|  | //===----- TypePromotion.cpp ----------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This is an opcode based type promotion pass for small types that would | 
|  | /// otherwise be promoted during legalisation. This works around the limitations | 
|  | /// of selection dag for cyclic regions. The search begins from icmp | 
|  | /// instructions operands where a tree, consisting of non-wrapping or safe | 
|  | /// wrapping instructions, is built, checked and promoted if possible. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/TypePromotion.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  |  | 
|  | #define DEBUG_TYPE "type-promotion" | 
|  | #define PASS_NAME "Type Promotion" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> DisablePromotion("disable-type-promotion", cl::Hidden, | 
|  | cl::init(false), | 
|  | cl::desc("Disable type promotion pass")); | 
|  |  | 
|  | // The goal of this pass is to enable more efficient code generation for | 
|  | // operations on narrow types (i.e. types with < 32-bits) and this is a | 
|  | // motivating IR code example: | 
|  | // | 
|  | //   define hidden i32 @cmp(i8 zeroext) { | 
|  | //     %2 = add i8 %0, -49 | 
|  | //     %3 = icmp ult i8 %2, 3 | 
|  | //     .. | 
|  | //   } | 
|  | // | 
|  | // The issue here is that i8 is type-legalized to i32 because i8 is not a | 
|  | // legal type. Thus, arithmetic is done in integer-precision, but then the | 
|  | // byte value is masked out as follows: | 
|  | // | 
|  | //   t19: i32 = add t4, Constant:i32<-49> | 
|  | //     t24: i32 = and t19, Constant:i32<255> | 
|  | // | 
|  | // Consequently, we generate code like this: | 
|  | // | 
|  | //   subs  r0, #49 | 
|  | //   uxtb  r1, r0 | 
|  | //   cmp r1, #3 | 
|  | // | 
|  | // This shows that masking out the byte value results in generation of | 
|  | // the UXTB instruction. This is not optimal as r0 already contains the byte | 
|  | // value we need, and so instead we can just generate: | 
|  | // | 
|  | //   sub.w r1, r0, #49 | 
|  | //   cmp r1, #3 | 
|  | // | 
|  | // We achieve this by type promoting the IR to i32 like so for this example: | 
|  | // | 
|  | //   define i32 @cmp(i8 zeroext %c) { | 
|  | //     %0 = zext i8 %c to i32 | 
|  | //     %c.off = add i32 %0, -49 | 
|  | //     %1 = icmp ult i32 %c.off, 3 | 
|  | //     .. | 
|  | //   } | 
|  | // | 
|  | // For this to be valid and legal, we need to prove that the i32 add is | 
|  | // producing the same value as the i8 addition, and that e.g. no overflow | 
|  | // happens. | 
|  | // | 
|  | // A brief sketch of the algorithm and some terminology. | 
|  | // We pattern match interesting IR patterns: | 
|  | // - which have "sources": instructions producing narrow values (i8, i16), and | 
|  | // - they have "sinks": instructions consuming these narrow values. | 
|  | // | 
|  | // We collect all instruction connecting sources and sinks in a worklist, so | 
|  | // that we can mutate these instruction and perform type promotion when it is | 
|  | // legal to do so. | 
|  |  | 
|  | namespace { | 
|  | class IRPromoter { | 
|  | LLVMContext &Ctx; | 
|  | unsigned PromotedWidth = 0; | 
|  | SetVector<Value *> &Visited; | 
|  | SetVector<Value *> &Sources; | 
|  | SetVector<Instruction *> &Sinks; | 
|  | SmallPtrSetImpl<Instruction *> &SafeWrap; | 
|  | SmallPtrSetImpl<Instruction *> &InstsToRemove; | 
|  | IntegerType *ExtTy = nullptr; | 
|  | SmallPtrSet<Value *, 8> NewInsts; | 
|  | DenseMap<Value *, SmallVector<Type *, 4>> TruncTysMap; | 
|  | SmallPtrSet<Value *, 8> Promoted; | 
|  |  | 
|  | void ReplaceAllUsersOfWith(Value *From, Value *To); | 
|  | void ExtendSources(); | 
|  | void ConvertTruncs(); | 
|  | void PromoteTree(); | 
|  | void TruncateSinks(); | 
|  | void Cleanup(); | 
|  |  | 
|  | public: | 
|  | IRPromoter(LLVMContext &C, unsigned Width, SetVector<Value *> &visited, | 
|  | SetVector<Value *> &sources, SetVector<Instruction *> &sinks, | 
|  | SmallPtrSetImpl<Instruction *> &wrap, | 
|  | SmallPtrSetImpl<Instruction *> &instsToRemove) | 
|  | : Ctx(C), PromotedWidth(Width), Visited(visited), Sources(sources), | 
|  | Sinks(sinks), SafeWrap(wrap), InstsToRemove(instsToRemove) { | 
|  | ExtTy = IntegerType::get(Ctx, PromotedWidth); | 
|  | } | 
|  |  | 
|  | void Mutate(); | 
|  | }; | 
|  |  | 
|  | class TypePromotionImpl { | 
|  | unsigned TypeSize = 0; | 
|  | LLVMContext *Ctx = nullptr; | 
|  | unsigned RegisterBitWidth = 0; | 
|  | SmallPtrSet<Value *, 16> AllVisited; | 
|  | SmallPtrSet<Instruction *, 8> SafeToPromote; | 
|  | SmallPtrSet<Instruction *, 4> SafeWrap; | 
|  | SmallPtrSet<Instruction *, 4> InstsToRemove; | 
