| //===-- X86InstCombineIntrinsic.cpp - X86 specific InstCombine pass -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements a TargetTransformInfo analysis pass specific to the |
| /// X86 target machine. It uses the target's detailed information to provide |
| /// more precise answers to certain TTI queries, while letting the target |
| /// independent and default TTI implementations handle the rest. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86TargetTransformInfo.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/IntrinsicsX86.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| #include <optional> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "x86tti" |
| |
| /// Return a constant boolean vector that has true elements in all positions |
| /// where the input constant data vector has an element with the sign bit set. |
| static Constant *getNegativeIsTrueBoolVec(Constant *V) { |
| VectorType *IntTy = VectorType::getInteger(cast<VectorType>(V->getType())); |
| V = ConstantExpr::getBitCast(V, IntTy); |
| V = ConstantExpr::getICmp(CmpInst::ICMP_SGT, Constant::getNullValue(IntTy), |
| V); |
| return V; |
| } |
| |
| /// Convert the x86 XMM integer vector mask to a vector of bools based on |
| /// each element's most significant bit (the sign bit). |
| static Value *getBoolVecFromMask(Value *Mask) { |
| // Fold Constant Mask. |
| if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) |
| return getNegativeIsTrueBoolVec(ConstantMask); |
| |
| // Mask was extended from a boolean vector. |
| Value *ExtMask; |
| if (PatternMatch::match( |
| Mask, PatternMatch::m_SExt(PatternMatch::m_Value(ExtMask))) && |
| ExtMask->getType()->isIntOrIntVectorTy(1)) |
| return ExtMask; |
| |
| return nullptr; |
| } |
| |
| // TODO: If the x86 backend knew how to convert a bool vector mask back to an |
| // XMM register mask efficiently, we could transform all x86 masked intrinsics |
| // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. |
| static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) { |
| Value *Ptr = II.getOperand(0); |
| Value *Mask = II.getOperand(1); |
| Constant *ZeroVec = Constant::getNullValue(II.getType()); |
| |
| // Zero Mask - masked load instruction creates a zero vector. |
| if (isa<ConstantAggregateZero>(Mask)) |
| return IC.replaceInstUsesWith(II, ZeroVec); |
| |
| // The mask is constant or extended from a bool vector. Convert this x86 |
| // intrinsic to the LLVM intrinsic to allow target-independent optimizations. |
| if (Value *BoolMask = getBoolVecFromMask(Mask)) { |
| // First, cast the x86 intrinsic scalar pointer to a vector pointer to match |
| // the LLVM intrinsic definition for the pointer argument. |
| unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace(); |
| PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace); |
| Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec"); |
| |
| // The pass-through vector for an x86 masked load is a zero vector. |
| CallInst *NewMaskedLoad = IC.Builder.CreateMaskedLoad( |
| II.getType(), PtrCast, Align(1), BoolMask, ZeroVec); |
| return IC.replaceInstUsesWith(II, NewMaskedLoad); |
| } |
| |
| return nullptr; |
| } |
| |
| // TODO: If the x86 backend knew how to convert a bool vector mask back to an |
| // XMM register mask efficiently, we could transform all x86 masked intrinsics |
| // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. |
| static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) { |
| Value *Ptr = II.getOperand(0); |
| Value *Mask = II.getOperand(1); |
| Value *Vec = II.getOperand(2); |
| |
| // Zero Mask - this masked store instruction does nothing. |
| if (isa<ConstantAggregateZero>(Mask)) { |
| IC.eraseInstFromFunction(II); |
| return true; |
| } |
| |
| // The SSE2 version is too weird (eg, unaligned but non-temporal) to do |
| // anything else at this level. |
| if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu) |
| return false; |
| |
| // The mask is constant or extended from a bool vector. Convert this x86 |
| // intrinsic to the LLVM intrinsic to allow target-independent optimizations. |
| if (Value *BoolMask = getBoolVecFromMask(Mask)) { |
| unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace(); |
| PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace); |
| Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec"); |
| |
| IC.Builder.CreateMaskedStore(Vec, PtrCast, Align(1), BoolMask); |
| |
| // 'Replace uses' doesn't work for stores. Erase the original masked store. |
| IC.eraseInstFromFunction(II); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static Value *simplifyX86immShift(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| bool LogicalShift = false; |
| bool ShiftLeft = false; |
| bool IsImm = false; |
| |
| switch (II.getIntrinsicID()) { |
| default: |
| llvm_unreachable("Unexpected intrinsic!"); |
| case Intrinsic::x86_sse2_psrai_d: |
| case Intrinsic::x86_sse2_psrai_w: |
| case Intrinsic::x86_avx2_psrai_d: |
| case Intrinsic::x86_avx2_psrai_w: |
| case Intrinsic::x86_avx512_psrai_q_128: |
| case Intrinsic::x86_avx512_psrai_q_256: |
| case Intrinsic::x86_avx512_psrai_d_512: |
| case Intrinsic::x86_avx512_psrai_q_512: |
| case Intrinsic::x86_avx512_psrai_w_512: |
| IsImm = true; |
| [[fallthrough]]; |
| case Intrinsic::x86_sse2_psra_d: |
| case Intrinsic::x86_sse2_psra_w: |
| case Intrinsic::x86_avx2_psra_d: |
| case Intrinsic::x86_avx2_psra_w: |
| case Intrinsic::x86_avx512_psra_q_128: |
| case Intrinsic::x86_avx512_psra_q_256: |
| case Intrinsic::x86_avx512_psra_d_512: |
| case Intrinsic::x86_avx512_psra_q_512: |
| case Intrinsic::x86_avx512_psra_w_512: |
| LogicalShift = false; |
| ShiftLeft = false; |
| break; |
| case Intrinsic::x86_sse2_psrli_d: |
| case Intrinsic::x86_sse2_psrli_q: |
| case Intrinsic::x86_sse2_psrli_w: |
| case Intrinsic::x86_avx2_psrli_d: |
| case Intrinsic::x86_avx2_psrli_q: |
| case Intrinsic::x86_avx2_psrli_w: |
| case Intrinsic::x86_avx512_psrli_d_512: |
| case Intrinsic::x86_avx512_psrli_q_512: |
| case Intrinsic::x86_avx512_psrli_w_512: |
| IsImm = true; |
| [[fallthrough]]; |
| case Intrinsic::x86_sse2_psrl_d: |
| case Intrinsic::x86_sse2_psrl_q: |
| case Intrinsic::x86_sse2_psrl_w: |
| case Intrinsic::x86_avx2_psrl_d: |
| case Intrinsic::x86_avx2_psrl_q: |
| case Intrinsic::x86_avx2_psrl_w: |
| case Intrinsic::x86_avx512_psrl_d_512: |
| case Intrinsic::x86_avx512_psrl_q_512: |
| case Intrinsic::x86_avx512_psrl_w_512: |
| LogicalShift = true; |
| ShiftLeft = false; |
| break; |
| case Intrinsic::x86_sse2_pslli_d: |
| case Intrinsic::x86_sse2_pslli_q: |
| case Intrinsic::x86_sse2_pslli_w: |
| case Intrinsic::x86_avx2_pslli_d: |
| case Intrinsic::x86_avx2_pslli_q: |
| case Intrinsic::x86_avx2_pslli_w: |
| case Intrinsic::x86_avx512_pslli_d_512: |
| case Intrinsic::x86_avx512_pslli_q_512: |
| case Intrinsic::x86_avx512_pslli_w_512: |
| IsImm = true; |
| [[fallthrough]]; |
| case Intrinsic::x86_sse2_psll_d: |
| case Intrinsic::x86_sse2_psll_q: |
| case Intrinsic::x86_sse2_psll_w: |
| case Intrinsic::x86_avx2_psll_d: |
| case Intrinsic::x86_avx2_psll_q: |
| case Intrinsic::x86_avx2_psll_w: |
| case Intrinsic::x86_avx512_psll_d_512: |
| case Intrinsic::x86_avx512_psll_q_512: |
| case Intrinsic::x86_avx512_psll_w_512: |
| LogicalShift = true; |
| ShiftLeft = true; |
| break; |
| } |
| assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); |
| |
| Value *Vec = II.getArgOperand(0); |
| Value *Amt = II.getArgOperand(1); |
| auto *VT = cast<FixedVectorType>(Vec->getType()); |
| Type *SVT = VT->getElementType(); |
| Type *AmtVT = Amt->getType(); |
| unsigned VWidth = VT->getNumElements(); |
| unsigned BitWidth = SVT->getPrimitiveSizeInBits(); |
| |
| // If the shift amount is guaranteed to be in-range we can replace it with a |
| // generic shift. If its guaranteed to be out of range, logical shifts combine |
| // to zero and arithmetic shifts are clamped to (BitWidth - 1). |
| if (IsImm) { |
| assert(AmtVT->isIntegerTy(32) && "Unexpected shift-by-immediate type"); |
| KnownBits KnownAmtBits = |
| llvm::computeKnownBits(Amt, II.getModule()->getDataLayout()); |
| if (KnownAmtBits.getMaxValue().ult(BitWidth)) { |
| Amt = Builder.CreateZExtOrTrunc(Amt, SVT); |
| Amt = Builder.CreateVectorSplat(VWidth, Amt); |
| return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt) |
| : Builder.CreateLShr(Vec, Amt)) |
| : Builder.CreateAShr(Vec, Amt)); |
| } |
| if (KnownAmtBits.getMinValue().uge(BitWidth)) { |
| if (LogicalShift) |
| return ConstantAggregateZero::get(VT); |
| Amt = ConstantInt::get(SVT, BitWidth - 1); |
| return Builder.CreateAShr(Vec, Builder.CreateVectorSplat(VWidth, Amt)); |
| } |
| } else { |
| // Ensure the first element has an in-range value and the rest of the |
| // elements in the bottom 64 bits are zero. |
| assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 && |
| cast<VectorType>(AmtVT)->getElementType() == SVT && |
| "Unexpected shift-by-scalar type"); |
| unsigned NumAmtElts = cast<FixedVectorType>(AmtVT)->getNumElements(); |
| APInt DemandedLower = APInt::getOneBitSet(NumAmtElts, 0); |
| APInt DemandedUpper = APInt::getBitsSet(NumAmtElts, 1, NumAmtElts / 2); |
| KnownBits KnownLowerBits = llvm::computeKnownBits( |
| Amt, DemandedLower, II.getModule()->getDataLayout()); |
| KnownBits KnownUpperBits = llvm::computeKnownBits( |
| Amt, DemandedUpper, II.getModule()->getDataLayout()); |
| if (KnownLowerBits.getMaxValue().ult(BitWidth) && |
| (DemandedUpper.isZero() || KnownUpperBits.isZero())) { |
| SmallVector<int, 16> ZeroSplat(VWidth, 0); |
| Amt = Builder.CreateShuffleVector(Amt, ZeroSplat); |
| return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt) |
| : Builder.CreateLShr(Vec, Amt)) |
| : Builder.CreateAShr(Vec, Amt)); |
| } |
| } |
| |
| // Simplify if count is constant vector. |
| auto *CDV = dyn_cast<ConstantDataVector>(Amt); |
| if (!CDV) |
| return nullptr; |
| |
| // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector |
| // operand to compute the shift amount. |
| assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 && |
| cast<VectorType>(AmtVT)->getElementType() == SVT && |
| "Unexpected shift-by-scalar type"); |
| |
| // Concatenate the sub-elements to create the 64-bit value. |
| APInt Count(64, 0); |
| for (unsigned i = 0, NumSubElts = 64 / BitWidth; i != NumSubElts; ++i) { |
| unsigned SubEltIdx = (NumSubElts - 1) - i; |
| auto *SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx)); |
| Count <<= BitWidth; |
| Count |= SubElt->getValue().zextOrTrunc(64); |
| } |
| |
| // If shift-by-zero then just return the original value. |
| if (Count.isZero()) |
| return Vec; |
| |
| // Handle cases when Shift >= BitWidth. |
| if (Count.uge(BitWidth)) { |
| // If LogicalShift - just return zero. |
| if (LogicalShift) |
| return ConstantAggregateZero::get(VT); |
| |
| // If ArithmeticShift - clamp Shift to (BitWidth - 1). |
| Count = APInt(64, BitWidth - 1); |
| } |
| |
| // Get a constant vector of the same type as the first operand. |
| auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth)); |
| auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt); |
| |
| if (ShiftLeft) |
| return Builder.CreateShl(Vec, ShiftVec); |
| |
| if (LogicalShift) |
| return Builder.CreateLShr(Vec, ShiftVec); |
| |
| return Builder.CreateAShr(Vec, ShiftVec); |
| } |
| |
| // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift. |
| // Unlike the generic IR shifts, the intrinsics have defined behaviour for out |
| // of range shift amounts (logical - set to zero, arithmetic - splat sign bit). |
| static Value *simplifyX86varShift(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| bool LogicalShift = false; |
| bool ShiftLeft = false; |
| |
| switch (II.getIntrinsicID()) { |
| default: |
| llvm_unreachable("Unexpected intrinsic!"); |
| case Intrinsic::x86_avx2_psrav_d: |
| case Intrinsic::x86_avx2_psrav_d_256: |
| case Intrinsic::x86_avx512_psrav_q_128: |
| case Intrinsic::x86_avx512_psrav_q_256: |
| case Intrinsic::x86_avx512_psrav_d_512: |
