| //===- TrainingLogger.cpp - mlgo feature/reward logging -------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements logging infrastructure for extracting features and |
| // rewards for mlgo policy training. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "llvm/Analysis/TensorSpec.h" |
| #include "llvm/Config/config.h" |
| #if defined(LLVM_HAVE_TFLITE) |
| |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/Utils/TrainingLogger.h" |
| #include "llvm/Support/Base64.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/JSON.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #include "google/protobuf/struct.pb.h" |
| #include "google/protobuf/text_format.h" |
| #include "tensorflow/core/example/example.pb.h" |
| #include <cassert> |
| #include <numeric> |
| |
| using namespace llvm; |
| |
| using google::protobuf::Message; |
| using google::protobuf::TextFormat; |
| |
| static cl::opt<bool> |
| ProtobufTextMode("tfutils-text-log", cl::init(false), cl::Hidden, |
| cl::desc("Output textual (human-readable) protobuf.")); |
| |
| static cl::opt<bool> |
| UseSimpleLogger("tfutils-use-simplelogger", cl::init(false), cl::Hidden, |
| cl::desc("Output simple (non-protobuf) log.")); |
| |
| namespace { |
| |
| void serialize(const Message &SE, std::string *OutStr) { |
| if (ProtobufTextMode) { |
| TextFormat::PrintToString(SE, OutStr); |
| } else { |
| *OutStr = SE.SerializeAsString(); |
| } |
| } |
| } // namespace |
| |
| namespace llvm { |
| |
| class LoggerDataImpl { |
| protected: |
| const std::vector<TensorSpec> LoggedFeatureSpecs; |
| const TensorSpec RewardSpec; |
| const bool IncludeReward; |
| LoggerDataImpl(const std::vector<TensorSpec> &LoggedSpecs, |
| const TensorSpec &RewardSpec, bool IncludeReward) |
| : LoggedFeatureSpecs(LoggedSpecs), RewardSpec(RewardSpec), |
| IncludeReward(IncludeReward) {} |
| virtual void logRewardImpl(const char *Value, size_t Size) = 0; |
| |
| public: |
| // flush the logged info to a stream and clear the log contents. |
| virtual void flush(std::string *Str) = 0; |
| virtual char *addNewTensor(size_t FeatureID) = 0; |
| virtual size_t getNrRecords() const = 0; |
| virtual ~LoggerDataImpl() = default; |
| |
| template <typename T> void logReward(T Value) { |
| logRewardImpl(reinterpret_cast<const char *>(&Value), sizeof(T)); |
| } |
| }; |
| |
| // The design goals of the simple logger are: |
| // - no dependencies that llvm doesn't already have. |
| // - support streaming, so that we don't need to buffer data during compilation |
| // - 0-decoding tensor values. Tensor values are potentially very large buffers |
| // of scalars. Because of their potentially large size, avoiding |
| // serialization/deserialization overhead is preferred. |
| // |
| // The simple logger produces an output of the form (each line item on its line) |
| // - header: a json object describing the data that will follow. |
| // - context: e.g. function name, for regalloc, or "default" for module-wide |
| // optimizations like the inliner. This is the context to which the subsequent |
| // data corresponds. |
| // - observation number. |
| // - tensor values - raw bytes of the tensors, in the order given in the header. |
| // The values are in succession, i.e. no separator is found between successive |
| // tensor values. At the end, there is a new line character. |
| // - [score] - this is optional, and is present if it was present in the header. |
| // Currently, for final rewards, we output "0" scores after each observation, |
| // except for the last one. |
| // <repeat> |
| // The file should be read as binary, but the reason we use newlines is mostly |