|  |  | 
|  | // Does V have the same size result type as TypeSize. | 
|  | bool EqualTypeSize(Value *V); | 
|  | // Does V have the same size, or narrower, result type as TypeSize. | 
|  | bool LessOrEqualTypeSize(Value *V); | 
|  | // Does V have a result type that is wider than TypeSize. | 
|  | bool GreaterThanTypeSize(Value *V); | 
|  | // Does V have a result type that is narrower than TypeSize. | 
|  | bool LessThanTypeSize(Value *V); | 
|  | // Should V be a leaf in the promote tree? | 
|  | bool isSource(Value *V); | 
|  | // Should V be a root in the promotion tree? | 
|  | bool isSink(Value *V); | 
|  | // Should we change the result type of V? It will result in the users of V | 
|  | // being visited. | 
|  | bool shouldPromote(Value *V); | 
|  | // Is I an add or a sub, which isn't marked as nuw, but where a wrapping | 
|  | // result won't affect the computation? | 
|  | bool isSafeWrap(Instruction *I); | 
|  | // Can V have its integer type promoted, or can the type be ignored. | 
|  | bool isSupportedType(Value *V); | 
|  | // Is V an instruction with a supported opcode or another value that we can | 
|  | // handle, such as constants and basic blocks. | 
|  | bool isSupportedValue(Value *V); | 
|  | // Is V an instruction thats result can trivially promoted, or has safe | 
|  | // wrapping. | 
|  | bool isLegalToPromote(Value *V); | 
|  | bool TryToPromote(Value *V, unsigned PromotedWidth, const LoopInfo &LI); | 
|  |  | 
|  | public: | 
|  | bool run(Function &F, const TargetMachine *TM, | 
|  | const TargetTransformInfo &TTI, const LoopInfo &LI); | 
|  | }; | 
|  |  | 
|  | class TypePromotionLegacy : public FunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | TypePromotionLegacy() : FunctionPass(ID) {} | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | AU.addRequired<TargetPassConfig>(); | 
|  | AU.setPreservesCFG(); | 
|  | AU.addPreserved<LoopInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { return PASS_NAME; } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | static bool GenerateSignBits(Instruction *I) { | 
|  | unsigned Opc = I->getOpcode(); | 
|  | return Opc == Instruction::AShr || Opc == Instruction::SDiv || | 
|  | Opc == Instruction::SRem || Opc == Instruction::SExt; | 
|  | } | 
|  |  | 
|  | bool TypePromotionImpl::EqualTypeSize(Value *V) { | 
|  | return V->getType()->getScalarSizeInBits() == TypeSize; | 
|  | } | 
|  |  | 
|  | bool TypePromotionImpl::LessOrEqualTypeSize(Value *V) { | 
|  | return V->getType()->getScalarSizeInBits() <= TypeSize; | 
|  | } | 
|  |  | 
|  | bool TypePromotionImpl::GreaterThanTypeSize(Value *V) { | 
|  | return V->getType()->getScalarSizeInBits() > TypeSize; | 
|  | } | 
|  |  | 
|  | bool TypePromotionImpl::LessThanTypeSize(Value *V) { | 
|  | return V->getType()->getScalarSizeInBits() < TypeSize; | 
|  | } | 
|  |  | 
|  | /// Return true if the given value is a source in the use-def chain, producing | 
|  | /// a narrow 'TypeSize' value. These values will be zext to start the promotion | 
|  | /// of the tree to i32. We guarantee that these won't populate the upper bits | 
|  | /// of the register. ZExt on the loads will be free, and the same for call | 
|  | /// return values because we only accept ones that guarantee a zeroext ret val. | 
|  | /// Many arguments will have the zeroext attribute too, so those would be free | 
|  | /// too. | 
|  | bool TypePromotionImpl::isSource(Value *V) { | 
|  | if (!isa<IntegerType>(V->getType())) | 
|  | return false; | 
|  |  | 
|  | // TODO Allow zext to be sources. | 
|  | if (isa<Argument>(V)) | 
|  | return true; | 
|  | else if (isa<LoadInst>(V)) | 
|  | return true; | 
|  | else if (auto *Call = dyn_cast<CallInst>(V)) | 
|  | return Call->hasRetAttr(Attribute::AttrKind::ZExt); | 
|  | else if (auto *Trunc = dyn_cast<TruncInst>(V)) | 
|  | return EqualTypeSize(Trunc); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if V will require any promoted values to be truncated for the | 
|  | /// the IR to remain valid. We can't mutate the value type of these | 
|  | /// instructions. | 
|  | bool TypePromotionImpl::isSink(Value *V) { | 
|  | // TODO The truncate also isn't actually necessary because we would already | 
|  | // proved that the data value is kept within the range of the original data | 
|  | // type. We currently remove any truncs inserted for handling zext sinks. | 
|  |  | 
|  | // Sinks are: | 
|  | // - points where the value in the register is being observed, such as an | 
|  | //   icmp, switch or store. | 
|  | // - points where value types have to match, such as calls and returns. | 
|  | // - zext are included to ease the transformation and are generally removed | 