| case Intrinsic::x86_avx512_psrav_q_512: |
| case Intrinsic::x86_avx512_psrav_w_128: |
| case Intrinsic::x86_avx512_psrav_w_256: |
| case Intrinsic::x86_avx512_psrav_w_512: |
| LogicalShift = false; |
| ShiftLeft = false; |
| break; |
| case Intrinsic::x86_avx2_psrlv_d: |
| case Intrinsic::x86_avx2_psrlv_d_256: |
| case Intrinsic::x86_avx2_psrlv_q: |
| case Intrinsic::x86_avx2_psrlv_q_256: |
| case Intrinsic::x86_avx512_psrlv_d_512: |
| case Intrinsic::x86_avx512_psrlv_q_512: |
| case Intrinsic::x86_avx512_psrlv_w_128: |
| case Intrinsic::x86_avx512_psrlv_w_256: |
| case Intrinsic::x86_avx512_psrlv_w_512: |
| LogicalShift = true; |
| ShiftLeft = false; |
| break; |
| case Intrinsic::x86_avx2_psllv_d: |
| case Intrinsic::x86_avx2_psllv_d_256: |
| case Intrinsic::x86_avx2_psllv_q: |
| case Intrinsic::x86_avx2_psllv_q_256: |
| case Intrinsic::x86_avx512_psllv_d_512: |
| case Intrinsic::x86_avx512_psllv_q_512: |
| case Intrinsic::x86_avx512_psllv_w_128: |
| case Intrinsic::x86_avx512_psllv_w_256: |
| case Intrinsic::x86_avx512_psllv_w_512: |
| LogicalShift = true; |
| ShiftLeft = true; |
| break; |
| } |
| assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); |
| |
| Value *Vec = II.getArgOperand(0); |
| Value *Amt = II.getArgOperand(1); |
| auto *VT = cast<FixedVectorType>(II.getType()); |
| Type *SVT = VT->getElementType(); |
| int NumElts = VT->getNumElements(); |
| int BitWidth = SVT->getIntegerBitWidth(); |
| |
| // If the shift amount is guaranteed to be in-range we can replace it with a |
| // generic shift. |
| KnownBits KnownAmt = |
| llvm::computeKnownBits(Amt, II.getModule()->getDataLayout()); |
| if (KnownAmt.getMaxValue().ult(BitWidth)) { |
| return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt) |
| : Builder.CreateLShr(Vec, Amt)) |
| : Builder.CreateAShr(Vec, Amt)); |
| } |
| |
| // Simplify if all shift amounts are constant/undef. |
| auto *CShift = dyn_cast<Constant>(Amt); |
| if (!CShift) |
| return nullptr; |
| |
| // Collect each element's shift amount. |
| // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth. |
| bool AnyOutOfRange = false; |
| SmallVector<int, 8> ShiftAmts; |
| for (int I = 0; I < NumElts; ++I) { |
| auto *CElt = CShift->getAggregateElement(I); |
| if (isa_and_nonnull<UndefValue>(CElt)) { |
| ShiftAmts.push_back(-1); |
| continue; |
| } |
| |
| auto *COp = dyn_cast_or_null<ConstantInt>(CElt); |
| if (!COp) |
| return nullptr; |
| |
| // Handle out of range shifts. |
| // If LogicalShift - set to BitWidth (special case). |
| // If ArithmeticShift - set to (BitWidth - 1) (sign splat). |
| APInt ShiftVal = COp->getValue(); |
| if (ShiftVal.uge(BitWidth)) { |
| AnyOutOfRange = LogicalShift; |
| ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1); |
| continue; |
| } |
| |
| ShiftAmts.push_back((int)ShiftVal.getZExtValue()); |
| } |
| |
| // If all elements out of range or UNDEF, return vector of zeros/undefs. |
| // ArithmeticShift should only hit this if they are all UNDEF. |
| auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); }; |
| if (llvm::all_of(ShiftAmts, OutOfRange)) { |
| SmallVector<Constant *, 8> ConstantVec; |
| for (int Idx : ShiftAmts) { |
| if (Idx < 0) { |
| ConstantVec.push_back(UndefValue::get(SVT)); |
| } else { |
| assert(LogicalShift && "Logical shift expected"); |
| ConstantVec.push_back(ConstantInt::getNullValue(SVT)); |
| } |
| } |
| return ConstantVector::get(ConstantVec); |
| } |
| |
| // We can't handle only some out of range values with generic logical shifts. |
| if (AnyOutOfRange) |
| return nullptr; |
| |
| // Build the shift amount constant vector. |
| SmallVector<Constant *, 8> ShiftVecAmts; |
| for (int Idx : ShiftAmts) { |
| if (Idx < 0) |
| ShiftVecAmts.push_back(UndefValue::get(SVT)); |
| else |
| ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx)); |
| } |
| auto ShiftVec = ConstantVector::get(ShiftVecAmts); |
| |
| if (ShiftLeft) |
| return Builder.CreateShl(Vec, ShiftVec); |
| |
| if (LogicalShift) |
| return Builder.CreateLShr(Vec, ShiftVec); |
| |
| return Builder.CreateAShr(Vec, ShiftVec); |
| } |
| |
| static Value *simplifyX86pack(IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder, bool IsSigned) { |
| Value *Arg0 = II.getArgOperand(0); |
| Value *Arg1 = II.getArgOperand(1); |
| Type *ResTy = II.getType(); |
| |
| // Fast all undef handling. |
| if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1)) |
| return UndefValue::get(ResTy); |
| |
| auto *ArgTy = cast<FixedVectorType>(Arg0->getType()); |
| unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128; |
| unsigned NumSrcElts = ArgTy->getNumElements(); |
| assert(cast<FixedVectorType>(ResTy)->getNumElements() == (2 * NumSrcElts) && |
| "Unexpected packing types"); |
| |
| unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes; |
| unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits(); |
| unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits(); |
| assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) && |
| "Unexpected packing types"); |
| |
| // Constant folding. |
| if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1)) |
| return nullptr; |
| |
| // Clamp Values - signed/unsigned both use signed clamp values, but they |
| // differ on the min/max values. |
| APInt MinValue, MaxValue; |
| if (IsSigned) { |
| // PACKSS: Truncate signed value with signed saturation. |
| // Source values less than dst minint are saturated to minint. |
| // Source values greater than dst maxint are saturated to maxint. |
| MinValue = |
| APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits); |
| MaxValue = |
| APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits); |
| } else { |
| // PACKUS: Truncate signed value with unsigned saturation. |
| // Source values less than zero are saturated to zero. |
| // Source values greater than dst maxuint are saturated to maxuint. |
| MinValue = APInt::getZero(SrcScalarSizeInBits); |
| MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits); |
| } |
| |
| auto *MinC = Constant::getIntegerValue(ArgTy, MinValue); |
| auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue); |
| Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0); |
| Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1); |
| Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0); |
| Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1); |
| |
| // Shuffle clamped args together at the lane level. |
| SmallVector<int, 32> PackMask; |
| for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt) |
| PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane)); |
| for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt) |
| PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts); |
| } |
| auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask); |
| |
| // Truncate to dst size. |
| return Builder.CreateTrunc(Shuffle, ResTy); |
| } |
| |
| static Value *simplifyX86movmsk(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| Value *Arg = II.getArgOperand(0); |
| Type *ResTy = II.getType(); |
| |
| // movmsk(undef) -> zero as we must ensure the upper bits are zero. |
| if (isa<UndefValue>(Arg)) |
| return Constant::getNullValue(ResTy); |
| |
| auto *ArgTy = dyn_cast<FixedVectorType>(Arg->getType()); |
| // We can't easily peek through x86_mmx types. |
| if (!ArgTy) |
| return nullptr; |
| |
| // Expand MOVMSK to compare/bitcast/zext: |
| // e.g. PMOVMSKB(v16i8 x): |
| // %cmp = icmp slt <16 x i8> %x, zeroinitializer |
| // %int = bitcast <16 x i1> %cmp to i16 |
| // %res = zext i16 %int to i32 |
| unsigned NumElts = ArgTy->getNumElements(); |
| Type *IntegerTy = Builder.getIntNTy(NumElts); |
| |
| Value *Res = Builder.CreateBitCast(Arg, VectorType::getInteger(ArgTy)); |
| Res = Builder.CreateIsNeg(Res); |
| Res = Builder.CreateBitCast(Res, IntegerTy); |
| Res = Builder.CreateZExtOrTrunc(Res, ResTy); |
| return Res; |
| } |
| |
| static Value *simplifyX86addcarry(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| Value *CarryIn = II.getArgOperand(0); |
| Value *Op1 = II.getArgOperand(1); |
| Value *Op2 = II.getArgOperand(2); |
| Type *RetTy = II.getType(); |
| Type *OpTy = Op1->getType(); |
| assert(RetTy->getStructElementType(0)->isIntegerTy(8) && |
| RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() && |
| "Unexpected types for x86 addcarry"); |
| |
| // If carry-in is zero, this is just an unsigned add with overflow. |
| if (match(CarryIn, PatternMatch::m_ZeroInt())) { |
| Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy, |
| {Op1, Op2}); |
| // The types have to be adjusted to match the x86 call types. |
| Value *UAddResult = Builder.CreateExtractValue(UAdd, 0); |
| Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1), |
| Builder.getInt8Ty()); |
| Value *Res = PoisonValue::get(RetTy); |
| Res = Builder.CreateInsertValue(Res, UAddOV, 0); |
| return Builder.CreateInsertValue(Res, UAddResult, 1); |
| } |
| |
| return nullptr; |
| } |
| |
| static Value *simplifyTernarylogic(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| |
| auto *ArgImm = dyn_cast<ConstantInt>(II.getArgOperand(3)); |
| if (!ArgImm || ArgImm->getValue().uge(256)) |
| return nullptr; |
| |
| Value *ArgA = II.getArgOperand(0); |
| Value *ArgB = II.getArgOperand(1); |
| Value *ArgC = II.getArgOperand(2); |
| |
| Type *Ty = II.getType(); |
| |
| auto Or = [&](auto Lhs, auto Rhs) -> std::pair<Value *, uint8_t> { |
| return {Builder.CreateOr(Lhs.first, Rhs.first), Lhs.second | Rhs.second}; |
| }; |
| auto Xor = [&](auto Lhs, auto Rhs) -> std::pair<Value *, uint8_t> { |
| return {Builder.CreateXor(Lhs.first, Rhs.first), Lhs.second ^ Rhs.second}; |
| }; |
| auto And = [&](auto Lhs, auto Rhs) -> std::pair<Value *, uint8_t> { |
| return {Builder.CreateAnd(Lhs.first, Rhs.first), Lhs.second & Rhs.second}; |
| }; |
| auto Not = [&](auto V) -> std::pair<Value *, uint8_t> { |
| return {Builder.CreateNot(V.first), ~V.second}; |
| }; |
| auto Nor = [&](auto Lhs, auto Rhs) { return Not(Or(Lhs, Rhs)); }; |
| auto Xnor = [&](auto Lhs, auto Rhs) { return Not(Xor(Lhs, Rhs)); }; |
| auto Nand = [&](auto Lhs, auto Rhs) { return Not(And(Lhs, Rhs)); }; |
| |
| bool AIsConst = match(ArgA, PatternMatch::m_ImmConstant()); |
| bool BIsConst = match(ArgB, PatternMatch::m_ImmConstant()); |
| bool CIsConst = match(ArgC, PatternMatch::m_ImmConstant()); |
| |
| bool ABIsConst = AIsConst && BIsConst; |
| bool ACIsConst = AIsConst && CIsConst; |
| bool BCIsConst = BIsConst && CIsConst; |
| bool ABCIsConst = AIsConst && BIsConst && CIsConst; |
| |
| // Use for verification. Its a big table. Its difficult to go from Imm -> |
| // logic ops, but easy to verify that a set of logic ops is correct. We track |
| // the logic ops through the second value in the pair. At the end it should |
| // equal Imm. |
| std::pair<Value *, uint8_t> A = {ArgA, 0xf0}; |
| std::pair<Value *, uint8_t> B = {ArgB, 0xcc}; |
| std::pair<Value *, uint8_t> C = {ArgC, 0xaa}; |
| std::pair<Value *, uint8_t> Res = {nullptr, 0}; |
| |
| // Currently we only handle cases that convert directly to another instruction |
| // or cases where all the ops are constant. This is because we don't properly |
| // handle creating ternary ops in the backend, so splitting them here may |
| // cause regressions. As the backend improves, uncomment more cases. |
| |
| uint8_t Imm = ArgImm->getValue().getZExtValue(); |
| switch (Imm) { |
| case 0x0: |
| Res = {Constant::getNullValue(Ty), 0}; |
| break; |
| case 0x1: |
| if (ABCIsConst) |
| Res = Nor(Or(A, B), C); |
| break; |
| case 0x2: |
| if (ABCIsConst) |
| Res = And(Nor(A, B), C); |
| break; |
| case 0x3: |
| if (ABIsConst) |
| Res = Nor(A, B); |
| break; |
| case 0x4: |
| if (ABCIsConst) |
| Res = And(Nor(A, C), B); |
| break; |
| case 0x5: |
| if (ACIsConst) |
| Res = Nor(A, C); |
| break; |
| case 0x6: |
| if (ABCIsConst) |
| Res = Nor(A, Xnor(B, C)); |
| break; |
| case 0x7: |
| if (ABCIsConst) |
| Res = Nor(A, And(B, C)); |
| break; |
| case 0x8: |
| if (ABCIsConst) |
| Res = Nor(A, Nand(B, C)); |
| break; |
| case 0x9: |
| if (ABCIsConst) |