| // ease of debugging: the log can be opened in a text editor and, while tensor |
| // values are inscrutable, at least the sequence of data can be easily observed. |
| // Of course, the buffer of tensor values could contain '\n' bytes. A reader |
| // should use the header information to know how much data to read for the |
| // tensor values, and not use line information for that. |
| // |
| // An example reader, used for test, is available at |
| // Analysis/models/log_reader.py |
| // |
| // Example: |
| // {"features":[list of TensorSpecs], "score":<a tensor spec>} |
| // {"context": "aFunction"} |
| // {"observation": 0} |
| // <bytes> |
| // {"outcome": 0} |
| // <bytes for the tensor corresponding to the "score" spec in the header> |
| // {"observation": 1} |
| // ... |
| // {"context": "anotherFunction"} |
| // {"observation": 0} |
| // ... |
| // |
| class SimpleLoggerDataImpl : public LoggerDataImpl { |
| std::vector<std::unique_ptr<char[]>> FeatureStorage; |
| std::vector<std::unique_ptr<char[]>> RewardStorage; |
| |
| raw_ostream &dumpHeader(raw_ostream &OS) const { |
| json::OStream JOS(OS); |
| JOS.object([&]() { |
| JOS.attributeArray("features", [&]() { |
| for (const auto &TS : LoggedFeatureSpecs) |
| TS.toJSON(JOS); |
| }); |
| if (IncludeReward) { |
| JOS.attributeBegin("score"); |
| RewardSpec.toJSON(JOS); |
| JOS.attributeEnd(); |
| } |
| }); |
| OS << "\n"; |
| return OS; |
| } |
| |
| raw_ostream &startContext(raw_ostream &OS, StringRef Name) const { |
| json::OStream JOS(OS); |
| JOS.object([&]() { JOS.attribute("context", Name); }); |
| OS << "\n"; |
| return OS; |
| } |
| |
| raw_ostream &startObservation(raw_ostream &OS, size_t Nr) const { |
| json::OStream JOS(OS); |
| JOS.object([&]() { JOS.attribute("observation", Nr); }); |
| OS << "\n"; |
| return OS; |
| } |
| |
| raw_ostream &writeOutcome(raw_ostream &OS, |
| size_t CurrentObservationID) const { |
| if (IncludeReward) { |
| OS << "\n"; |
| json::OStream JOS(OS); |
| JOS.object([&]() { JOS.attribute("outcome", CurrentObservationID); }); |
| OS << "\n"; |
| OS.write(RewardStorage[CurrentObservationID].get(), |
| RewardSpec.getTotalTensorBufferSize()); |
| } |
| OS << "\n"; |
| return OS; |
| } |
| void flush(std::string *Str) override { |
| llvm_unreachable("Use the ostream implementation"); |
| } |
| |
| char *addNewTensor(size_t FeatureID) override { |
| return FeatureStorage |
| .emplace_back( |
| new char[LoggedFeatureSpecs[FeatureID].getTotalTensorBufferSize()]) |
| .get(); |
| } |
| |
| size_t getNrRecords() const override { |
| assert(FeatureStorage.size() % LoggedFeatureSpecs.size() == 0); |
| return FeatureStorage.size() / LoggedFeatureSpecs.size(); |
| } |
| |
| void logRewardImpl(const char *Value, size_t Size) override { |
| std::memcpy(RewardStorage.emplace_back(new char[Size]).get(), Value, Size); |
| } |
| |
| public: |
| SimpleLoggerDataImpl(const std::vector<TensorSpec> &LoggedSpecs, |
| const TensorSpec &RewardSpec, bool IncludeReward) |
| : LoggerDataImpl(LoggedSpecs, RewardSpec, IncludeReward) {} |
| |
| raw_ostream &flush(raw_ostream &OS, bool WithHeader = true, |
| StringRef Context = "default") const { |
| if (WithHeader) |
| dumpHeader(OS); |
| startContext(OS, Context); |
| size_t CurrentObservationID = 0; |
| for (size_t I = 0; I < FeatureStorage.size(); ++I) { |
| size_t TensorID = I % LoggedFeatureSpecs.size(); |
| if (TensorID == 0) { |
| CurrentObservationID = I / LoggedFeatureSpecs.size(); |
| startObservation(OS, CurrentObservationID); |
| } |
| OS.write(FeatureStorage[I].get(), |
| LoggedFeatureSpecs[TensorID].getTotalTensorBufferSize()); |
| if (TensorID == LoggedFeatureSpecs.size() - 1) { |
| writeOutcome(OS, CurrentObservationID); |