|  | //   later on. | 
|  | if (auto *Store = dyn_cast<StoreInst>(V)) | 
|  | return LessOrEqualTypeSize(Store->getValueOperand()); | 
|  | if (auto *Return = dyn_cast<ReturnInst>(V)) | 
|  | return LessOrEqualTypeSize(Return->getReturnValue()); | 
|  | if (auto *ZExt = dyn_cast<ZExtInst>(V)) | 
|  | return GreaterThanTypeSize(ZExt); | 
|  | if (auto *Switch = dyn_cast<SwitchInst>(V)) | 
|  | return LessThanTypeSize(Switch->getCondition()); | 
|  | if (auto *ICmp = dyn_cast<ICmpInst>(V)) | 
|  | return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0)); | 
|  |  | 
|  | return isa<CallInst>(V); | 
|  | } | 
|  |  | 
|  | /// Return whether this instruction can safely wrap. | 
|  | bool TypePromotionImpl::isSafeWrap(Instruction *I) { | 
|  | // We can support a potentially wrapping instruction (I) if: | 
|  | // - It is only used by an unsigned icmp. | 
|  | // - The icmp uses a constant. | 
|  | // - The wrapping value (I) is decreasing, i.e would underflow - wrapping | 
|  | //   around zero to become a larger number than before. | 
|  | // - The wrapping instruction (I) also uses a constant. | 
|  | // | 
|  | // We can then use the two constants to calculate whether the result would | 
|  | // wrap in respect to itself in the original bitwidth. If it doesn't wrap, | 
|  | // just underflows the range, the icmp would give the same result whether the | 
|  | // result has been truncated or not. We calculate this by: | 
|  | // - Zero extending both constants, if needed, to RegisterBitWidth. | 
|  | // - Take the absolute value of I's constant, adding this to the icmp const. | 
|  | // - Check that this value is not out of range for small type. If it is, it | 
|  | //   means that it has underflowed enough to wrap around the icmp constant. | 
|  | // | 
|  | // For example: | 
|  | // | 
|  | // %sub = sub i8 %a, 2 | 
|  | // %cmp = icmp ule i8 %sub, 254 | 
|  | // | 
|  | // If %a = 0, %sub = -2 == FE == 254 | 
|  | // But if this is evalulated as a i32 | 
|  | // %sub = -2 == FF FF FF FE == 4294967294 | 
|  | // So the unsigned compares (i8 and i32) would not yield the same result. | 
|  | // | 
|  | // Another way to look at it is: | 
|  | // %a - 2 <= 254 | 
|  | // %a + 2 <= 254 + 2 | 
|  | // %a <= 256 | 
|  | // And we can't represent 256 in the i8 format, so we don't support it. | 
|  | // | 
|  | // Whereas: | 
|  | // | 
|  | // %sub i8 %a, 1 | 
|  | // %cmp = icmp ule i8 %sub, 254 | 
|  | // | 
|  | // If %a = 0, %sub = -1 == FF == 255 | 
|  | // As i32: | 
|  | // %sub = -1 == FF FF FF FF == 4294967295 | 
|  | // | 
|  | // In this case, the unsigned compare results would be the same and this | 
|  | // would also be true for ult, uge and ugt: | 
|  | // - (255 < 254) == (0xFFFFFFFF < 254) == false | 
|  | // - (255 <= 254) == (0xFFFFFFFF <= 254) == false | 
|  | // - (255 > 254) == (0xFFFFFFFF > 254) == true | 
|  | // - (255 >= 254) == (0xFFFFFFFF >= 254) == true | 
|  | // | 
|  | // To demonstrate why we can't handle increasing values: | 
|  | // | 
|  | // %add = add i8 %a, 2 | 
|  | // %cmp = icmp ult i8 %add, 127 | 
|  | // | 
|  | // If %a = 254, %add = 256 == (i8 1) | 
|  | // As i32: | 
|  | // %add = 256 | 
|  | // | 
|  | // (1 < 127) != (256 < 127) | 
|  |  | 
|  | unsigned Opc = I->getOpcode(); | 
|  | if (Opc != Instruction::Add && Opc != Instruction::Sub) | 
|  | return false; | 
|  |  | 
|  | if (!I->hasOneUse() || !isa<ICmpInst>(*I->user_begin()) || | 
|  | !isa<ConstantInt>(I->getOperand(1))) | 
|  | return false; | 
|  |  | 
|  | // Don't support an icmp that deals with sign bits. | 
|  | auto *CI = cast<ICmpInst>(*I->user_begin()); | 
|  | if (CI->isSigned() || CI->isEquality()) | 
|  | return false; | 
|  |  | 
|  | ConstantInt *ICmpConstant = nullptr; | 
|  | if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0))) | 
|  | ICmpConstant = Const; | 
|  | else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1))) | 
|  | ICmpConstant = Const; | 
|  | else | 
|  | return false; | 
|  |  | 
|  | const APInt &ICmpConst = ICmpConstant->getValue(); | 
|  | APInt OverflowConst = cast<ConstantInt>(I->getOperand(1))->getValue(); | 
|  | if (Opc == Instruction::Sub) | 
|  | OverflowConst = -OverflowConst; | 
|  | if (!OverflowConst.isNonPositive()) | 
|  | return false; | 
|  |  | 
|  | // Using C1 = OverflowConst and C2 = ICmpConst, we can either prove that: | 
|  | //   zext(x) + sext(C1) <u zext(C2)  if C1 < 0 and C1 >s C2 | 
|  | //   zext(x) + sext(C1) <u sext(C2)  if C1 < 0 and C1 <=s C2 | 
|  | if (OverflowConst.sgt(ICmpConst)) { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext " | 
|  | << "const of " << *I << "\n"); | 