| Res = Nor(A, Xor(B, C)); |
| break; |
| case 0xa: |
| if (ACIsConst) |
| Res = Nor(A, Not(C)); |
| break; |
| case 0xb: |
| if (ABCIsConst) |
| Res = Nor(A, Nor(C, Not(B))); |
| break; |
| case 0xc: |
| if (ABIsConst) |
| Res = Nor(A, Not(B)); |
| break; |
| case 0xd: |
| if (ABCIsConst) |
| Res = Nor(A, Nor(B, Not(C))); |
| break; |
| case 0xe: |
| if (ABCIsConst) |
| Res = Nor(A, Nor(B, C)); |
| break; |
| case 0xf: |
| Res = Not(A); |
| break; |
| case 0x10: |
| if (ABCIsConst) |
| Res = And(A, Nor(B, C)); |
| break; |
| case 0x11: |
| if (BCIsConst) |
| Res = Nor(B, C); |
| break; |
| case 0x12: |
| if (ABCIsConst) |
| Res = Nor(Xnor(A, C), B); |
| break; |
| case 0x13: |
| if (ABCIsConst) |
| Res = Nor(And(A, C), B); |
| break; |
| case 0x14: |
| if (ABCIsConst) |
| Res = Nor(Xnor(A, B), C); |
| break; |
| case 0x15: |
| if (ABCIsConst) |
| Res = Nor(And(A, B), C); |
| break; |
| case 0x16: |
| if (ABCIsConst) |
| Res = Xor(Xor(A, B), And(Nand(A, B), C)); |
| break; |
| case 0x17: |
| if (ABCIsConst) |
| Res = Xor(Or(A, B), Or(Xnor(A, B), C)); |
| break; |
| case 0x18: |
| if (ABCIsConst) |
| Res = Nor(Xnor(A, B), Xnor(A, C)); |
| break; |
| case 0x19: |
| if (ABCIsConst) |
| Res = And(Nand(A, B), Xnor(B, C)); |
| break; |
| case 0x1a: |
| if (ABCIsConst) |
| Res = Xor(A, Or(And(A, B), C)); |
| break; |
| case 0x1b: |
| if (ABCIsConst) |
| Res = Xor(A, Or(Xnor(A, B), C)); |
| break; |
| case 0x1c: |
| if (ABCIsConst) |
| Res = Xor(A, Or(And(A, C), B)); |
| break; |
| case 0x1d: |
| if (ABCIsConst) |
| Res = Xor(A, Or(Xnor(A, C), B)); |
| break; |
| case 0x1e: |
| if (ABCIsConst) |
| Res = Xor(A, Or(B, C)); |
| break; |
| case 0x1f: |
| if (ABCIsConst) |
| Res = Nand(A, Or(B, C)); |
| break; |
| case 0x20: |
| if (ABCIsConst) |
| Res = Nor(Nand(A, C), B); |
| break; |
| case 0x21: |
| if (ABCIsConst) |
| Res = Nor(Xor(A, C), B); |
| break; |
| case 0x22: |
| if (BCIsConst) |
| Res = Nor(B, Not(C)); |
| break; |
| case 0x23: |
| if (ABCIsConst) |
| Res = Nor(B, Nor(C, Not(A))); |
| break; |
| case 0x24: |
| if (ABCIsConst) |
| Res = Nor(Xnor(A, B), Xor(A, C)); |
| break; |
| case 0x25: |
| if (ABCIsConst) |
| Res = Xor(A, Nand(Nand(A, B), C)); |
| break; |
| case 0x26: |
| if (ABCIsConst) |
| Res = And(Nand(A, B), Xor(B, C)); |
| break; |
| case 0x27: |
| if (ABCIsConst) |
| Res = Xor(Or(Xnor(A, B), C), B); |
| break; |
| case 0x28: |
| if (ABCIsConst) |
| Res = And(Xor(A, B), C); |
| break; |
| case 0x29: |
| if (ABCIsConst) |
| Res = Xor(Xor(A, B), Nor(And(A, B), C)); |
| break; |
| case 0x2a: |
| if (ABCIsConst) |
| Res = And(Nand(A, B), C); |
| break; |
| case 0x2b: |
| if (ABCIsConst) |
| Res = Xor(Or(Xnor(A, B), Xor(A, C)), A); |
| break; |
| case 0x2c: |
| if (ABCIsConst) |
| Res = Nor(Xnor(A, B), Nor(B, C)); |
| break; |
| case 0x2d: |
| if (ABCIsConst) |
| Res = Xor(A, Or(B, Not(C))); |
| break; |
| case 0x2e: |
| if (ABCIsConst) |
| Res = Xor(A, Or(Xor(A, C), B)); |
| break; |
| case 0x2f: |
| if (ABCIsConst) |
| Res = Nand(A, Or(B, Not(C))); |
| break; |
| case 0x30: |
| if (ABIsConst) |
| Res = Nor(B, Not(A)); |
| break; |
| case 0x31: |
| if (ABCIsConst) |
| Res = Nor(Nor(A, Not(C)), B); |
| break; |
| case 0x32: |
| if (ABCIsConst) |
| Res = Nor(Nor(A, C), B); |
| break; |
| case 0x33: |
| Res = Not(B); |
| break; |
| case 0x34: |
| if (ABCIsConst) |
| Res = And(Xor(A, B), Nand(B, C)); |
| break; |
| case 0x35: |
| if (ABCIsConst) |
| Res = Xor(B, Or(A, Xnor(B, C))); |
| break; |
| case 0x36: |
| if (ABCIsConst) |
| Res = Xor(Or(A, C), B); |
| break; |
| case 0x37: |
| if (ABCIsConst) |
| Res = Nand(Or(A, C), B); |
| break; |
| case 0x38: |
| if (ABCIsConst) |
| Res = Nor(Xnor(A, B), Nor(A, C)); |
| break; |
| case 0x39: |
| if (ABCIsConst) |
| Res = Xor(Or(A, Not(C)), B); |
| break; |
| case 0x3a: |
| if (ABCIsConst) |
| Res = Xor(B, Or(A, Xor(B, C))); |
| break; |
| case 0x3b: |
| if (ABCIsConst) |
| Res = Nand(Or(A, Not(C)), B); |
| break; |
| case 0x3c: |
| Res = Xor(A, B); |
| break; |
| case 0x3d: |
| if (ABCIsConst) |
| Res = Xor(A, Or(Nor(A, C), B)); |
| break; |
| case 0x3e: |
| if (ABCIsConst) |
| Res = Xor(A, Or(Nor(A, Not(C)), B)); |
| break; |
| case 0x3f: |
| if (ABIsConst) |
| Res = Nand(A, B); |
| break; |
| case 0x40: |
| if (ABCIsConst) |
| Res = Nor(Nand(A, B), C); |
| break; |
| case 0x41: |
| if (ABCIsConst) |
| Res = Nor(Xor(A, B), C); |
| break; |
| case 0x42: |
| if (ABCIsConst) |
| Res = Nor(Xor(A, B), Xnor(A, C)); |
| break; |
| case 0x43: |
| if (ABCIsConst) |
| Res = Xor(A, Nand(Nand(A, C), B)); |
| break; |
| case 0x44: |
| if (BCIsConst) |
| Res = Nor(C, Not(B)); |
| break; |
| case 0x45: |
| if (ABCIsConst) |
| Res = Nor(Nor(B, Not(A)), C); |
| break; |
| case 0x46: |
| if (ABCIsConst) |
| Res = Xor(Or(And(A, C), B), C); |
| break; |
| case 0x47: |
| if (ABCIsConst) |
| Res = Xor(Or(Xnor(A, C), B), C); |
| break; |
| case 0x48: |
| if (ABCIsConst) |
| Res = And(Xor(A, C), B); |
| break; |
| case 0x49: |
| if (ABCIsConst) |
| Res = Xor(Or(Xnor(A, B), And(A, C)), C); |
| break; |
| case 0x4a: |
| if (ABCIsConst) |
| Res = Nor(Xnor(A, C), Nor(B, C)); |
| break; |
| case 0x4b: |
| if (ABCIsConst) |
| Res = Xor(A, Or(C, Not(B))); |
| break; |
| case 0x4c: |
| if (ABCIsConst) |
| Res = And(Nand(A, C), B); |
| break; |
| case 0x4d: |
| if (ABCIsConst) |
| Res = Xor(Or(Xor(A, B), Xnor(A, C)), A); |
| break; |
| case 0x4e: |
| if (ABCIsConst) |
| Res = Xor(A, Or(Xor(A, B), C)); |
| break; |
| case 0x4f: |
| if (ABCIsConst) |
| Res = Nand(A, Nand(B, Not(C))); |
| break; |
| case 0x50: |
| if (ACIsConst) |
| Res = Nor(C, Not(A)); |
| break; |
| case 0x51: |
| if (ABCIsConst) |
| Res = Nor(Nor(A, Not(B)), C); |
| break; |
| case 0x52: |
| if (ABCIsConst) |
| Res = And(Xor(A, C), Nand(B, C)); |
| break; |
| case 0x53: |
| if (ABCIsConst) |
| Res = Xor(Or(Xnor(B, C), A), C); |
| break; |
| case 0x54: |
| if (ABCIsConst) |
| Res = Nor(Nor(A, B), C); |
| break; |
| case 0x55: |
| Res = Not(C); |
| break; |
| case 0x56: |
| if (ABCIsConst) |
| Res = Xor(Or(A, B), C); |
| break; |
| case 0x57: |
| if (ABCIsConst) |
| Res = Nand(Or(A, B), C); |
| break; |
| case 0x58: |
| if (ABCIsConst) |
| Res = Nor(Nor(A, B), Xnor(A, C)); |
| break; |
| case 0x59: |
| if (ABCIsConst) |
| Res = Xor(Or(A, Not(B)), C); |
| break; |
| case 0x5a: |
| Res = Xor(A, C); |
| break; |
| case 0x5b: |
| if (ABCIsConst) |
| Res = Xor(A, Or(Nor(A, B), C)); |
| break; |
| case 0x5c: |
| if (ABCIsConst) |
| Res = Xor(Or(Xor(B, C), A), C); |
| break; |
| case 0x5d: |
| if (ABCIsConst) |
| Res = Nand(Or(A, Not(B)), C); |
| break; |
| case 0x5e: |
| if (ABCIsConst) |
| Res = Xor(A, Or(Nor(A, Not(B)), C)); |
| break; |
| case 0x5f: |
| if (ACIsConst) |
| Res = Nand(A, C); |
| break; |
| case 0x60: |
| if (ABCIsConst) |
| Res = And(A, Xor(B, C)); |
| break; |
| case 0x61: |
| if (ABCIsConst) |
| Res = Xor(Or(Xnor(A, B), And(B, C)), C); |
| break; |
| case 0x62: |
| if (ABCIsConst) |
| Res = Nor(Nor(A, C), Xnor(B, C)); |
| break; |
| case 0x63: |
| if (ABCIsConst) |
| Res = Xor(B, Or(C, Not(A))); |
| break; |
| case 0x64: |
| if (ABCIsConst) |
| Res = Nor(Nor(A, B), Xnor(B, C)); |
| break; |
| case 0x65: |
| if (ABCIsConst) |
| Res = Xor(Or(B, Not(A)), C); |
| break; |
| case 0x66: |
| Res = Xor(B, C); |
| break; |
| case 0x67: |
| if (ABCIsConst) |
| Res = Or(Nor(A, B), Xor(B, C)); |
| break; |
| case 0x68: |
| if (ABCIsConst) |
| Res = Xor(Xor(A, B), Nor(Nor(A, B), C)); |
| break; |
| case 0x69: |
| if (ABCIsConst) |
| Res = Xor(Xnor(A, B), C); |
| break; |
| case 0x6a: |
| if (ABCIsConst) |
| Res = Xor(And(A, B), C); |
| break; |
| case 0x6b: |
| if (ABCIsConst) |
| Res = Or(Nor(A, B), Xor(Xnor(A, B), C)); |
| break; |
| case 0x6c: |
| if (ABCIsConst) |
| Res = Xor(And(A, C), B); |
| break; |
| case 0x6d: |
| if (ABCIsConst) |
| Res = Xor(Or(Xnor(A, B), Nor(A, C)), C); |
| break; |
| case 0x6e: |
| if (ABCIsConst) |
| Res = Or(Nor(A, Not(B)), Xor(B, C)); |
| break; |
| case 0x6f: |
| if (ABCIsConst) |
| Res = Nand(A, Xnor(B, C)); |
| break; |
| case 0x70: |
| if (ABCIsConst) |
| Res = And(A, Nand(B, C)); |
| break; |
| case 0x71: |
| if (ABCIsConst) |
| Res = Xor(Nor(Xor(A, B), Xor(A, C)), A); |
| break; |
| case 0x72: |
| if (ABCIsConst) |
| Res = Xor(Or(Xor(A, B), C), B); |
| break; |
| case 0x73: |
| if (ABCIsConst) |
| Res = Nand(Nand(A, Not(C)), B); |
| break; |
| case 0x74: |
| if (ABCIsConst) |
| Res = Xor(Or(Xor(A, C), B), C); |
| break; |
| case 0x75: |
| if (ABCIsConst) |
| Res = Nand(Nand(A, Not(B)), C); |
| break; |
| case 0x76: |
| if (ABCIsConst) |
| Res = Xor(B, Or(Nor(B, Not(A)), C)); |
| break; |
| case 0x77: |
| if (BCIsConst) |
| Res = Nand(B, C); |
| break; |
| case 0x78: |
| if (ABCIsConst) |
| Res = Xor(A, And(B, C)); |
| break; |
| case 0x79: |
| if (ABCIsConst) |
| Res = Xor(Or(Xnor(A, B), Nor(B, C)), C); |
| break; |
| case 0x7a: |
| if (ABCIsConst) |
| Res = Or(Xor(A, C), Nor(B, Not(A))); |
| break; |
| case 0x7b: |
| if (ABCIsConst) |
| Res = Nand(Xnor(A, C), B); |
| break; |
| case 0x7c: |
| if (ABCIsConst) |
| Res = Or(Xor(A, B), Nor(C, Not(A))); |
| break; |
| case 0x7d: |
| if (ABCIsConst) |
| Res = Nand(Xnor(A, B), C); |
| break; |
| case 0x7e: |
| if (ABCIsConst) |
| Res = Or(Xor(A, B), Xor(A, C)); |
| break; |
| case 0x7f: |
| if (ABCIsConst) |
| Res = Nand(And(A, B), C); |
| break; |
| case 0x80: |
| if (ABCIsConst) |
| Res = And(And(A, B), C); |
| break; |
| case 0x81: |
| if (ABCIsConst) |
| Res = Nor(Xor(A, B), Xor(A, C)); |
| break; |
| case 0x82: |
| if (ABCIsConst) |
| Res = And(Xnor(A, B), C); |
| break; |
| case 0x83: |
| if (ABCIsConst) |
| Res = Nor(Xor(A, B), Nor(C, Not(A))); |
| break; |
| case 0x84: |
| if (ABCIsConst) |
| Res = And(Xnor(A, C), B); |
| break; |
| case 0x85: |
| if (ABCIsConst) |
| Res = Nor(Xor(A, C), Nor(B, Not(A))); |
| break; |
| case 0x86: |
| if (ABCIsConst) |
| Res = Xor(Nor(Xnor(A, B), Nor(B, C)), C); |
| break; |
| case 0x87: |
| if (ABCIsConst) |
| Res = Xor(A, Nand(B, C)); |
| break; |
| case 0x88: |
| Res = And(B, C); |
| break; |
| case 0x89: |
| if (ABCIsConst) |
| Res = Xor(B, Nor(Nor(B, Not(A)), C)); |
| break; |
| case 0x8a: |
| if (ABCIsConst) |
| Res = And(Nand(A, Not(B)), C); |
| break; |
| case 0x8b: |
| if (ABCIsConst) |
| Res = Xor(Nor(Xor(A, C), B), C); |
| break; |
| case 0x8c: |
| if (ABCIsConst) |
| Res = And(Nand(A, Not(C)), B); |
| break; |
| case 0x8d: |
| if (ABCIsConst) |
| Res = Xor(Nor(Xor(A, B), C), B); |
| break; |
| case 0x8e: |
| if (ABCIsConst) |
| Res = Xor(Or(Xor(A, B), Xor(A, C)), A); |
| break; |
| case 0x8f: |
| if (ABCIsConst) |
| Res = Nand(A, Nand(B, C)); |
| break; |
| case 0x90: |
| if (ABCIsConst) |
| Res = And(A, Xnor(B, C)); |
| break; |
| case 0x91: |
| if (ABCIsConst) |
| Res = Nor(Nor(A, Not(B)), Xor(B, C)); |
| break; |
| case 0x92: |
| if (ABCIsConst) |
| Res = Xor(Nor(Xnor(A, B), Nor(A, C)), C); |
| break; |
| case 0x93: |
| if (ABCIsConst) |
| Res = Xor(Nand(A, C), B); |
| break; |
| case 0x94: |
| if (ABCIsConst) |
| Res = Nor(Nor(A, B), Xor(Xnor(A, B), C)); |
| break; |
| case 0x95: |
| if (ABCIsConst) |
| Res = Xor(Nand(A, B), C); |
| break; |
| case 0x96: |
| if (ABCIsConst) |
| Res = Xor(Xor(A, B), C); |
| break; |
| case 0x97: |
| if (ABCIsConst) |
| Res = Xor(Xor(A, B), Or(Nor(A, B), C)); |
| break; |
| case 0x98: |
| if (ABCIsConst) |
| Res = Nor(Nor(A, B), Xor(B, C)); |
| break; |
| case 0x99: |
| if (BCIsConst) |
| Res = Xnor(B, C); |
| break; |
| case 0x9a: |
| if (ABCIsConst) |
| Res = Xor(Nor(B, Not(A)), C); |
| break; |
| case 0x9b: |
| if (ABCIsConst) |
| Res = Or(Nor(A, B), Xnor(B, C)); |
| break; |
| case 0x9c: |
| if (ABCIsConst) |
| Res = Xor(B, Nor(C, Not(A))); |
| break; |
| case 0x9d: |
| if (ABCIsConst) |
| Res = Or(Nor(A, C), Xnor(B, C)); |
| break; |
| case 0x9e: |
| if (ABCIsConst) |
| Res = Xor(And(Xor(A, B), Nand(B, C)), C); |
| break; |
| case 0x9f: |
| if (ABCIsConst) |
| Res = Nand(A, Xor(B, C)); |
| break; |
| case 0xa0: |
| Res = And(A, C); |
| break; |
| case 0xa1: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(Nor(A, Not(B)), C)); |
| break; |