| } |
| } |
| return OS; |
| } |
| }; |
| |
| class TFSequenceExampleLoggerDataImpl : public LoggerDataImpl { |
| std::vector<tensorflow::FeatureList> FeatureLists; |
| tensorflow::FeatureList Reward; |
| |
| bool isSelfConsistent(const tensorflow::SequenceExample &SE, |
| size_t NrRecords) const { |
| bool Ret = true; |
| for (const auto &TSpecs : LoggedFeatureSpecs) { |
| const auto &Name = TSpecs.name(); |
| const auto &FL = SE.feature_lists().feature_list().at(Name).feature(); |
| if (NrRecords != static_cast<size_t>(FL.size())) { |
| dbgs() << "[TF-UTILS]: " << Name << " has missing records. Expected " |
| << NrRecords << " got " << FL.size() << "\n"; |
| Ret = false; |
| } |
| } |
| if (IncludeReward && static_cast<size_t>(SE.feature_lists() |
| .feature_list() |
| .at(RewardSpec.name()) |
| .feature() |
| .size()) != NrRecords) { |
| dbgs() << "[TF-UTILS]: reward is missing records.\n"; |
| Ret = false; |
| } |
| return Ret; |
| } |
| |
| void transferLog(tensorflow::SequenceExample &SE) { |
| auto *FL = SE.mutable_feature_lists()->mutable_feature_list(); |
| if (IncludeReward) |
| (*FL)[RewardSpec.name()] = std::move(Reward); |
| assert(FeatureLists.size() == LoggedFeatureSpecs.size()); |
| for (size_t I = 0; I < FeatureLists.size(); ++I) { |
| const auto &LFS = LoggedFeatureSpecs[I]; |
| (*FL)[LFS.name()] = std::move(FeatureLists[I]); |
| } |
| } |
| |
| public: |
| TFSequenceExampleLoggerDataImpl(const std::vector<TensorSpec> &LoggedSpecs, |
| const TensorSpec &RewardSpec, |
| bool IncludeReward) |
| : LoggerDataImpl(LoggedSpecs, RewardSpec, IncludeReward), |
| FeatureLists(LoggedFeatureSpecs.size()) {} |
| |
| // flush the logged info to a stream and clear the log contents. |
| void flush(std::string *Str) override { |
| size_t NrRecords = getNrRecords(); |
| (void)NrRecords; |
| tensorflow::SequenceExample SE; |
| transferLog(SE); |
| assert(isSelfConsistent(SE, NrRecords)); |
| serialize(SE, Str); |
| } |
| |
| char *addNewTensor(size_t FeatureID) override { |
| const auto &Spec = LoggedFeatureSpecs[FeatureID]; |
| if (Spec.isElementType<float>()) { |
| auto *RF = FeatureLists[FeatureID] |
| .add_feature() |
| ->mutable_float_list() |
| ->mutable_value(); |
| RF->Resize(Spec.getElementCount(), 0.0); |
| return reinterpret_cast<char *>(RF->mutable_data()); |
| } else if (Spec.isElementType<int32_t>() || Spec.isElementType<int64_t>()) { |
| auto *RF = FeatureLists[FeatureID] |
| .add_feature() |
| ->mutable_int64_list() |
| ->mutable_value(); |
| RF->Resize(Spec.getElementCount(), 0); |
| return reinterpret_cast<char *>(RF->mutable_data()); |
| } |
| llvm_unreachable("Unsupported tensor type."); |
| } |
| |
| void logRewardImpl(const char *Value, size_t Size) override { |
| assert(IncludeReward); |
| if (RewardSpec.isElementType<float>()) |
| Reward.add_feature()->mutable_float_list()->add_value( |
| *reinterpret_cast<const float *>(Value)); |
| else if (RewardSpec.isElementType<int32_t>()) |
| Reward.add_feature()->mutable_int64_list()->add_value( |
| *reinterpret_cast<const int32_t *>(Value)); |
| else if (RewardSpec.isElementType<int64_t>()) |
| Reward.add_feature()->mutable_int64_list()->add_value( |
| *reinterpret_cast<const int64_t *>(Value)); |
| else |
| llvm_unreachable("Unsupported tensor type."); |
| } |
| |
| size_t getNrRecords() const override { |
| return FeatureLists.empty() ? 0 : FeatureLists[0].feature().size(); |
| } |
| }; |
| } // namespace llvm |
| |
| Logger::Logger(const std::vector<TensorSpec> &FeatureSpecs, |
| const TensorSpec &RewardSpec, bool IncludeReward) |
| : FeatureSpecs(FeatureSpecs), RewardSpec(RewardSpec), |
| IncludeReward(IncludeReward) { |