|  | SafeWrap.insert(I); | 
|  | return true; | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext " | 
|  | << "const of " << *I << " and " << *CI << "\n"); | 
|  | SafeWrap.insert(I); | 
|  | SafeWrap.insert(CI); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TypePromotionImpl::shouldPromote(Value *V) { | 
|  | if (!isa<IntegerType>(V->getType()) || isSink(V)) | 
|  | return false; | 
|  |  | 
|  | if (isSource(V)) | 
|  | return true; | 
|  |  | 
|  | auto *I = dyn_cast<Instruction>(V); | 
|  | if (!I) | 
|  | return false; | 
|  |  | 
|  | if (isa<ICmpInst>(I)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return whether we can safely mutate V's type to ExtTy without having to be | 
|  | /// concerned with zero extending or truncation. | 
|  | static bool isPromotedResultSafe(Instruction *I) { | 
|  | if (GenerateSignBits(I)) | 
|  | return false; | 
|  |  | 
|  | if (!isa<OverflowingBinaryOperator>(I)) | 
|  | return true; | 
|  |  | 
|  | return I->hasNoUnsignedWrap(); | 
|  | } | 
|  |  | 
|  | void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) { | 
|  | SmallVector<Instruction *, 4> Users; | 
|  | Instruction *InstTo = dyn_cast<Instruction>(To); | 
|  | bool ReplacedAll = true; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To | 
|  | << "\n"); | 
|  |  | 
|  | for (Use &U : From->uses()) { | 
|  | auto *User = cast<Instruction>(U.getUser()); | 
|  | if (InstTo && User->isIdenticalTo(InstTo)) { | 
|  | ReplacedAll = false; | 
|  | continue; | 
|  | } | 
|  | Users.push_back(User); | 
|  | } | 
|  |  | 
|  | for (auto *U : Users) | 
|  | U->replaceUsesOfWith(From, To); | 
|  |  | 
|  | if (ReplacedAll) | 
|  | if (auto *I = dyn_cast<Instruction>(From)) | 
|  | InstsToRemove.insert(I); | 
|  | } | 
|  |  | 
|  | void IRPromoter::ExtendSources() { | 
|  | IRBuilder<> Builder{Ctx}; | 
|  |  | 
|  | auto InsertZExt = [&](Value *V, Instruction *InsertPt) { | 
|  | assert(V->getType() != ExtTy && "zext already extends to i32"); | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n"); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  | if (auto *I = dyn_cast<Instruction>(V)) | 
|  | Builder.SetCurrentDebugLocation(I->getDebugLoc()); | 
|  |  | 
|  | Value *ZExt = Builder.CreateZExt(V, ExtTy); | 
|  | if (auto *I = dyn_cast<Instruction>(ZExt)) { | 
|  | if (isa<Argument>(V)) | 
|  | I->moveBefore(InsertPt); | 
|  | else | 
|  | I->moveAfter(InsertPt); | 
|  | NewInsts.insert(I); | 
|  | } | 
|  |  | 
|  | ReplaceAllUsersOfWith(V, ZExt); | 
|  | }; | 
|  |  | 
|  | // Now, insert extending instructions between the sources and their users. | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n"); | 
|  | for (auto *V : Sources) { | 
|  | LLVM_DEBUG(dbgs() << " - " << *V << "\n"); | 
|  | if (auto *I = dyn_cast<Instruction>(V)) | 
|  | InsertZExt(I, I); | 
|  | else if (auto *Arg = dyn_cast<Argument>(V)) { | 
|  | BasicBlock &BB = Arg->getParent()->front(); | 
|  | InsertZExt(Arg, &*BB.getFirstInsertionPt()); | 
|  | } else { | 
|  | llvm_unreachable("unhandled source that needs extending"); | 
|  | } | 
|  | Promoted.insert(V); | 
|  | } | 
|  | } | 
|  |  | 
|  | void IRPromoter::PromoteTree() { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n"); | 
|  |  | 
|  | // Mutate the types of the instructions within the tree. Here we handle | 
|  | // constant operands. | 
|  | for (auto *V : Visited) { | 
|  | if (Sources.count(V)) | 
|  | continue; | 
|  |  | 
|  | auto *I = cast<Instruction>(V); | 
|  | if (Sinks.count(I)) | 
|  | continue; | 
|  |  | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) { | 
|  | Value *Op = I->getOperand(i); | 
|  | if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType())) | 
|  | continue; | 
|  |  | 
|  | if (auto *Const = dyn_cast<ConstantInt>(Op)) { | 
|  | // For subtract, we don't need to sext the constant. We only put it in | 
|  | // SafeWrap because SafeWrap.size() is used elsewhere. | 
|  | // For cmp, we need to sign extend a constant appearing in either | 
|  | // operand. For add, we should only sign extend the RHS. | 
|  | Constant *NewConst = | 
|  | ConstantInt::get(Const->getContext(), | 
|  | (SafeWrap.contains(I) && | 
|  | (I->getOpcode() == Instruction::ICmp || i == 1) && | 
|  | I->getOpcode() != Instruction::Sub) | 
|  | ? Const->getValue().sext(PromotedWidth) | 
|  | : Const->getValue().zext(PromotedWidth)); | 
|  | I->setOperand(i, NewConst); | 
|  | } else if (isa<UndefValue>(Op)) | 
|  | I->setOperand(i, ConstantInt::get(ExtTy, 0)); | 
|  | } | 
|  |  | 
|  | // Mutate the result type, unless this is an icmp or switch. | 
|  | if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) { | 