| case 0xa2: |
| if (ABCIsConst) |
| Res = And(Or(A, Not(B)), C); |
| break; |
| case 0xa3: |
| if (ABCIsConst) |
| Res = Xor(Nor(Xor(B, C), A), C); |
| break; |
| case 0xa4: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(Nor(A, B), C)); |
| break; |
| case 0xa5: |
| if (ACIsConst) |
| Res = Xnor(A, C); |
| break; |
| case 0xa6: |
| if (ABCIsConst) |
| Res = Xor(Nor(A, Not(B)), C); |
| break; |
| case 0xa7: |
| if (ABCIsConst) |
| Res = Or(Nor(A, B), Xnor(A, C)); |
| break; |
| case 0xa8: |
| if (ABCIsConst) |
| Res = And(Or(A, B), C); |
| break; |
| case 0xa9: |
| if (ABCIsConst) |
| Res = Xor(Nor(A, B), C); |
| break; |
| case 0xaa: |
| Res = C; |
| break; |
| case 0xab: |
| if (ABCIsConst) |
| Res = Or(Nor(A, B), C); |
| break; |
| case 0xac: |
| if (ABCIsConst) |
| Res = Xor(Nor(Xnor(B, C), A), C); |
| break; |
| case 0xad: |
| if (ABCIsConst) |
| Res = Or(Xnor(A, C), And(B, C)); |
| break; |
| case 0xae: |
| if (ABCIsConst) |
| Res = Or(Nor(A, Not(B)), C); |
| break; |
| case 0xaf: |
| if (ACIsConst) |
| Res = Or(C, Not(A)); |
| break; |
| case 0xb0: |
| if (ABCIsConst) |
| Res = And(A, Nand(B, Not(C))); |
| break; |
| case 0xb1: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(Xor(A, B), C)); |
| break; |
| case 0xb2: |
| if (ABCIsConst) |
| Res = Xor(Nor(Xor(A, B), Xnor(A, C)), A); |
| break; |
| case 0xb3: |
| if (ABCIsConst) |
| Res = Nand(Nand(A, C), B); |
| break; |
| case 0xb4: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(C, Not(B))); |
| break; |
| case 0xb5: |
| if (ABCIsConst) |
| Res = Or(Xnor(A, C), Nor(B, C)); |
| break; |
| case 0xb6: |
| if (ABCIsConst) |
| Res = Xor(And(Xor(A, B), Nand(A, C)), C); |
| break; |
| case 0xb7: |
| if (ABCIsConst) |
| Res = Nand(Xor(A, C), B); |
| break; |
| case 0xb8: |
| if (ABCIsConst) |
| Res = Xor(Nor(Xnor(A, C), B), C); |
| break; |
| case 0xb9: |
| if (ABCIsConst) |
| Res = Xor(Nor(And(A, C), B), C); |
| break; |
| case 0xba: |
| if (ABCIsConst) |
| Res = Or(Nor(B, Not(A)), C); |
| break; |
| case 0xbb: |
| if (BCIsConst) |
| Res = Or(C, Not(B)); |
| break; |
| case 0xbc: |
| if (ABCIsConst) |
| Res = Xor(A, And(Nand(A, C), B)); |
| break; |
| case 0xbd: |
| if (ABCIsConst) |
| Res = Or(Xor(A, B), Xnor(A, C)); |
| break; |
| case 0xbe: |
| if (ABCIsConst) |
| Res = Or(Xor(A, B), C); |
| break; |
| case 0xbf: |
| if (ABCIsConst) |
| Res = Or(Nand(A, B), C); |
| break; |
| case 0xc0: |
| Res = And(A, B); |
| break; |
| case 0xc1: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(Nor(A, Not(C)), B)); |
| break; |
| case 0xc2: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(Nor(A, C), B)); |
| break; |
| case 0xc3: |
| if (ABIsConst) |
| Res = Xnor(A, B); |
| break; |
| case 0xc4: |
| if (ABCIsConst) |
| Res = And(Or(A, Not(C)), B); |
| break; |
| case 0xc5: |
| if (ABCIsConst) |
| Res = Xor(B, Nor(A, Xor(B, C))); |
| break; |
| case 0xc6: |
| if (ABCIsConst) |
| Res = Xor(Nor(A, Not(C)), B); |
| break; |
| case 0xc7: |
| if (ABCIsConst) |
| Res = Or(Xnor(A, B), Nor(A, C)); |
| break; |
| case 0xc8: |
| if (ABCIsConst) |
| Res = And(Or(A, C), B); |
| break; |
| case 0xc9: |
| if (ABCIsConst) |
| Res = Xor(Nor(A, C), B); |
| break; |
| case 0xca: |
| if (ABCIsConst) |
| Res = Xor(B, Nor(A, Xnor(B, C))); |
| break; |
| case 0xcb: |
| if (ABCIsConst) |
| Res = Or(Xnor(A, B), And(B, C)); |
| break; |
| case 0xcc: |
| Res = B; |
| break; |
| case 0xcd: |
| if (ABCIsConst) |
| Res = Or(Nor(A, C), B); |
| break; |
| case 0xce: |
| if (ABCIsConst) |
| Res = Or(Nor(A, Not(C)), B); |
| break; |
| case 0xcf: |
| if (ABIsConst) |
| Res = Or(B, Not(A)); |
| break; |
| case 0xd0: |
| if (ABCIsConst) |
| Res = And(A, Or(B, Not(C))); |
| break; |
| case 0xd1: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(Xor(A, C), B)); |
| break; |
| case 0xd2: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(B, Not(C))); |
| break; |
| case 0xd3: |
| if (ABCIsConst) |
| Res = Or(Xnor(A, B), Nor(B, C)); |
| break; |
| case 0xd4: |
| if (ABCIsConst) |
| Res = Xor(Nor(Xnor(A, B), Xor(A, C)), A); |
| break; |
| case 0xd5: |
| if (ABCIsConst) |
| Res = Nand(Nand(A, B), C); |
| break; |
| case 0xd6: |
| if (ABCIsConst) |
| Res = Xor(Xor(A, B), Or(And(A, B), C)); |
| break; |
| case 0xd7: |
| if (ABCIsConst) |
| Res = Nand(Xor(A, B), C); |
| break; |
| case 0xd8: |
| if (ABCIsConst) |
| Res = Xor(Nor(Xnor(A, B), C), B); |
| break; |
| case 0xd9: |
| if (ABCIsConst) |
| Res = Or(And(A, B), Xnor(B, C)); |
| break; |
| case 0xda: |
| if (ABCIsConst) |
| Res = Xor(A, And(Nand(A, B), C)); |
| break; |
| case 0xdb: |
| if (ABCIsConst) |
| Res = Or(Xnor(A, B), Xor(A, C)); |
| break; |
| case 0xdc: |
| if (ABCIsConst) |
| Res = Or(B, Nor(C, Not(A))); |
| break; |
| case 0xdd: |
| if (BCIsConst) |
| Res = Or(B, Not(C)); |
| break; |
| case 0xde: |
| if (ABCIsConst) |
| Res = Or(Xor(A, C), B); |
| break; |
| case 0xdf: |
| if (ABCIsConst) |
| Res = Or(Nand(A, C), B); |
| break; |
| case 0xe0: |
| if (ABCIsConst) |
| Res = And(A, Or(B, C)); |
| break; |
| case 0xe1: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(B, C)); |
| break; |
| case 0xe2: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(Xnor(A, C), B)); |
| break; |
| case 0xe3: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(And(A, C), B)); |
| break; |
| case 0xe4: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(Xnor(A, B), C)); |
| break; |
| case 0xe5: |
| if (ABCIsConst) |
| Res = Xor(A, Nor(And(A, B), C)); |
| break; |
| case 0xe6: |
| if (ABCIsConst) |
| Res = Or(And(A, B), Xor(B, C)); |
| break; |
| case 0xe7: |
| if (ABCIsConst) |
| Res = Or(Xnor(A, B), Xnor(A, C)); |
| break; |
| case 0xe8: |
| if (ABCIsConst) |
| Res = Xor(Or(A, B), Nor(Xnor(A, B), C)); |
| break; |
| case 0xe9: |
| if (ABCIsConst) |
| Res = Xor(Xor(A, B), Nand(Nand(A, B), C)); |
| break; |
| case 0xea: |
| if (ABCIsConst) |
| Res = Or(And(A, B), C); |
| break; |
| case 0xeb: |
| if (ABCIsConst) |
| Res = Or(Xnor(A, B), C); |
| break; |
| case 0xec: |
| if (ABCIsConst) |
| Res = Or(And(A, C), B); |
| break; |
| case 0xed: |
| if (ABCIsConst) |
| Res = Or(Xnor(A, C), B); |
| break; |
| case 0xee: |
| Res = Or(B, C); |
| break; |
| case 0xef: |
| if (ABCIsConst) |
| Res = Nand(A, Nor(B, C)); |
| break; |
| case 0xf0: |
| Res = A; |
| break; |
| case 0xf1: |
| if (ABCIsConst) |
| Res = Or(A, Nor(B, C)); |
| break; |
| case 0xf2: |
| if (ABCIsConst) |
| Res = Or(A, Nor(B, Not(C))); |
| break; |
| case 0xf3: |
| if (ABIsConst) |
| Res = Or(A, Not(B)); |
| break; |
| case 0xf4: |
| if (ABCIsConst) |
| Res = Or(A, Nor(C, Not(B))); |
| break; |
| case 0xf5: |
| if (ACIsConst) |
| Res = Or(A, Not(C)); |
| break; |
| case 0xf6: |
| if (ABCIsConst) |
| Res = Or(A, Xor(B, C)); |
| break; |
| case 0xf7: |
| if (ABCIsConst) |
| Res = Or(A, Nand(B, C)); |
| break; |
| case 0xf8: |
| if (ABCIsConst) |
| Res = Or(A, And(B, C)); |
| break; |
| case 0xf9: |
| if (ABCIsConst) |
| Res = Or(A, Xnor(B, C)); |
| break; |
| case 0xfa: |
| Res = Or(A, C); |
| break; |
| case 0xfb: |
| if (ABCIsConst) |
| Res = Nand(Nor(A, C), B); |
| break; |
| case 0xfc: |
| Res = Or(A, B); |
| break; |
| case 0xfd: |
| if (ABCIsConst) |
| Res = Nand(Nor(A, B), C); |
| break; |
| case 0xfe: |
| if (ABCIsConst) |
| Res = Or(Or(A, B), C); |
| break; |
| case 0xff: |
| Res = {Constant::getAllOnesValue(Ty), 0xff}; |
| break; |
| } |
| |
| assert((Res.first == nullptr || Res.second == Imm) && |
| "Simplification of ternary logic does not verify!"); |
| return Res.first; |
| } |
| |
| static Value *simplifyX86insertps(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2)); |
| if (!CInt) |
| return nullptr; |
| |
| auto *VecTy = cast<FixedVectorType>(II.getType()); |
| assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type"); |
| |
| // The immediate permute control byte looks like this: |
| // [3:0] - zero mask for each 32-bit lane |
| // [5:4] - select one 32-bit destination lane |
| // [7:6] - select one 32-bit source lane |
| |
| uint8_t Imm = CInt->getZExtValue(); |
| uint8_t ZMask = Imm & 0xf; |
| uint8_t DestLane = (Imm >> 4) & 0x3; |
| uint8_t SourceLane = (Imm >> 6) & 0x3; |
| |
| ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); |
| |
| // If all zero mask bits are set, this was just a weird way to |
| // generate a zero vector. |
| if (ZMask == 0xf) |
| return ZeroVector; |
| |
| // Initialize by passing all of the first source bits through. |
| int ShuffleMask[4] = {0, 1, 2, 3}; |
| |
| // We may replace the second operand with the zero vector. |
| Value *V1 = II.getArgOperand(1); |
| |
| if (ZMask) { |
| // If the zero mask is being used with a single input or the zero mask |
| // overrides the destination lane, this is a shuffle with the zero vector. |
| if ((II.getArgOperand(0) == II.getArgOperand(1)) || |
| (ZMask & (1 << DestLane))) { |
| V1 = ZeroVector; |
| // We may still move 32-bits of the first source vector from one lane |
| // to another. |
| ShuffleMask[DestLane] = SourceLane; |
| // The zero mask may override the previous insert operation. |
| for (unsigned i = 0; i < 4; ++i) |
| if ((ZMask >> i) & 0x1) |
| ShuffleMask[i] = i + 4; |
| } else { |
| // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle? |
| return nullptr; |
| } |
| } else { |
| // Replace the selected destination lane with the selected source lane. |
| ShuffleMask[DestLane] = SourceLane + 4; |
| } |
| |
| return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask); |
| } |
| |
| /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding |
| /// or conversion to a shuffle vector. |
| static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0, |
| ConstantInt *CILength, ConstantInt *CIIndex, |
| InstCombiner::BuilderTy &Builder) { |
| auto LowConstantHighUndef = [&](uint64_t Val) { |
| Type *IntTy64 = Type::getInt64Ty(II.getContext()); |
| Constant *Args[] = {ConstantInt::get(IntTy64, Val), |
| UndefValue::get(IntTy64)}; |
| return ConstantVector::get(Args); |
| }; |
| |
| // See if we're dealing with constant values. |
| auto *C0 = dyn_cast<Constant>(Op0); |
| auto *CI0 = |
| C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0)) |
| : nullptr; |
| |
| // Attempt to constant fold. |
| if (CILength && CIIndex) { |
| // From AMD documentation: "The bit index and field length are each six |
| // bits in length other bits of the field are ignored." |
| APInt APIndex = CIIndex->getValue().zextOrTrunc(6); |
| APInt APLength = CILength->getValue().zextOrTrunc(6); |
| |
| unsigned Index = APIndex.getZExtValue(); |
| |
| // From AMD documentation: "a value of zero in the field length is |
| // defined as length of 64". |
| unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); |
| |
| // From AMD documentation: "If the sum of the bit index + length field |
| // is greater than 64, the results are undefined". |
| unsigned End = Index + Length; |
| |
| // Note that both field index and field length are 8-bit quantities. |
| // Since variables 'Index' and 'Length' are unsigned values |
| // obtained from zero-extending field index and field length |
| // respectively, their sum should never wrap around. |
| if (End > 64) |
| return UndefValue::get(II.getType()); |
| |
| // If we are inserting whole bytes, we can convert this to a shuffle. |
| // Lowering can recognize EXTRQI shuffle masks. |
| if ((Length % 8) == 0 && (Index % 8) == 0) { |
| // Convert bit indices to byte indices. |
| Length /= 8; |
| Index /= 8; |
| |
| Type *IntTy8 = Type::getInt8Ty(II.getContext()); |
| auto *ShufTy = FixedVectorType::get(IntTy8, 16); |
| |
| SmallVector<int, 16> ShuffleMask; |
| for (int i = 0; i != (int)Length; ++i) |
| ShuffleMask.push_back(i + Index); |
| for (int i = Length; i != 8; ++i) |
| ShuffleMask.push_back(i + 16); |
| for (int i = 8; i != 16; ++i) |
| ShuffleMask.push_back(-1); |
| |
| Value *SV = Builder.CreateShuffleVector( |
| Builder.CreateBitCast(Op0, ShufTy), |
| ConstantAggregateZero::get(ShufTy), ShuffleMask); |
| return Builder.CreateBitCast(SV, II.getType()); |
| } |
| |
| // Constant Fold - shift Index'th bit to lowest position and mask off |
