |
| if ((Flags & RF_NoModuleLevelChanges)) |
| return const_cast<Metadata *>(MD); |
| |
| if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { |
| // Disallow recursion into metadata mapping through mapValue. |
| VM.disableMapMetadata(); |
| Value *MappedV = mapValue(CMD->getValue()); |
| VM.enableMapMetadata(); |
| |
| if (CMD->getValue() == MappedV) |
| return mapToSelf(MD); |
| |
| return mapToMetadata(MD, MappedV ? ValueAsMetadata::get(MappedV) : nullptr); |
| } |
| |
| assert(isa<MDNode>(MD) && "Expected a metadata node"); |
| |
| return None; |
| } |
| |
| Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, |
| RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, |
| ValueMaterializer *Materializer) { |
| return Mapper(VM, Flags, TypeMapper, Materializer).mapMetadata(MD); |
| } |
| |
| Metadata *Mapper::mapLocalAsMetadata(const LocalAsMetadata &LAM) { |
| // Lookup the mapping for the value itself, and return the appropriate |
| // metadata. |
| if (Value *V = mapValue(LAM.getValue())) { |
| if (V == LAM.getValue()) |
| return const_cast<LocalAsMetadata *>(&LAM); |
| return ValueAsMetadata::get(V); |
| } |
| |
| // FIXME: always return nullptr once Verifier::verifyDominatesUse() ensures |
| // metadata operands only reference defined SSA values. |
| return (Flags & RF_IgnoreMissingLocals) |
| ? nullptr |
| : MDTuple::get(LAM.getContext(), None); |
| } |
| |
| Metadata *Mapper::mapMetadata(const Metadata *MD) { |
| assert(MD && "Expected valid metadata"); |
| assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); |
| |
| if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) |
| return *NewMD; |
| |
| return MDNodeMapper(*this).map(*cast<MDNode>(MD)); |
| } |
| |
| Mapper::~Mapper() { |
| // Materialize global initializers. |
| while (!DelayedInits.empty()) { |
| auto Init = DelayedInits.pop_back_val(); |
| Materializer->materializeInitFor(Init.New, Init.Old); |
| } |
| |
| // Process block addresses delayed until global inits. |
| while (!DelayedBBs.empty()) { |
| DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); |
| BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); |
| DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); |
| } |
| |
| // We don't expect these to grow after clearing. |
| assert(DelayedInits.empty()); |
| assert(DelayedBBs.empty()); |
| } |
| |
| MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM, |
| RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, |
| ValueMaterializer *Materializer) { |
| return cast_or_null<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, |
| Flags, TypeMapper, Materializer)); |
| } |
| |
| void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VM, |
| RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, |
| ValueMaterializer *Materializer) { |
| Mapper(VM, Flags, TypeMapper, Materializer).remapInstruction(I); |
| } |
| |
| void Mapper::remapInstruction(Instruction *I) { |
| // Remap operands. |
| for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) { |
| Value *V = mapValue(*op); |
| // If we aren't ignoring missing entries, assert that something happened. |
| if (V) |
| *op = V; |
| else |
| assert((Flags & RF_IgnoreMissingLocals) && |
| "Referenced value not in value map!"); |
| } |
| |
| // Remap phi nodes' incoming blocks. |
| if (PHINode *PN = dyn_cast<PHINode>(I)) { |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| // FIXME: Use Mapper::mapValue (but note the missing Materializer flag). |
| Value *V = MapValue(PN->getIncomingBlock(i), VM, Flags); |
| // If we aren't ignoring missing entries, assert that something happened. |
| if (V) |
| PN->setIncomingBlock(i, cast<BasicBlock>(V)); |
| else |
| assert((Flags & RF_IgnoreMissingLocals) && |
| "Referenced block not in value map!"); |
| } |
| } |
| |
| // Remap attached metadata. |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| I->getAllMetadata(MDs); |
| for (const auto &MI : MDs) { |
| MDNode *Old = MI.second; |
| MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); |
| if (New != Old) |
| I->setMetadata(MI.first, New); |
| } |
| |
| if (!TypeMapper) |
| return; |
| |
| // If the instruction's type is being remapped, do so now. |
| if (auto CS = CallSite(I)) { |
| SmallVector<Type *, 3> Tys; |
| FunctionType *FTy = CS.getFunctionType(); |
| Tys.reserve(FTy->getNumParams()); |
| for (Type *Ty : FTy->params()) |
| Tys.push_back(TypeMapper->remapType(Ty)); |
| CS.mutateFunctionType(FunctionType::get( |
| TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); |
| return; |
| } |
| if (auto *AI = dyn_cast<AllocaInst>(I)) |
| AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); |
| if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| GEP->setSourceElementType( |
| TypeMapper->remapType(GEP->getSourceElementType())); |
| GEP->setResultElementType( |
| TypeMapper->remapType(GEP->getResultElementType())); |
| } |
| I->mutateType(TypeMapper->remapType(I->getType())); |
| } |