|  | I->mutateType(ExtTy); | 
|  | Promoted.insert(I); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void IRPromoter::TruncateSinks() { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n"); | 
|  |  | 
|  | IRBuilder<> Builder{Ctx}; | 
|  |  | 
|  | auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction * { | 
|  | if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType())) | 
|  | return nullptr; | 
|  |  | 
|  | if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V)) | 
|  | return nullptr; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for " | 
|  | << *V << "\n"); | 
|  | Builder.SetInsertPoint(cast<Instruction>(V)); | 
|  | auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy)); | 
|  | if (Trunc) | 
|  | NewInsts.insert(Trunc); | 
|  | return Trunc; | 
|  | }; | 
|  |  | 
|  | // Fix up any stores or returns that use the results of the promoted | 
|  | // chain. | 
|  | for (auto *I : Sinks) { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n"); | 
|  |  | 
|  | // Handle calls separately as we need to iterate over arg operands. | 
|  | if (auto *Call = dyn_cast<CallInst>(I)) { | 
|  | for (unsigned i = 0; i < Call->arg_size(); ++i) { | 
|  | Value *Arg = Call->getArgOperand(i); | 
|  | Type *Ty = TruncTysMap[Call][i]; | 
|  | if (Instruction *Trunc = InsertTrunc(Arg, Ty)) { | 
|  | Trunc->moveBefore(Call); | 
|  | Call->setArgOperand(i, Trunc); | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Special case switches because we need to truncate the condition. | 
|  | if (auto *Switch = dyn_cast<SwitchInst>(I)) { | 
|  | Type *Ty = TruncTysMap[Switch][0]; | 
|  | if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) { | 
|  | Trunc->moveBefore(Switch); | 
|  | Switch->setCondition(Trunc); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Don't insert a trunc for a zext which can still legally promote. | 
|  | // Nor insert a trunc when the input value to that trunc has the same width | 
|  | // as the zext we are inserting it for.  When this happens the input operand | 
|  | // for the zext will be promoted to the same width as the zext's return type | 
|  | // rendering that zext unnecessary.  This zext gets removed before the end | 
|  | // of the pass. | 
|  | if (auto ZExt = dyn_cast<ZExtInst>(I)) | 
|  | if (ZExt->getType()->getScalarSizeInBits() >= PromotedWidth) | 
|  | continue; | 
|  |  | 
|  | // Now handle the others. | 
|  | for (unsigned i = 0; i < I->getNumOperands(); ++i) { | 
|  | Type *Ty = TruncTysMap[I][i]; | 
|  | if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) { | 
|  | Trunc->moveBefore(I); | 
|  | I->setOperand(i, Trunc); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void IRPromoter::Cleanup() { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n"); | 
|  | // Some zexts will now have become redundant, along with their trunc | 
|  | // operands, so remove them. | 
|  | for (auto *V : Visited) { | 
|  | if (!isa<ZExtInst>(V)) | 
|  | continue; | 
|  |  | 
|  | auto ZExt = cast<ZExtInst>(V); | 
|  | if (ZExt->getDestTy() != ExtTy) | 
|  | continue; | 
|  |  | 
|  | Value *Src = ZExt->getOperand(0); | 
|  | if (ZExt->getSrcTy() == ZExt->getDestTy()) { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt | 
|  | << "\n"); | 
|  | ReplaceAllUsersOfWith(ZExt, Src); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We've inserted a trunc for a zext sink, but we already know that the | 
|  | // input is in range, negating the need for the trunc. | 
|  | if (NewInsts.count(Src) && isa<TruncInst>(Src)) { | 
|  | auto *Trunc = cast<TruncInst>(Src); | 
|  | assert(Trunc->getOperand(0)->getType() == ExtTy && | 
|  | "expected inserted trunc to be operating on i32"); | 
|  | ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (auto *I : InstsToRemove) { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n"); | 
|  | I->dropAllReferences(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void IRPromoter::ConvertTruncs() { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n"); | 
|  | IRBuilder<> Builder{Ctx}; | 
|  |  | 
|  | for (auto *V : Visited) { | 
|  | if (!isa<TruncInst>(V) || Sources.count(V)) | 
|  | continue; | 
|  |  | 
|  | auto *Trunc = cast<TruncInst>(V); | 
|  | Builder.SetInsertPoint(Trunc); | 
|  | IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType()); | 
|  | IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]); | 
|  |  | 
|  | unsigned NumBits = DestTy->getScalarSizeInBits(); | 
|  | ConstantInt *Mask = | 
|  | ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue()); | 
|  | Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask); | 