| // Length bits. |
| if (CI0) { |
| APInt Elt = CI0->getValue(); |
| Elt.lshrInPlace(Index); |
| Elt = Elt.zextOrTrunc(Length); |
| return LowConstantHighUndef(Elt.getZExtValue()); |
| } |
| |
| // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI. |
| if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) { |
| Value *Args[] = {Op0, CILength, CIIndex}; |
| Module *M = II.getModule(); |
| Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi); |
| return Builder.CreateCall(F, Args); |
| } |
| } |
| |
| // Constant Fold - extraction from zero is always {zero, undef}. |
| if (CI0 && CI0->isZero()) |
| return LowConstantHighUndef(0); |
| |
| return nullptr; |
| } |
| |
| /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant |
| /// folding or conversion to a shuffle vector. |
| static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1, |
| APInt APLength, APInt APIndex, |
| InstCombiner::BuilderTy &Builder) { |
| // From AMD documentation: "The bit index and field length are each six bits |
| // in length other bits of the field are ignored." |
| APIndex = APIndex.zextOrTrunc(6); |
| APLength = APLength.zextOrTrunc(6); |
| |
| // Attempt to constant fold. |
| unsigned Index = APIndex.getZExtValue(); |
| |
| // From AMD documentation: "a value of zero in the field length is |
| // defined as length of 64". |
| unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); |
| |
| // From AMD documentation: "If the sum of the bit index + length field |
| // is greater than 64, the results are undefined". |
| unsigned End = Index + Length; |
| |
| // Note that both field index and field length are 8-bit quantities. |
| // Since variables 'Index' and 'Length' are unsigned values |
| // obtained from zero-extending field index and field length |
| // respectively, their sum should never wrap around. |
| if (End > 64) |
| return UndefValue::get(II.getType()); |
| |
| // If we are inserting whole bytes, we can convert this to a shuffle. |
| // Lowering can recognize INSERTQI shuffle masks. |
| if ((Length % 8) == 0 && (Index % 8) == 0) { |
| // Convert bit indices to byte indices. |
| Length /= 8; |
| Index /= 8; |
| |
| Type *IntTy8 = Type::getInt8Ty(II.getContext()); |
| auto *ShufTy = FixedVectorType::get(IntTy8, 16); |
| |
| SmallVector<int, 16> ShuffleMask; |
| for (int i = 0; i != (int)Index; ++i) |
| ShuffleMask.push_back(i); |
| for (int i = 0; i != (int)Length; ++i) |
| ShuffleMask.push_back(i + 16); |
| for (int i = Index + Length; i != 8; ++i) |
| ShuffleMask.push_back(i); |
| for (int i = 8; i != 16; ++i) |
| ShuffleMask.push_back(-1); |
| |
| Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy), |
| Builder.CreateBitCast(Op1, ShufTy), |
| ShuffleMask); |
| return Builder.CreateBitCast(SV, II.getType()); |
| } |
| |
| // See if we're dealing with constant values. |
| auto *C0 = dyn_cast<Constant>(Op0); |
| auto *C1 = dyn_cast<Constant>(Op1); |
| auto *CI00 = |
| C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0)) |
| : nullptr; |
| auto *CI10 = |
| C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0)) |
| : nullptr; |
| |
| // Constant Fold - insert bottom Length bits starting at the Index'th bit. |
| if (CI00 && CI10) { |
| APInt V00 = CI00->getValue(); |
| APInt V10 = CI10->getValue(); |
| APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index); |
| V00 = V00 & ~Mask; |
| V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index); |
| APInt Val = V00 | V10; |
| Type *IntTy64 = Type::getInt64Ty(II.getContext()); |
| Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()), |
| UndefValue::get(IntTy64)}; |
| return ConstantVector::get(Args); |
| } |
| |
| // If we were an INSERTQ call, we'll save demanded elements if we convert to |
| // INSERTQI. |
| if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) { |
| Type *IntTy8 = Type::getInt8Ty(II.getContext()); |
| Constant *CILength = ConstantInt::get(IntTy8, Length, false); |
| Constant *CIIndex = ConstantInt::get(IntTy8, Index, false); |
| |
| Value *Args[] = {Op0, Op1, CILength, CIIndex}; |
| Module *M = II.getModule(); |
| Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi); |
| return Builder.CreateCall(F, Args); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Attempt to convert pshufb* to shufflevector if the mask is constant. |
| static Value *simplifyX86pshufb(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| auto *V = dyn_cast<Constant>(II.getArgOperand(1)); |
| if (!V) |
| return nullptr; |
| |
| auto *VecTy = cast<FixedVectorType>(II.getType()); |
| unsigned NumElts = VecTy->getNumElements(); |
| assert((NumElts == 16 || NumElts == 32 || NumElts == 64) && |
| "Unexpected number of elements in shuffle mask!"); |
| |
| // Construct a shuffle mask from constant integers or UNDEFs. |
| int Indexes[64]; |
| |
| // Each byte in the shuffle control mask forms an index to permute the |
| // corresponding byte in the destination operand. |
| for (unsigned I = 0; I < NumElts; ++I) { |
| Constant *COp = V->getAggregateElement(I); |
| if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) |
| return nullptr; |
| |
| if (isa<UndefValue>(COp)) { |
| Indexes[I] = -1; |
| continue; |
| } |
| |
| int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue(); |
| |
| // If the most significant bit (bit[7]) of each byte of the shuffle |
| // control mask is set, then zero is written in the result byte. |
| // The zero vector is in the right-hand side of the resulting |
| // shufflevector. |
| |
| // The value of each index for the high 128-bit lane is the least |
| // significant 4 bits of the respective shuffle control byte. |
| Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0); |
| Indexes[I] = Index; |
| } |
| |
| auto V1 = II.getArgOperand(0); |
| auto V2 = Constant::getNullValue(VecTy); |
| return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes, NumElts)); |
| } |
| |
| /// Attempt to convert vpermilvar* to shufflevector if the mask is constant. |
| static Value *simplifyX86vpermilvar(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| auto *V = dyn_cast<Constant>(II.getArgOperand(1)); |
| if (!V) |
| return nullptr; |
| |
| auto *VecTy = cast<FixedVectorType>(II.getType()); |
| unsigned NumElts = VecTy->getNumElements(); |
| bool IsPD = VecTy->getScalarType()->isDoubleTy(); |
| unsigned NumLaneElts = IsPD ? 2 : 4; |
| assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2); |
| |
| // Construct a shuffle mask from constant integers or UNDEFs. |
| int Indexes[16]; |
| |
| // The intrinsics only read one or two bits, clear the rest. |
| for (unsigned I = 0; I < NumElts; ++I) { |
| Constant *COp = V->getAggregateElement(I); |
| if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) |
| return nullptr; |
| |
| if (isa<UndefValue>(COp)) { |
| Indexes[I] = -1; |
| continue; |
| } |
| |
| APInt Index = cast<ConstantInt>(COp)->getValue(); |
| Index = Index.zextOrTrunc(32).getLoBits(2); |
| |
| // The PD variants uses bit 1 to select per-lane element index, so |
| // shift down to convert to generic shuffle mask index. |
| if (IsPD) |
| Index.lshrInPlace(1); |
| |
| // The _256 variants are a bit trickier since the mask bits always index |
| // into the corresponding 128 half. In order to convert to a generic |
| // shuffle, we have to make that explicit. |
| Index += APInt(32, (I / NumLaneElts) * NumLaneElts); |
| |
| Indexes[I] = Index.getZExtValue(); |
| } |
| |
| auto V1 = II.getArgOperand(0); |
| return Builder.CreateShuffleVector(V1, ArrayRef(Indexes, NumElts)); |
| } |
| |
| /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant. |
| static Value *simplifyX86vpermv(const IntrinsicInst &II, |
| InstCombiner::BuilderTy &Builder) { |
| auto *V = dyn_cast<Constant>(II.getArgOperand(1)); |
| if (!V) |
| return nullptr; |
| |
| auto *VecTy = cast<FixedVectorType>(II.getType()); |
| unsigned Size = VecTy->getNumElements(); |
| assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) && |
| "Unexpected shuffle mask size"); |
| |
| // Construct a shuffle mask from constant integers or UNDEFs. |
| int Indexes[64]; |
| |
| for (unsigned I = 0; I < Size; ++I) { |
| Constant *COp = V->getAggregateElement(I); |
| if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) |
| return nullptr; |
| |
| if (isa<UndefValue>(COp)) { |
| Indexes[I] = -1; |
| continue; |
| } |
| |
| uint32_t Index = cast<ConstantInt>(COp)->getZExtValue(); |
| Index &= Size - 1; |
| Indexes[I] = Index; |
| } |
| |
| auto V1 = II.getArgOperand(0); |
| return Builder.CreateShuffleVector(V1, ArrayRef(Indexes, Size)); |
| } |
| |
| std::optional<Instruction *> |
| X86TTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { |
| auto SimplifyDemandedVectorEltsLow = [&IC](Value *Op, unsigned Width, |
| unsigned DemandedWidth) { |
| APInt UndefElts(Width, 0); |
| APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth); |
| return IC.SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts); |
| }; |
| |
| Intrinsic::ID IID = II.getIntrinsicID(); |
| switch (IID) { |
| case Intrinsic::x86_bmi_bextr_32: |
| case Intrinsic::x86_bmi_bextr_64: |
| case Intrinsic::x86_tbm_bextri_u32: |
| case Intrinsic::x86_tbm_bextri_u64: |
| // If the RHS is a constant we can try some simplifications. |
| if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(1))) { |
| uint64_t Shift = C->getZExtValue(); |
| uint64_t Length = (Shift >> 8) & 0xff; |
| Shift &= 0xff; |
| unsigned BitWidth = II.getType()->getIntegerBitWidth(); |
| // If the length is 0 or the shift is out of range, replace with zero. |
| if (Length == 0 || Shift >= BitWidth) { |
| return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0)); |
| } |
| // If the LHS is also a constant, we can completely constant fold this. |
| if (auto *InC = dyn_cast<ConstantInt>(II.getArgOperand(0))) { |
| uint64_t Result = InC->getZExtValue() >> Shift; |
| if (Length > BitWidth) |
| Length = BitWidth; |
| Result &= maskTrailingOnes<uint64_t>(Length); |
| return IC.replaceInstUsesWith(II, |
| ConstantInt::get(II.getType(), Result)); |
| } |
| // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we |
| // are only masking bits that a shift already cleared? |
| } |
| break; |
| |
| case Intrinsic::x86_bmi_bzhi_32: |
| case Intrinsic::x86_bmi_bzhi_64: |
| // If the RHS is a constant we can try some simplifications. |
| if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(1))) { |
| uint64_t Index = C->getZExtValue() & 0xff; |
| unsigned BitWidth = II.getType()->getIntegerBitWidth(); |
| if (Index >= BitWidth) { |
| return IC.replaceInstUsesWith(II, II.getArgOperand(0)); |
| } |
| if (Index == 0) { |
| return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0)); |
| } |
| // If the LHS is also a constant, we can completely constant fold this. |
| if (auto *InC = dyn_cast<ConstantInt>(II.getArgOperand(0))) { |
| uint64_t Result = InC->getZExtValue(); |
| Result &= maskTrailingOnes<uint64_t>(Index); |
| return IC.replaceInstUsesWith(II, |
| ConstantInt::get(II.getType(), Result)); |
| } |
| // TODO should we convert this to an AND if the RHS is constant? |
| } |
| break; |
| case Intrinsic::x86_bmi_pext_32: |
| case Intrinsic::x86_bmi_pext_64: |
| if (auto *MaskC = dyn_cast<ConstantInt>(II.getArgOperand(1))) { |
| if (MaskC->isNullValue()) { |
| return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0)); |
| } |
| if (MaskC->isAllOnesValue()) { |
| return IC.replaceInstUsesWith(II, II.getArgOperand(0)); |
| } |
| |
| unsigned MaskIdx, MaskLen; |
| if (MaskC->getValue().isShiftedMask(MaskIdx, MaskLen)) { |
| // any single contingous sequence of 1s anywhere in the mask simply |
| // describes a subset of the input bits shifted to the appropriate |
| // position. Replace with the straight forward IR. |
| Value *Input = II.getArgOperand(0); |
| Value *Masked = IC.Builder.CreateAnd(Input, II.getArgOperand(1)); |
| Value *ShiftAmt = ConstantInt::get(II.getType(), MaskIdx); |
| Value *Shifted = IC.Builder.CreateLShr(Masked, ShiftAmt); |
| return IC.replaceInstUsesWith(II, Shifted); |