| if (UseSimpleLogger) |
| LoggerData = std::make_unique<SimpleLoggerDataImpl>( |
| FeatureSpecs, RewardSpec, IncludeReward); |
| else |
| LoggerData = std::make_unique<TFSequenceExampleLoggerDataImpl>( |
| FeatureSpecs, RewardSpec, IncludeReward); |
| } |
| |
| Logger::~Logger() {} |
| |
| #define LOG_REWARD(NAME, TYPE) \ |
| void Logger::log##NAME##Reward(TYPE Value) { \ |
| assert(IncludeReward); \ |
| LoggerData->logReward(Value); \ |
| } |
| |
| LOG_REWARD(Float, float) |
| LOG_REWARD(Int32, int32_t) |
| LOG_REWARD(Int64, int64_t) |
| #undef LOG_REWARD |
| |
| #define LOG_FINAL_REWARD(NAME, TYPE) \ |
| void Logger::log##NAME##FinalReward(TYPE Value) { \ |
| assert(RewardSpec.isElementType<TYPE>()); \ |
| for (size_t I = 1; I < LoggerData->getNrRecords(); ++I) \ |
| log##NAME##Reward(0); \ |
| log##NAME##Reward(Value); \ |
| } |
| |
| LOG_FINAL_REWARD(Float, float) |
| LOG_FINAL_REWARD(Int32, int32_t) |
| LOG_FINAL_REWARD(Int64, int64_t) |
| #undef LOG_FINAL_REWARD |
| |
| void Logger::logFloatValue(size_t FeatureID, const float *Value) { |
| assert(FeatureSpecs[FeatureID].isElementType<float>()); |
| logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value)); |
| } |
| |
| void Logger::logInt64Value(size_t FeatureID, const int64_t *Value) { |
| assert(FeatureSpecs[FeatureID].isElementType<int64_t>()); |
| logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value)); |
| } |
| |
| void Logger::logInt32Value(size_t FeatureID, const int32_t *Value) { |
| assert(FeatureSpecs[FeatureID].isElementType<int32_t>()); |
| logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value)); |
| } |
| |
| void Logger::logSpecifiedTensorValue(size_t FeatureID, const char *RawData) { |
| const auto &Spec = FeatureSpecs[FeatureID]; |
| char *Buff = addEntryAndGetFloatOrInt64Buffer(FeatureID); |
| if (Spec.isElementType<int32_t>()) |
| for (size_t I = 0; I < Spec.getElementCount(); ++I) |
| (reinterpret_cast<int64_t *>(Buff))[I] = |
| static_cast<int64_t>((reinterpret_cast<const int32_t *>(RawData))[I]); |
| else if (Spec.isElementType<int64_t>() || Spec.isElementType<float>()) |
| std::memcpy(Buff, RawData, |
| Spec.getElementCount() * Spec.getElementByteSize()); |
| else |
| llvm_unreachable("Unsupported tensor type"); |
| } |
| |
| char *Logger::addEntryAndGetFloatOrInt64Buffer(size_t FeatureID) { |
| return reinterpret_cast<char *>(LoggerData->addNewTensor(FeatureID)); |
| } |
| |
| void Logger::flush(std::string *Str) { LoggerData->flush(Str); } |
| |
| void Logger::flush(raw_ostream &OS) { |
| if (UseSimpleLogger) { |
| reinterpret_cast<SimpleLoggerDataImpl *>(LoggerData.get())->flush(OS); |
| } else { |
| std::string Buff; |
| LoggerData->flush(&Buff); |
| OS << Buff; |
| } |
| } |
| |
| void Logger::flushLogs(raw_ostream &OS, |
| const StringMap<std::unique_ptr<Logger>> &Loggers) { |
| if (UseSimpleLogger) { |
| bool IsFirst = true; |
| for (const auto &NamedLogger : Loggers) { |
| auto *Impl = NamedLogger.second->LoggerData.get(); |
| reinterpret_cast<const SimpleLoggerDataImpl *>(Impl)->flush( |
| OS, IsFirst, NamedLogger.first()); |
| IsFirst = false; |
| } |
| } else { |
| google::protobuf::Struct Msg; |
| for (const auto &NamedLogger : Loggers) { |
| tensorflow::SequenceExample SE; |
| const auto &Logger = NamedLogger.second; |
| std::string Unencoded; |
| if (Logger->LoggerData->getNrRecords() > 0) |
| Logger->flush(&Unencoded); |
| |
| (*Msg.mutable_fields())[NamedLogger.first().str()] |
| .mutable_string_value() |
| ->append(ProtobufTextMode ? Unencoded : encodeBase64(Unencoded)); |
| } |
| |
| std::string OutStr; |
| serialize(Msg, &OutStr); |
| OS << OutStr; |
| } |
| } |
| #endif // defined(LLVM_HAVE_TFLITE) |