|  | if (SrcTy != ExtTy) | 
|  | Masked = Builder.CreateTrunc(Masked, ExtTy); | 
|  |  | 
|  | if (auto *I = dyn_cast<Instruction>(Masked)) | 
|  | NewInsts.insert(I); | 
|  |  | 
|  | ReplaceAllUsersOfWith(Trunc, Masked); | 
|  | } | 
|  | } | 
|  |  | 
|  | void IRPromoter::Mutate() { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains to " | 
|  | << PromotedWidth << "-bits\n"); | 
|  |  | 
|  | // Cache original types of the values that will likely need truncating | 
|  | for (auto *I : Sinks) { | 
|  | if (auto *Call = dyn_cast<CallInst>(I)) { | 
|  | for (Value *Arg : Call->args()) | 
|  | TruncTysMap[Call].push_back(Arg->getType()); | 
|  | } else if (auto *Switch = dyn_cast<SwitchInst>(I)) | 
|  | TruncTysMap[I].push_back(Switch->getCondition()->getType()); | 
|  | else { | 
|  | for (unsigned i = 0; i < I->getNumOperands(); ++i) | 
|  | TruncTysMap[I].push_back(I->getOperand(i)->getType()); | 
|  | } | 
|  | } | 
|  | for (auto *V : Visited) { | 
|  | if (!isa<TruncInst>(V) || Sources.count(V)) | 
|  | continue; | 
|  | auto *Trunc = cast<TruncInst>(V); | 
|  | TruncTysMap[Trunc].push_back(Trunc->getDestTy()); | 
|  | } | 
|  |  | 
|  | // Insert zext instructions between sources and their users. | 
|  | ExtendSources(); | 
|  |  | 
|  | // Promote visited instructions, mutating their types in place. | 
|  | PromoteTree(); | 
|  |  | 
|  | // Convert any truncs, that aren't sources, into AND masks. | 
|  | ConvertTruncs(); | 
|  |  | 
|  | // Insert trunc instructions for use by calls, stores etc... | 
|  | TruncateSinks(); | 
|  |  | 
|  | // Finally, remove unecessary zexts and truncs, delete old instructions and | 
|  | // clear the data structures. | 
|  | Cleanup(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n"); | 
|  | } | 
|  |  | 
|  | /// We disallow booleans to make life easier when dealing with icmps but allow | 
|  | /// any other integer that fits in a scalar register. Void types are accepted | 
|  | /// so we can handle switches. | 
|  | bool TypePromotionImpl::isSupportedType(Value *V) { | 
|  | Type *Ty = V->getType(); | 
|  |  | 
|  | // Allow voids and pointers, these won't be promoted. | 
|  | if (Ty->isVoidTy() || Ty->isPointerTy()) | 
|  | return true; | 
|  |  | 
|  | if (!isa<IntegerType>(Ty) || cast<IntegerType>(Ty)->getBitWidth() == 1 || | 
|  | cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth) | 
|  | return false; | 
|  |  | 
|  | return LessOrEqualTypeSize(V); | 
|  | } | 
|  |  | 
|  | /// We accept most instructions, as well as Arguments and ConstantInsts. We | 
|  | /// Disallow casts other than zext and truncs and only allow calls if their | 
|  | /// return value is zeroext. We don't allow opcodes that can introduce sign | 
|  | /// bits. | 
|  | bool TypePromotionImpl::isSupportedValue(Value *V) { | 
|  | if (auto *I = dyn_cast<Instruction>(V)) { | 
|  | switch (I->getOpcode()) { | 
|  | default: | 
|  | return isa<BinaryOperator>(I) && isSupportedType(I) && | 
|  | !GenerateSignBits(I); | 
|  | case Instruction::GetElementPtr: | 
|  | case Instruction::Store: | 
|  | case Instruction::Br: | 
|  | case Instruction::Switch: | 
|  | return true; | 
|  | case Instruction::PHI: | 
|  | case Instruction::Select: | 
|  | case Instruction::Ret: | 
|  | case Instruction::Load: | 
|  | case Instruction::Trunc: | 
|  | return isSupportedType(I); | 
|  | case Instruction::BitCast: | 
|  | return I->getOperand(0)->getType() == I->getType(); | 
|  | case Instruction::ZExt: | 
|  | return isSupportedType(I->getOperand(0)); | 
|  | case Instruction::ICmp: | 
|  | // Now that we allow small types than TypeSize, only allow icmp of | 
|  | // TypeSize because they will require a trunc to be legalised. | 
|  | // TODO: Allow icmp of smaller types, and calculate at the end | 
|  | // whether the transform would be beneficial. | 
|  | if (isa<PointerType>(I->getOperand(0)->getType())) | 
|  | return true; | 
|  | return EqualTypeSize(I->getOperand(0)); | 
|  | case Instruction::Call: { | 
|  | // Special cases for calls as we need to check for zeroext | 
|  | // TODO We should accept calls even if they don't have zeroext, as they | 
|  | // can still be sinks. | 
|  | auto *Call = cast<CallInst>(I); | 
|  | return isSupportedType(Call) && | 
|  | Call->hasRetAttr(Attribute::AttrKind::ZExt); | 
|  | } | 
|  | } | 
|  | } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) { | 
|  | return isSupportedType(V); | 
|  | } else if (isa<Argument>(V)) | 
|  | return isSupportedType(V); | 
|  |  | 
|  | return isa<BasicBlock>(V); | 
|  | } | 
|  |  | 
|  | /// Check that the type of V would be promoted and that the original type is | 