| } |
| |
| if (auto *SrcC = dyn_cast<ConstantInt>(II.getArgOperand(0))) { |
| uint64_t Src = SrcC->getZExtValue(); |
| uint64_t Mask = MaskC->getZExtValue(); |
| uint64_t Result = 0; |
| uint64_t BitToSet = 1; |
| |
| while (Mask) { |
| // Isolate lowest set bit. |
| uint64_t BitToTest = Mask & -Mask; |
| if (BitToTest & Src) |
| Result |= BitToSet; |
| |
| BitToSet <<= 1; |
| // Clear lowest set bit. |
| Mask &= Mask - 1; |
| } |
| |
| return IC.replaceInstUsesWith(II, |
| ConstantInt::get(II.getType(), Result)); |
| } |
| } |
| break; |
| case Intrinsic::x86_bmi_pdep_32: |
| case Intrinsic::x86_bmi_pdep_64: |
| if (auto *MaskC = dyn_cast<ConstantInt>(II.getArgOperand(1))) { |
| if (MaskC->isNullValue()) { |
| return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0)); |
| } |
| if (MaskC->isAllOnesValue()) { |
| return IC.replaceInstUsesWith(II, II.getArgOperand(0)); |
| } |
| |
| unsigned MaskIdx, MaskLen; |
| if (MaskC->getValue().isShiftedMask(MaskIdx, MaskLen)) { |
| // any single contingous sequence of 1s anywhere in the mask simply |
| // describes a subset of the input bits shifted to the appropriate |
| // position. Replace with the straight forward IR. |
| Value *Input = II.getArgOperand(0); |
| Value *ShiftAmt = ConstantInt::get(II.getType(), MaskIdx); |
| Value *Shifted = IC.Builder.CreateShl(Input, ShiftAmt); |
| Value *Masked = IC.Builder.CreateAnd(Shifted, II.getArgOperand(1)); |
| return IC.replaceInstUsesWith(II, Masked); |
| } |
| |
| if (auto *SrcC = dyn_cast<ConstantInt>(II.getArgOperand(0))) { |
| uint64_t Src = SrcC->getZExtValue(); |
| uint64_t Mask = MaskC->getZExtValue(); |
| uint64_t Result = 0; |
| uint64_t BitToTest = 1; |
| |
| while (Mask) { |
| // Isolate lowest set bit. |
| uint64_t BitToSet = Mask & -Mask; |
| if (BitToTest & Src) |
| Result |= BitToSet; |
| |
| BitToTest <<= 1; |
| // Clear lowest set bit; |
| Mask &= Mask - 1; |
| } |
| |
| return IC.replaceInstUsesWith(II, |
| ConstantInt::get(II.getType(), Result)); |
| } |
| } |
| break; |
| |
| case Intrinsic::x86_sse_cvtss2si: |
| case Intrinsic::x86_sse_cvtss2si64: |
| case Intrinsic::x86_sse_cvttss2si: |
| case Intrinsic::x86_sse_cvttss2si64: |
| case Intrinsic::x86_sse2_cvtsd2si: |
| case Intrinsic::x86_sse2_cvtsd2si64: |
| case Intrinsic::x86_sse2_cvttsd2si: |
| case Intrinsic::x86_sse2_cvttsd2si64: |
| case Intrinsic::x86_avx512_vcvtss2si32: |
| case Intrinsic::x86_avx512_vcvtss2si64: |
| case Intrinsic::x86_avx512_vcvtss2usi32: |
| case Intrinsic::x86_avx512_vcvtss2usi64: |
| case Intrinsic::x86_avx512_vcvtsd2si32: |
| case Intrinsic::x86_avx512_vcvtsd2si64: |
| case Intrinsic::x86_avx512_vcvtsd2usi32: |
| case Intrinsic::x86_avx512_vcvtsd2usi64: |
| case Intrinsic::x86_avx512_cvttss2si: |
| case Intrinsic::x86_avx512_cvttss2si64: |
| case Intrinsic::x86_avx512_cvttss2usi: |
| case Intrinsic::x86_avx512_cvttss2usi64: |
| case Intrinsic::x86_avx512_cvttsd2si: |
| case Intrinsic::x86_avx512_cvttsd2si64: |
| case Intrinsic::x86_avx512_cvttsd2usi: |
| case Intrinsic::x86_avx512_cvttsd2usi64: { |
| // These intrinsics only demand the 0th element of their input vectors. If |
| // we can simplify the input based on that, do so now. |
| Value *Arg = II.getArgOperand(0); |
| unsigned VWidth = cast<FixedVectorType>(Arg->getType())->getNumElements(); |
| if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) { |
| return IC.replaceOperand(II, 0, V); |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_mmx_pmovmskb: |
| case Intrinsic::x86_sse_movmsk_ps: |
| case Intrinsic::x86_sse2_movmsk_pd: |
| case Intrinsic::x86_sse2_pmovmskb_128: |
| case Intrinsic::x86_avx_movmsk_pd_256: |
| case Intrinsic::x86_avx_movmsk_ps_256: |
| case Intrinsic::x86_avx2_pmovmskb: |
| if (Value *V = simplifyX86movmsk(II, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| break; |
| |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| case Intrinsic::x86_sse2_comige_sd: |
| case Intrinsic::x86_sse2_comigt_sd: |
| case Intrinsic::x86_sse2_comile_sd: |
| case Intrinsic::x86_sse2_comilt_sd: |
| case Intrinsic::x86_sse2_comineq_sd: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| case Intrinsic::x86_sse2_ucomineq_sd: |
| case Intrinsic::x86_avx512_vcomi_ss: |
| case Intrinsic::x86_avx512_vcomi_sd: |
| case Intrinsic::x86_avx512_mask_cmp_ss: |
| case Intrinsic::x86_avx512_mask_cmp_sd: { |
| // These intrinsics only demand the 0th element of their input vectors. If |
| // we can simplify the input based on that, do so now. |
| bool MadeChange = false; |
| Value *Arg0 = II.getArgOperand(0); |
| Value *Arg1 = II.getArgOperand(1); |
| unsigned VWidth = cast<FixedVectorType>(Arg0->getType())->getNumElements(); |
| if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) { |
| IC.replaceOperand(II, 0, V); |
| MadeChange = true; |
| } |
| if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { |
| IC.replaceOperand(II, 1, V); |
| MadeChange = true; |
| } |
| if (MadeChange) { |
| return &II; |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_avx512_add_ps_512: |
| case Intrinsic::x86_avx512_div_ps_512: |
| case Intrinsic::x86_avx512_mul_ps_512: |
| case Intrinsic::x86_avx512_sub_ps_512: |
| case Intrinsic::x86_avx512_add_pd_512: |
| case Intrinsic::x86_avx512_div_pd_512: |
| case Intrinsic::x86_avx512_mul_pd_512: |
| case Intrinsic::x86_avx512_sub_pd_512: |
| // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular |
| // IR operations. |
| if (auto *R = dyn_cast<ConstantInt>(II.getArgOperand(2))) { |
| if (R->getValue() == 4) { |
| Value *Arg0 = II.getArgOperand(0); |
| Value *Arg1 = II.getArgOperand(1); |
| |
| Value *V; |
| switch (IID) { |
| default: |
| llvm_unreachable("Case stmts out of sync!"); |
| case Intrinsic::x86_avx512_add_ps_512: |
| case Intrinsic::x86_avx512_add_pd_512: |
| V = IC.Builder.CreateFAdd(Arg0, Arg1); |
| break; |
| case Intrinsic::x86_avx512_sub_ps_512: |
| case Intrinsic::x86_avx512_sub_pd_512: |
| V = IC.Builder.CreateFSub(Arg0, Arg1); |
| break; |
| case Intrinsic::x86_avx512_mul_ps_512: |
| case Intrinsic::x86_avx512_mul_pd_512: |
| V = IC.Builder.CreateFMul(Arg0, Arg1); |
| break; |
| case Intrinsic::x86_avx512_div_ps_512: |
| case Intrinsic::x86_avx512_div_pd_512: |
| V = IC.Builder.CreateFDiv(Arg0, Arg1); |
| break; |
| } |
| |
| return IC.replaceInstUsesWith(II, V); |
| } |
| } |
| break; |
| |
| case Intrinsic::x86_avx512_mask_add_ss_round: |
| case Intrinsic::x86_avx512_mask_div_ss_round: |
| case Intrinsic::x86_avx512_mask_mul_ss_round: |
| case Intrinsic::x86_avx512_mask_sub_ss_round: |
| case Intrinsic::x86_avx512_mask_add_sd_round: |
| case Intrinsic::x86_avx512_mask_div_sd_round: |
| case Intrinsic::x86_avx512_mask_mul_sd_round: |
| case Intrinsic::x86_avx512_mask_sub_sd_round: |
| // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular |
| // IR operations. |
| if (auto *R = dyn_cast<ConstantInt>(II.getArgOperand(4))) { |
| if (R->getValue() == 4) { |
| // Extract the element as scalars. |
| Value *Arg0 = II.getArgOperand(0); |
| Value *Arg1 = II.getArgOperand(1); |
| Value *LHS = IC.Builder.CreateExtractElement(Arg0, (uint64_t)0); |
| Value *RHS = IC.Builder.CreateExtractElement(Arg1, (uint64_t)0); |
| |
| Value *V; |
| switch (IID) { |
| default: |
| llvm_unreachable("Case stmts out of sync!"); |
| case Intrinsic::x86_avx512_mask_add_ss_round: |
| case Intrinsic::x86_avx512_mask_add_sd_round: |
| V = IC.Builder.CreateFAdd(LHS, RHS); |
| break; |
| case Intrinsic::x86_avx512_mask_sub_ss_round: |
| case Intrinsic::x86_avx512_mask_sub_sd_round: |
| V = IC.Builder.CreateFSub(LHS, RHS); |
| break; |
| case Intrinsic::x86_avx512_mask_mul_ss_round: |
| case Intrinsic::x86_avx512_mask_mul_sd_round: |
| V = IC.Builder.CreateFMul(LHS, RHS); |
| break; |
| case Intrinsic::x86_avx512_mask_div_ss_round: |
| case Intrinsic::x86_avx512_mask_div_sd_round: |
| V = IC.Builder.CreateFDiv(LHS, RHS); |
| break; |
| } |
| |
| // Handle the masking aspect of the intrinsic. |
| Value *Mask = II.getArgOperand(3); |
| auto *C = dyn_cast<ConstantInt>(Mask); |
| // We don't need a select if we know the mask bit is a 1. |
| if (!C || !C->getValue()[0]) { |
| // Cast the mask to an i1 vector and then extract the lowest element. |
| auto *MaskTy = FixedVectorType::get( |
| IC.Builder.getInt1Ty(), |
| cast<IntegerType>(Mask->getType())->getBitWidth()); |
| Mask = IC.Builder.CreateBitCast(Mask, MaskTy); |
| Mask = IC.Builder.CreateExtractElement(Mask, (uint64_t)0); |
| // Extract the lowest element from the passthru operand. |
| Value *Passthru = |
| IC.Builder.CreateExtractElement(II.getArgOperand(2), (uint64_t)0); |
| V = IC.Builder.CreateSelect(Mask, V, Passthru); |
| } |
| |
| // Insert the result back into the original argument 0. |
| V = IC.Builder.CreateInsertElement(Arg0, V, (uint64_t)0); |
| |
| return IC.replaceInstUsesWith(II, V); |
| } |
| } |
| break; |
| |
| // Constant fold ashr( <A x Bi>, Ci ). |
| // Constant fold lshr( <A x Bi>, Ci ). |
| // Constant fold shl( <A x Bi>, Ci ). |
| case Intrinsic::x86_sse2_psrai_d: |
| case Intrinsic::x86_sse2_psrai_w: |
| case Intrinsic::x86_avx2_psrai_d: |
| case Intrinsic::x86_avx2_psrai_w: |
| case Intrinsic::x86_avx512_psrai_q_128: |
| case Intrinsic::x86_avx512_psrai_q_256: |
| case Intrinsic::x86_avx512_psrai_d_512: |
| case Intrinsic::x86_avx512_psrai_q_512: |
| case Intrinsic::x86_avx512_psrai_w_512: |
| case Intrinsic::x86_sse2_psrli_d: |
| case Intrinsic::x86_sse2_psrli_q: |
| case Intrinsic::x86_sse2_psrli_w: |
| case Intrinsic::x86_avx2_psrli_d: |
| case Intrinsic::x86_avx2_psrli_q: |
| case Intrinsic::x86_avx2_psrli_w: |
| case Intrinsic::x86_avx512_psrli_d_512: |
| case Intrinsic::x86_avx512_psrli_q_512: |
| case Intrinsic::x86_avx512_psrli_w_512: |
| case Intrinsic::x86_sse2_pslli_d: |
| case Intrinsic::x86_sse2_pslli_q: |
| case Intrinsic::x86_sse2_pslli_w: |
| case Intrinsic::x86_avx2_pslli_d: |
| case Intrinsic::x86_avx2_pslli_q: |
| case Intrinsic::x86_avx2_pslli_w: |
| case Intrinsic::x86_avx512_pslli_d_512: |
| case Intrinsic::x86_avx512_pslli_q_512: |
| case Intrinsic::x86_avx512_pslli_w_512: |
| if (Value *V = simplifyX86immShift(II, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| break; |
| |
| case Intrinsic::x86_sse2_psra_d: |
| case Intrinsic::x86_sse2_psra_w: |
| case Intrinsic::x86_avx2_psra_d: |
| case Intrinsic::x86_avx2_psra_w: |
| case Intrinsic::x86_avx512_psra_q_128: |
| case Intrinsic::x86_avx512_psra_q_256: |
| case Intrinsic::x86_avx512_psra_d_512: |
| case Intrinsic::x86_avx512_psra_q_512: |
| case Intrinsic::x86_avx512_psra_w_512: |
| case Intrinsic::x86_sse2_psrl_d: |
| case Intrinsic::x86_sse2_psrl_q: |
| case Intrinsic::x86_sse2_psrl_w: |
| case Intrinsic::x86_avx2_psrl_d: |
| case Intrinsic::x86_avx2_psrl_q: |
| case Intrinsic::x86_avx2_psrl_w: |
| case Intrinsic::x86_avx512_psrl_d_512: |
| case Intrinsic::x86_avx512_psrl_q_512: |
| case Intrinsic::x86_avx512_psrl_w_512: |
| case Intrinsic::x86_sse2_psll_d: |
| case Intrinsic::x86_sse2_psll_q: |
| case Intrinsic::x86_sse2_psll_w: |
| case Intrinsic::x86_avx2_psll_d: |
| case Intrinsic::x86_avx2_psll_q: |
| case Intrinsic::x86_avx2_psll_w: |
| case Intrinsic::x86_avx512_psll_d_512: |
| case Intrinsic::x86_avx512_psll_q_512: |
| case Intrinsic::x86_avx512_psll_w_512: { |
| if (Value *V = simplifyX86immShift(II, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| |
| // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector |
| // operand to compute the shift amount. |
| Value *Arg1 = II.getArgOperand(1); |
| assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 && |
| "Unexpected packed shift size"); |
| unsigned VWidth = cast<FixedVectorType>(Arg1->getType())->getNumElements(); |
| |
| if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) { |
| return IC.replaceOperand(II, 1, V); |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_avx2_psllv_d: |
| case Intrinsic::x86_avx2_psllv_d_256: |
| case Intrinsic::x86_avx2_psllv_q: |
| case Intrinsic::x86_avx2_psllv_q_256: |
| case Intrinsic::x86_avx512_psllv_d_512: |
| case Intrinsic::x86_avx512_psllv_q_512: |