|  | /// smaller than the targeted promoted type. Check that we're not trying to | 
|  | /// promote something larger than our base 'TypeSize' type. | 
|  | bool TypePromotionImpl::isLegalToPromote(Value *V) { | 
|  | auto *I = dyn_cast<Instruction>(V); | 
|  | if (!I) | 
|  | return true; | 
|  |  | 
|  | if (SafeToPromote.count(I)) | 
|  | return true; | 
|  |  | 
|  | if (isPromotedResultSafe(I) || isSafeWrap(I)) { | 
|  | SafeToPromote.insert(I); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TypePromotionImpl::TryToPromote(Value *V, unsigned PromotedWidth, | 
|  | const LoopInfo &LI) { | 
|  | Type *OrigTy = V->getType(); | 
|  | TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedValue(); | 
|  | SafeToPromote.clear(); | 
|  | SafeWrap.clear(); | 
|  |  | 
|  | if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V)) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from " | 
|  | << TypeSize << " bits to " << PromotedWidth << "\n"); | 
|  |  | 
|  | SetVector<Value *> WorkList; | 
|  | SetVector<Value *> Sources; | 
|  | SetVector<Instruction *> Sinks; | 
|  | SetVector<Value *> CurrentVisited; | 
|  | WorkList.insert(V); | 
|  |  | 
|  | // Return true if V was added to the worklist as a supported instruction, | 
|  | // if it was already visited, or if we don't need to explore it (e.g. | 
|  | // pointer values and GEPs), and false otherwise. | 
|  | auto AddLegalInst = [&](Value *V) { | 
|  | if (CurrentVisited.count(V)) | 
|  | return true; | 
|  |  | 
|  | // Ignore GEPs because they don't need promoting and the constant indices | 
|  | // will prevent the transformation. | 
|  | if (isa<GetElementPtrInst>(V)) | 
|  | return true; | 
|  |  | 
|  | if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | WorkList.insert(V); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // Iterate through, and add to, a tree of operands and users in the use-def. | 
|  | while (!WorkList.empty()) { | 
|  | Value *V = WorkList.pop_back_val(); | 
|  | if (CurrentVisited.count(V)) | 
|  | continue; | 
|  |  | 
|  | // Ignore non-instructions, other than arguments. | 
|  | if (!isa<Instruction>(V) && !isSource(V)) | 
|  | continue; | 
|  |  | 
|  | // If we've already visited this value from somewhere, bail now because | 
|  | // the tree has already been explored. | 
|  | // TODO: This could limit the transform, ie if we try to promote something | 
|  | // from an i8 and fail first, before trying an i16. | 
|  | if (AllVisited.count(V)) | 
|  | return false; | 
|  |  | 
|  | CurrentVisited.insert(V); | 
|  | AllVisited.insert(V); | 
|  |  | 
|  | // Calls can be both sources and sinks. | 
|  | if (isSink(V)) | 
|  | Sinks.insert(cast<Instruction>(V)); | 
|  |  | 
|  | if (isSource(V)) | 
|  | Sources.insert(V); | 
|  |  | 
|  | if (!isSink(V) && !isSource(V)) { | 
|  | if (auto *I = dyn_cast<Instruction>(V)) { | 
|  | // Visit operands of any instruction visited. | 
|  | for (auto &U : I->operands()) { | 
|  | if (!AddLegalInst(U)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't visit users of a node which isn't going to be mutated unless its a | 
|  | // source. | 
|  | if (isSource(V) || shouldPromote(V)) { | 
|  | for (Use &U : V->uses()) { | 
|  | if (!AddLegalInst(U.getUser())) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "IR Promotion: Visited nodes:\n"; | 
|  | for (auto *I : CurrentVisited) | 
|  | I->dump(); | 
|  | }); | 
|  |  | 
|  | unsigned ToPromote = 0; | 
|  | unsigned NonFreeArgs = 0; | 
|  | unsigned NonLoopSources = 0, LoopSinks = 0; | 
|  | SmallPtrSet<BasicBlock *, 4> Blocks; | 
|  | for (auto *CV : CurrentVisited) { | 
|  | if (auto *I = dyn_cast<Instruction>(CV)) | 
|  | Blocks.insert(I->getParent()); | 
|  |  | 
|  | if (Sources.count(CV)) { | 
|  | if (auto *Arg = dyn_cast<Argument>(CV)) | 
|  | if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr()) | 
|  | ++NonFreeArgs; | 
|  | if (!isa<Instruction>(CV) || | 
|  | !LI.getLoopFor(cast<Instruction>(CV)->getParent())) | 
|  | ++NonLoopSources; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isa<PHINode>(CV)) | 
|  | continue; | 
|  | if (LI.getLoopFor(cast<Instruction>(CV)->getParent())) | 
|  | ++LoopSinks; | 
|  | if (Sinks.count(cast<Instruction>(CV))) | 
|  | continue; | 
|  | ++ToPromote; | 
|  | } | 
|  |  | 
|  | // DAG optimizations should be able to handle these cases better, especially | 
|  | // for function arguments. | 
|  | if (!isa<PHINode>(V) && !(LoopSinks && NonLoopSources) && | 
|  | (ToPromote < 2 || (Blocks.size() == 1 && NonFreeArgs > SafeWrap.size()))) | 
|  | return false; | 
|  |  | 
|  | IRPromoter Promoter(*Ctx, PromotedWidth, CurrentVisited, Sources, Sinks, | 
|  | SafeWrap, InstsToRemove); | 