| case Intrinsic::x86_avx512_psllv_w_128: |
| case Intrinsic::x86_avx512_psllv_w_256: |
| case Intrinsic::x86_avx512_psllv_w_512: |
| case Intrinsic::x86_avx2_psrav_d: |
| case Intrinsic::x86_avx2_psrav_d_256: |
| case Intrinsic::x86_avx512_psrav_q_128: |
| case Intrinsic::x86_avx512_psrav_q_256: |
| case Intrinsic::x86_avx512_psrav_d_512: |
| case Intrinsic::x86_avx512_psrav_q_512: |
| case Intrinsic::x86_avx512_psrav_w_128: |
| case Intrinsic::x86_avx512_psrav_w_256: |
| case Intrinsic::x86_avx512_psrav_w_512: |
| case Intrinsic::x86_avx2_psrlv_d: |
| case Intrinsic::x86_avx2_psrlv_d_256: |
| case Intrinsic::x86_avx2_psrlv_q: |
| case Intrinsic::x86_avx2_psrlv_q_256: |
| case Intrinsic::x86_avx512_psrlv_d_512: |
| case Intrinsic::x86_avx512_psrlv_q_512: |
| case Intrinsic::x86_avx512_psrlv_w_128: |
| case Intrinsic::x86_avx512_psrlv_w_256: |
| case Intrinsic::x86_avx512_psrlv_w_512: |
| if (Value *V = simplifyX86varShift(II, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| break; |
| |
| case Intrinsic::x86_sse2_packssdw_128: |
| case Intrinsic::x86_sse2_packsswb_128: |
| case Intrinsic::x86_avx2_packssdw: |
| case Intrinsic::x86_avx2_packsswb: |
| case Intrinsic::x86_avx512_packssdw_512: |
| case Intrinsic::x86_avx512_packsswb_512: |
| if (Value *V = simplifyX86pack(II, IC.Builder, true)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| break; |
| |
| case Intrinsic::x86_sse2_packuswb_128: |
| case Intrinsic::x86_sse41_packusdw: |
| case Intrinsic::x86_avx2_packusdw: |
| case Intrinsic::x86_avx2_packuswb: |
| case Intrinsic::x86_avx512_packusdw_512: |
| case Intrinsic::x86_avx512_packuswb_512: |
| if (Value *V = simplifyX86pack(II, IC.Builder, false)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| break; |
| |
| case Intrinsic::x86_pclmulqdq: |
| case Intrinsic::x86_pclmulqdq_256: |
| case Intrinsic::x86_pclmulqdq_512: { |
| if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(2))) { |
| unsigned Imm = C->getZExtValue(); |
| |
| bool MadeChange = false; |
| Value *Arg0 = II.getArgOperand(0); |
| Value *Arg1 = II.getArgOperand(1); |
| unsigned VWidth = |
| cast<FixedVectorType>(Arg0->getType())->getNumElements(); |
| |
| APInt UndefElts1(VWidth, 0); |
| APInt DemandedElts1 = |
| APInt::getSplat(VWidth, APInt(2, (Imm & 0x01) ? 2 : 1)); |
| if (Value *V = |
| IC.SimplifyDemandedVectorElts(Arg0, DemandedElts1, UndefElts1)) { |
| IC.replaceOperand(II, 0, V); |
| MadeChange = true; |
| } |
| |
| APInt UndefElts2(VWidth, 0); |
| APInt DemandedElts2 = |
| APInt::getSplat(VWidth, APInt(2, (Imm & 0x10) ? 2 : 1)); |
| if (Value *V = |
| IC.SimplifyDemandedVectorElts(Arg1, DemandedElts2, UndefElts2)) { |
| IC.replaceOperand(II, 1, V); |
| MadeChange = true; |
| } |
| |
| // If either input elements are undef, the result is zero. |
| if (DemandedElts1.isSubsetOf(UndefElts1) || |
| DemandedElts2.isSubsetOf(UndefElts2)) { |
| return IC.replaceInstUsesWith(II, |
| ConstantAggregateZero::get(II.getType())); |
| } |
| |
| if (MadeChange) { |
| return &II; |
| } |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_sse41_insertps: |
| if (Value *V = simplifyX86insertps(II, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| break; |
| |
| case Intrinsic::x86_sse4a_extrq: { |
| Value *Op0 = II.getArgOperand(0); |
| Value *Op1 = II.getArgOperand(1); |
| unsigned VWidth0 = cast<FixedVectorType>(Op0->getType())->getNumElements(); |
| unsigned VWidth1 = cast<FixedVectorType>(Op1->getType())->getNumElements(); |
| assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && |
| Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && |
| VWidth1 == 16 && "Unexpected operand sizes"); |
| |
| // See if we're dealing with constant values. |
| auto *C1 = dyn_cast<Constant>(Op1); |
| auto *CILength = |
| C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0)) |
| : nullptr; |
| auto *CIIndex = |
| C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1)) |
| : nullptr; |
| |
| // Attempt to simplify to a constant, shuffle vector or EXTRQI call. |
| if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| |
| // EXTRQ only uses the lowest 64-bits of the first 128-bit vector |
| // operands and the lowest 16-bits of the second. |
| bool MadeChange = false; |
| if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { |
| IC.replaceOperand(II, 0, V); |
| MadeChange = true; |
| } |
| if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) { |
| IC.replaceOperand(II, 1, V); |
| MadeChange = true; |
| } |
| if (MadeChange) { |
| return &II; |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_sse4a_extrqi: { |
| // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining |
| // bits of the lower 64-bits. The upper 64-bits are undefined. |
| Value *Op0 = II.getArgOperand(0); |
| unsigned VWidth = cast<FixedVectorType>(Op0->getType())->getNumElements(); |
| assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && |
| "Unexpected operand size"); |
| |
| // See if we're dealing with constant values. |
| auto *CILength = dyn_cast<ConstantInt>(II.getArgOperand(1)); |
| auto *CIIndex = dyn_cast<ConstantInt>(II.getArgOperand(2)); |
| |
| // Attempt to simplify to a constant or shuffle vector. |
| if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| |
| // EXTRQI only uses the lowest 64-bits of the first 128-bit vector |
| // operand. |
| if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { |
| return IC.replaceOperand(II, 0, V); |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_sse4a_insertq: { |
| Value *Op0 = II.getArgOperand(0); |
| Value *Op1 = II.getArgOperand(1); |
| unsigned VWidth = cast<FixedVectorType>(Op0->getType())->getNumElements(); |
| assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && |
| Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && |
| cast<FixedVectorType>(Op1->getType())->getNumElements() == 2 && |
| "Unexpected operand size"); |
| |
| // See if we're dealing with constant values. |
| auto *C1 = dyn_cast<Constant>(Op1); |
| auto *CI11 = |
| C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1)) |
| : nullptr; |
| |
| // Attempt to simplify to a constant, shuffle vector or INSERTQI call. |
| if (CI11) { |
| const APInt &V11 = CI11->getValue(); |
| APInt Len = V11.zextOrTrunc(6); |
| APInt Idx = V11.lshr(8).zextOrTrunc(6); |
| if (Value *V = simplifyX86insertq(II, Op0, Op1, Len, Idx, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| } |
| |
| // INSERTQ only uses the lowest 64-bits of the first 128-bit vector |
| // operand. |
| if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { |
| return IC.replaceOperand(II, 0, V); |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_sse4a_insertqi: { |
| // INSERTQI: Extract lowest Length bits from lower half of second source and |
| // insert over first source starting at Index bit. The upper 64-bits are |
| // undefined. |
| Value *Op0 = II.getArgOperand(0); |
| Value *Op1 = II.getArgOperand(1); |
| unsigned VWidth0 = cast<FixedVectorType>(Op0->getType())->getNumElements(); |
| unsigned VWidth1 = cast<FixedVectorType>(Op1->getType())->getNumElements(); |
| assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && |
| Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && |
| VWidth1 == 2 && "Unexpected operand sizes"); |
| |
| // See if we're dealing with constant values. |
| auto *CILength = dyn_cast<ConstantInt>(II.getArgOperand(2)); |
| auto *CIIndex = dyn_cast<ConstantInt>(II.getArgOperand(3)); |
| |
| // Attempt to simplify to a constant or shuffle vector. |
| if (CILength && CIIndex) { |
| APInt Len = CILength->getValue().zextOrTrunc(6); |
| APInt Idx = CIIndex->getValue().zextOrTrunc(6); |
| if (Value *V = simplifyX86insertq(II, Op0, Op1, Len, Idx, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| } |
| |
| // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector |
| // operands. |
| bool MadeChange = false; |
| if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { |
| IC.replaceOperand(II, 0, V); |
| MadeChange = true; |
| } |
| if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) { |
| IC.replaceOperand(II, 1, V); |
| MadeChange = true; |
| } |
| if (MadeChange) { |
| return &II; |
| } |
| break; |
| } |
| |
| case Intrinsic::x86_sse41_pblendvb: |
| case Intrinsic::x86_sse41_blendvps: |
| case Intrinsic::x86_sse41_blendvpd: |
| case Intrinsic::x86_avx_blendv_ps_256: |
| case Intrinsic::x86_avx_blendv_pd_256: |
| case Intrinsic::x86_avx2_pblendvb: { |
| // fold (blend A, A, Mask) -> A |
| Value *Op0 = II.getArgOperand(0); |
| Value *Op1 = II.getArgOperand(1); |
| Value *Mask = II.getArgOperand(2); |
| if (Op0 == Op1) { |
| return IC.replaceInstUsesWith(II, Op0); |
| } |
| |
| // Zero Mask - select 1st argument. |
| if (isa<ConstantAggregateZero>(Mask)) { |
| return IC.replaceInstUsesWith(II, Op0); |
| } |
| |
| // Constant Mask - select 1st/2nd argument lane based on top bit of mask. |
| if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) { |
| Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask); |
| return SelectInst::Create(NewSelector, Op1, Op0, "blendv"); |
| } |
| |
| // Convert to a vector select if we can bypass casts and find a boolean |
| // vector condition value. |
| Value *BoolVec; |
| Mask = InstCombiner::peekThroughBitcast(Mask); |
| if (match(Mask, PatternMatch::m_SExt(PatternMatch::m_Value(BoolVec))) && |
| BoolVec->getType()->isVectorTy() && |
| BoolVec->getType()->getScalarSizeInBits() == 1) { |
| assert(Mask->getType()->getPrimitiveSizeInBits() == |
| II.getType()->getPrimitiveSizeInBits() && |
| "Not expecting mask and operands with different sizes"); |
| |
| unsigned NumMaskElts = |
| cast<FixedVectorType>(Mask->getType())->getNumElements(); |
| unsigned NumOperandElts = |
| cast<FixedVectorType>(II.getType())->getNumElements(); |
| if (NumMaskElts == NumOperandElts) { |
| return SelectInst::Create(BoolVec, Op1, Op0); |
| } |
| |
| // If the mask has less elements than the operands, each mask bit maps to |
| // multiple elements of the operands. Bitcast back and forth. |
| if (NumMaskElts < NumOperandElts) { |
| Value *CastOp0 = IC.Builder.CreateBitCast(Op0, Mask->getType()); |
| Value *CastOp1 = IC.Builder.CreateBitCast(Op1, Mask->getType()); |
| Value *Sel = IC.Builder.CreateSelect(BoolVec, CastOp1, CastOp0); |
| return new BitCastInst(Sel, II.getType()); |
| } |
| } |
| |
| break; |
| } |
| |
| case Intrinsic::x86_ssse3_pshuf_b_128: |
| case Intrinsic::x86_avx2_pshuf_b: |
| case Intrinsic::x86_avx512_pshuf_b_512: |
| if (Value *V = simplifyX86pshufb(II, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| break; |
| |
| case Intrinsic::x86_avx_vpermilvar_ps: |
| case Intrinsic::x86_avx_vpermilvar_ps_256: |
| case Intrinsic::x86_avx512_vpermilvar_ps_512: |
| case Intrinsic::x86_avx_vpermilvar_pd: |
| case Intrinsic::x86_avx_vpermilvar_pd_256: |
| case Intrinsic::x86_avx512_vpermilvar_pd_512: |
| if (Value *V = simplifyX86vpermilvar(II, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| break; |
| |
| case Intrinsic::x86_avx2_permd: |
| case Intrinsic::x86_avx2_permps: |
| case Intrinsic::x86_avx512_permvar_df_256: |
| case Intrinsic::x86_avx512_permvar_df_512: |
| case Intrinsic::x86_avx512_permvar_di_256: |
| case Intrinsic::x86_avx512_permvar_di_512: |
| case Intrinsic::x86_avx512_permvar_hi_128: |
| case Intrinsic::x86_avx512_permvar_hi_256: |
| case Intrinsic::x86_avx512_permvar_hi_512: |
| case Intrinsic::x86_avx512_permvar_qi_128: |
| case Intrinsic::x86_avx512_permvar_qi_256: |
| case Intrinsic::x86_avx512_permvar_qi_512: |
| case Intrinsic::x86_avx512_permvar_sf_512: |
| case Intrinsic::x86_avx512_permvar_si_512: |
| if (Value *V = simplifyX86vpermv(II, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| break; |
| |
| case Intrinsic::x86_avx_maskload_ps: |
| case Intrinsic::x86_avx_maskload_pd: |
| case Intrinsic::x86_avx_maskload_ps_256: |
| case Intrinsic::x86_avx_maskload_pd_256: |
| case Intrinsic::x86_avx2_maskload_d: |
| case Intrinsic::x86_avx2_maskload_q: |
| case Intrinsic::x86_avx2_maskload_d_256: |