|  | Promoter.Mutate(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TypePromotionImpl::run(Function &F, const TargetMachine *TM, | 
|  | const TargetTransformInfo &TTI, | 
|  | const LoopInfo &LI) { | 
|  | if (DisablePromotion) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n"); | 
|  |  | 
|  | AllVisited.clear(); | 
|  | SafeToPromote.clear(); | 
|  | SafeWrap.clear(); | 
|  | bool MadeChange = false; | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  | const TargetSubtargetInfo *SubtargetInfo = TM->getSubtargetImpl(F); | 
|  | const TargetLowering *TLI = SubtargetInfo->getTargetLowering(); | 
|  | RegisterBitWidth = | 
|  | TTI.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedValue(); | 
|  | Ctx = &F.getParent()->getContext(); | 
|  |  | 
|  | // Return the preferred integer width of the instruction, or zero if we | 
|  | // shouldn't try. | 
|  | auto GetPromoteWidth = [&](Instruction *I) -> uint32_t { | 
|  | if (!isa<IntegerType>(I->getType())) | 
|  | return 0; | 
|  |  | 
|  | EVT SrcVT = TLI->getValueType(DL, I->getType()); | 
|  | if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT())) | 
|  | return 0; | 
|  |  | 
|  | if (TLI->getTypeAction(*Ctx, SrcVT) != TargetLowering::TypePromoteInteger) | 
|  | return 0; | 
|  |  | 
|  | EVT PromotedVT = TLI->getTypeToTransformTo(*Ctx, SrcVT); | 
|  | if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register " | 
|  | << "for promoted type\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // TODO: Should we prefer to use RegisterBitWidth instead? | 
|  | return PromotedVT.getFixedSizeInBits(); | 
|  | }; | 
|  |  | 
|  | auto BBIsInLoop = [&](BasicBlock *BB) -> bool { | 
|  | for (auto *L : LI) | 
|  | if (L->contains(BB)) | 
|  | return true; | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | for (BasicBlock &BB : F) { | 
|  | for (Instruction &I : BB) { | 
|  | if (AllVisited.count(&I)) | 
|  | continue; | 
|  |  | 
|  | if (isa<ZExtInst>(&I) && isa<PHINode>(I.getOperand(0)) && | 
|  | isa<IntegerType>(I.getType()) && BBIsInLoop(&BB)) { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " | 
|  | << *I.getOperand(0) << "\n"); | 
|  | EVT ZExtVT = TLI->getValueType(DL, I.getType()); | 
|  | Instruction *Phi = static_cast<Instruction *>(I.getOperand(0)); | 
|  | auto PromoteWidth = ZExtVT.getFixedSizeInBits(); | 
|  | if (RegisterBitWidth < PromoteWidth) { | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target " | 
|  | << "register for ZExt type\n"); | 
|  | continue; | 
|  | } | 
|  | MadeChange |= TryToPromote(Phi, PromoteWidth, LI); | 
|  | } else if (auto *ICmp = dyn_cast<ICmpInst>(&I)) { | 
|  | // Search up from icmps to try to promote their operands. | 
|  | // Skip signed or pointer compares | 
|  | if (ICmp->isSigned()) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n"); | 
|  |  | 
|  | for (auto &Op : ICmp->operands()) { | 
|  | if (auto *OpI = dyn_cast<Instruction>(Op)) { | 
|  | if (auto PromotedWidth = GetPromoteWidth(OpI)) { | 
|  | MadeChange |= TryToPromote(OpI, PromotedWidth, LI); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!InstsToRemove.empty()) { | 
|  | for (auto *I : InstsToRemove) | 
|  | I->eraseFromParent(); | 
|  | InstsToRemove.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | AllVisited.clear(); | 
|  | SafeToPromote.clear(); | 
|  | SafeWrap.clear(); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(TypePromotionLegacy, DEBUG_TYPE, PASS_NAME, false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(TypePromotionLegacy, DEBUG_TYPE, PASS_NAME, false, false) | 
|  |  | 
|  | char TypePromotionLegacy::ID = 0; | 
|  |  | 
|  | bool TypePromotionLegacy::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | auto &TPC = getAnalysis<TargetPassConfig>(); | 
|  | auto *TM = &TPC.getTM<TargetMachine>(); | 
|  | auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | 
|  | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  |  | 
|  | TypePromotionImpl TP; | 
|  | return TP.run(F, TM, TTI, LI); | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createTypePromotionLegacyPass() { | 
|  | return new TypePromotionLegacy(); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses TypePromotionPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | auto &TTI = AM.getResult<TargetIRAnalysis>(F); | 
|  | auto &LI = AM.getResult<LoopAnalysis>(F); | 
|  | TypePromotionImpl TP; | 
|  |  | 
|  | bool Changed = TP.run(F, TM, TTI, LI); | 
|  | if (!Changed) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PreservedAnalyses PA; | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | PA.preserve<LoopAnalysis>(); | 
|  | return PA; | 
|  | } |