| case Intrinsic::x86_avx2_maskload_q_256: |
| if (Instruction *I = simplifyX86MaskedLoad(II, IC)) { |
| return I; |
| } |
| break; |
| |
| case Intrinsic::x86_sse2_maskmov_dqu: |
| case Intrinsic::x86_avx_maskstore_ps: |
| case Intrinsic::x86_avx_maskstore_pd: |
| case Intrinsic::x86_avx_maskstore_ps_256: |
| case Intrinsic::x86_avx_maskstore_pd_256: |
| case Intrinsic::x86_avx2_maskstore_d: |
| case Intrinsic::x86_avx2_maskstore_q: |
| case Intrinsic::x86_avx2_maskstore_d_256: |
| case Intrinsic::x86_avx2_maskstore_q_256: |
| if (simplifyX86MaskedStore(II, IC)) { |
| return nullptr; |
| } |
| break; |
| |
| case Intrinsic::x86_addcarry_32: |
| case Intrinsic::x86_addcarry_64: |
| if (Value *V = simplifyX86addcarry(II, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| break; |
| |
| case Intrinsic::x86_avx512_pternlog_d_128: |
| case Intrinsic::x86_avx512_pternlog_d_256: |
| case Intrinsic::x86_avx512_pternlog_d_512: |
| case Intrinsic::x86_avx512_pternlog_q_128: |
| case Intrinsic::x86_avx512_pternlog_q_256: |
| case Intrinsic::x86_avx512_pternlog_q_512: |
| if (Value *V = simplifyTernarylogic(II, IC.Builder)) { |
| return IC.replaceInstUsesWith(II, V); |
| } |
| break; |
| default: |
| break; |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<Value *> X86TTIImpl::simplifyDemandedUseBitsIntrinsic( |
| InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, |
| bool &KnownBitsComputed) const { |
| switch (II.getIntrinsicID()) { |
| default: |
| break; |
| case Intrinsic::x86_mmx_pmovmskb: |
| case Intrinsic::x86_sse_movmsk_ps: |
| case Intrinsic::x86_sse2_movmsk_pd: |
| case Intrinsic::x86_sse2_pmovmskb_128: |
| case Intrinsic::x86_avx_movmsk_ps_256: |
| case Intrinsic::x86_avx_movmsk_pd_256: |
| case Intrinsic::x86_avx2_pmovmskb: { |
| // MOVMSK copies the vector elements' sign bits to the low bits |
| // and zeros the high bits. |
| unsigned ArgWidth; |
| if (II.getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { |
| ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. |
| } else { |
| auto *ArgType = cast<FixedVectorType>(II.getArgOperand(0)->getType()); |
| ArgWidth = ArgType->getNumElements(); |
| } |
| |
| // If we don't need any of low bits then return zero, |
| // we know that DemandedMask is non-zero already. |
| APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); |
| Type *VTy = II.getType(); |
| if (DemandedElts.isZero()) { |
| return ConstantInt::getNullValue(VTy); |
| } |
| |
| // We know that the upper bits are set to zero. |
| Known.Zero.setBitsFrom(ArgWidth); |
| KnownBitsComputed = true; |
| break; |
| } |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<Value *> X86TTIImpl::simplifyDemandedVectorEltsIntrinsic( |
| InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, |
| APInt &UndefElts2, APInt &UndefElts3, |
| std::function<void(Instruction *, unsigned, APInt, APInt &)> |
| simplifyAndSetOp) const { |
| unsigned VWidth = cast<FixedVectorType>(II.getType())->getNumElements(); |
| switch (II.getIntrinsicID()) { |
| default: |
| break; |
| case Intrinsic::x86_xop_vfrcz_ss: |
| case Intrinsic::x86_xop_vfrcz_sd: |
| // The instructions for these intrinsics are speced to zero upper bits not |
| // pass them through like other scalar intrinsics. So we shouldn't just |
| // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. |
| // Instead we should return a zero vector. |
| if (!DemandedElts[0]) { |
| IC.addToWorklist(&II); |
| return ConstantAggregateZero::get(II.getType()); |
| } |
| |
| // Only the lower element is used. |
| DemandedElts = 1; |
| simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| |
| // Only the lower element is undefined. The high elements are zero. |
| UndefElts = UndefElts[0]; |
| break; |
| |
| // Unary scalar-as-vector operations that work column-wise. |
| case Intrinsic::x86_sse_rcp_ss: |
| case Intrinsic::x86_sse_rsqrt_ss: |
| simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| |
| // If lowest element of a scalar op isn't used then use Arg0. |
| if (!DemandedElts[0]) { |
| IC.addToWorklist(&II); |
| return II.getArgOperand(0); |
| } |
| // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions |
| // checks). |
| break; |
| |
| // Binary scalar-as-vector operations that work column-wise. The high |
| // elements come from operand 0. The low element is a function of both |
| // operands. |
| case Intrinsic::x86_sse_min_ss: |
| case Intrinsic::x86_sse_max_ss: |
| case Intrinsic::x86_sse_cmp_ss: |
| case Intrinsic::x86_sse2_min_sd: |
| case Intrinsic::x86_sse2_max_sd: |
| case Intrinsic::x86_sse2_cmp_sd: { |
| simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| |
| // If lowest element of a scalar op isn't used then use Arg0. |
| if (!DemandedElts[0]) { |
| IC.addToWorklist(&II); |
| return II.getArgOperand(0); |
| } |
| |
| // Only lower element is used for operand 1. |
| DemandedElts = 1; |
| simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2); |
| |
| // Lower element is undefined if both lower elements are undefined. |
| // Consider things like undef&0. The result is known zero, not undef. |
| if (!UndefElts2[0]) |
| UndefElts.clearBit(0); |
| |
| break; |
| } |
| |
| // Binary scalar-as-vector operations that work column-wise. The high |
| // elements come from operand 0 and the low element comes from operand 1. |
| case Intrinsic::x86_sse41_round_ss: |
| case Intrinsic::x86_sse41_round_sd: { |
| // Don't use the low element of operand 0. |
| APInt DemandedElts2 = DemandedElts; |
| DemandedElts2.clearBit(0); |
| simplifyAndSetOp(&II, 0, DemandedElts2, UndefElts); |
| |
| // If lowest element of a scalar op isn't used then use Arg0. |
| if (!DemandedElts[0]) { |
| IC.addToWorklist(&II); |
| return II.getArgOperand(0); |
| } |
| |
| // Only lower element is used for operand 1. |
| DemandedElts = 1; |
| simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2); |
| |
| // Take the high undef elements from operand 0 and take the lower element |
| // from operand 1. |
| UndefElts.clearBit(0); |
| UndefElts |= UndefElts2[0]; |
| break; |
| } |
| |
| // Three input scalar-as-vector operations that work column-wise. The high |
| // elements come from operand 0 and the low element is a function of all |
| // three inputs. |
| case Intrinsic::x86_avx512_mask_add_ss_round: |
| case Intrinsic::x86_avx512_mask_div_ss_round: |
| case Intrinsic::x86_avx512_mask_mul_ss_round: |
| case Intrinsic::x86_avx512_mask_sub_ss_round: |
| case Intrinsic::x86_avx512_mask_max_ss_round: |
| case Intrinsic::x86_avx512_mask_min_ss_round: |
| case Intrinsic::x86_avx512_mask_add_sd_round: |
| case Intrinsic::x86_avx512_mask_div_sd_round: |
| case Intrinsic::x86_avx512_mask_mul_sd_round: |
| case Intrinsic::x86_avx512_mask_sub_sd_round: |
| case Intrinsic::x86_avx512_mask_max_sd_round: |
| case Intrinsic::x86_avx512_mask_min_sd_round: |
| simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| |
| // If lowest element of a scalar op isn't used then use Arg0. |
| if (!DemandedElts[0]) { |
| IC.addToWorklist(&II); |
| return II.getArgOperand(0); |
| } |
| |
| // Only lower element is used for operand 1 and 2. |
| DemandedElts = 1; |
| simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2); |
| simplifyAndSetOp(&II, 2, DemandedElts, UndefElts3); |
| |
| // Lower element is undefined if all three lower elements are undefined. |
| // Consider things like undef&0. The result is known zero, not undef. |
| if (!UndefElts2[0] || !UndefElts3[0]) |
| UndefElts.clearBit(0); |
| break; |
| |
| // TODO: Add fmaddsub support? |
| case Intrinsic::x86_sse3_addsub_pd: |
| case Intrinsic::x86_sse3_addsub_ps: |
| case Intrinsic::x86_avx_addsub_pd_256: |
| case Intrinsic::x86_avx_addsub_ps_256: { |
| // If none of the even or none of the odd lanes are required, turn this |
| // into a generic FP math instruction. |
| APInt SubMask = APInt::getSplat(VWidth, APInt(2, 0x1)); |
| APInt AddMask = APInt::getSplat(VWidth, APInt(2, 0x2)); |
| bool IsSubOnly = DemandedElts.isSubsetOf(SubMask); |
| bool IsAddOnly = DemandedElts.isSubsetOf(AddMask); |
| if (IsSubOnly || IsAddOnly) { |
| assert((IsSubOnly ^ IsAddOnly) && "Can't be both add-only and sub-only"); |
| IRBuilderBase::InsertPointGuard Guard(IC.Builder); |
| IC.Builder.SetInsertPoint(&II); |
| Value *Arg0 = II.getArgOperand(0), *Arg1 = II.getArgOperand(1); |
| return IC.Builder.CreateBinOp( |
| IsSubOnly ? Instruction::FSub : Instruction::FAdd, Arg0, Arg1); |
| } |
| |
| simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2); |
| UndefElts &= UndefElts2; |
| break; |
| } |
| |
| // General per-element vector operations. |
| case Intrinsic::x86_avx2_psllv_d: |
| case Intrinsic::x86_avx2_psllv_d_256: |
| case Intrinsic::x86_avx2_psllv_q: |
| case Intrinsic::x86_avx2_psllv_q_256: |
| case Intrinsic::x86_avx2_psrlv_d: |
| case Intrinsic::x86_avx2_psrlv_d_256: |
| case Intrinsic::x86_avx2_psrlv_q: |
| case Intrinsic::x86_avx2_psrlv_q_256: |
| case Intrinsic::x86_avx2_psrav_d: |
| case Intrinsic::x86_avx2_psrav_d_256: { |
| simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2); |
| UndefElts &= UndefElts2; |
| break; |
| } |
| |
| case Intrinsic::x86_sse2_packssdw_128: |
| case Intrinsic::x86_sse2_packsswb_128: |
| case Intrinsic::x86_sse2_packuswb_128: |
| case Intrinsic::x86_sse41_packusdw: |
| case Intrinsic::x86_avx2_packssdw: |
| case Intrinsic::x86_avx2_packsswb: |
| case Intrinsic::x86_avx2_packusdw: |
| case Intrinsic::x86_avx2_packuswb: |
| case Intrinsic::x86_avx512_packssdw_512: |
| case Intrinsic::x86_avx512_packsswb_512: |
| case Intrinsic::x86_avx512_packusdw_512: |
| case Intrinsic::x86_avx512_packuswb_512: { |
| auto *Ty0 = II.getArgOperand(0)->getType(); |
| unsigned InnerVWidth = cast<FixedVectorType>(Ty0)->getNumElements(); |
| assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); |
| |
| unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; |
| unsigned VWidthPerLane = VWidth / NumLanes; |
| unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; |
| |
| // Per lane, pack the elements of the first input and then the second. |
| // e.g. |
| // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) |
| // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) |
| for (int OpNum = 0; OpNum != 2; ++OpNum) { |
| APInt OpDemandedElts(InnerVWidth, 0); |
| for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| unsigned LaneIdx = Lane * VWidthPerLane; |
| for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { |
| unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; |
| if (DemandedElts[Idx]) |
| OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); |
| } |
| } |
| |
| // Demand elements from the operand. |
| APInt OpUndefElts(InnerVWidth, 0); |
| simplifyAndSetOp(&II, OpNum, OpDemandedElts, OpUndefElts); |
| |
| // Pack the operand's UNDEF elements, one lane at a time. |
| OpUndefElts = OpUndefElts.zext(VWidth); |
| for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); |
| LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); |
| LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); |
| UndefElts |= LaneElts; |
| } |
| } |
| break; |
| } |
| |
| // PSHUFB |
| case Intrinsic::x86_ssse3_pshuf_b_128: |
| case Intrinsic::x86_avx2_pshuf_b: |
| case Intrinsic::x86_avx512_pshuf_b_512: |
| // PERMILVAR |
| case Intrinsic::x86_avx_vpermilvar_ps: |
| case Intrinsic::x86_avx_vpermilvar_ps_256: |
| case Intrinsic::x86_avx512_vpermilvar_ps_512: |
| case Intrinsic::x86_avx_vpermilvar_pd: |
| case Intrinsic::x86_avx_vpermilvar_pd_256: |
| case Intrinsic::x86_avx512_vpermilvar_pd_512: |
| // PERMV |
| case Intrinsic::x86_avx2_permd: |
| case Intrinsic::x86_avx2_permps: { |
| simplifyAndSetOp(&II, 1, DemandedElts, UndefElts); |
| break; |
| } |
| |
| // SSE4A instructions leave the upper 64-bits of the 128-bit result |
| // in an undefined state. |
| case Intrinsic::x86_sse4a_extrq: |
| case Intrinsic::x86_sse4a_extrqi: |
| case Intrinsic::x86_sse4a_insertq: |
| case Intrinsic::x86_sse4a_insertqi: |
| UndefElts.setHighBits(VWidth / 2); |
| break; |
| } |
| return std::nullopt; |
| } |