blob: 73a80702671922bd676daab35129c411273adbba [file] [log] [blame]
//===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass merges loads/stores to/from sequential memory addresses into vector
// loads/stores. Although there's nothing GPU-specific in here, this pass is
// motivated by the microarchitectural quirks of nVidia and AMD GPUs.
//
// (For simplicity below we talk about loads only, but everything also applies
// to stores.)
//
// This pass is intended to be run late in the pipeline, after other
// vectorization opportunities have been exploited. So the assumption here is
// that immediately following our new vector load we'll need to extract out the
// individual elements of the load, so we can operate on them individually.
//
// On CPUs this transformation is usually not beneficial, because extracting the
// elements of a vector register is expensive on most architectures. It's
// usually better just to load each element individually into its own scalar
// register.
//
// However, nVidia and AMD GPUs don't have proper vector registers. Instead, a
// "vector load" loads directly into a series of scalar registers. In effect,
// extracting the elements of the vector is free. It's therefore always
// beneficial to vectorize a sequence of loads on these architectures.
//
// Vectorizing (perhaps a better name might be "coalescing") loads can have
// large performance impacts on GPU kernels, and opportunities for vectorizing
// are common in GPU code. This pass tries very hard to find such
// opportunities; its runtime is quadratic in the number of loads in a BB.
//
// Some CPU architectures, such as ARM, have instructions that load into
// multiple scalar registers, similar to a GPU vectorized load. In theory ARM
// could use this pass (with some modifications), but currently it implements
// its own pass to do something similar to what we do here.
//
// Overview of the algorithm and terminology in this pass:
//
// - Break up each basic block into pseudo-BBs, composed of instructions which
// are guaranteed to transfer control to their successors.
// - Within a single pseudo-BB, find all loads, and group them into
// "equivalence classes" according to getUnderlyingObject() and loaded
// element size. Do the same for stores.
// - For each equivalence class, greedily build "chains". Each chain has a
// leader instruction, and every other member of the chain has a known
// constant offset from the first instr in the chain.
// - Break up chains so that they contain only contiguous accesses of legal
// size with no intervening may-alias instrs.
// - Convert each chain to vector instructions.
//
// The O(n^2) behavior of this pass comes from initially building the chains.
// In the worst case we have to compare each new instruction to all of those
// that came before. To limit this, we only calculate the offset to the leaders
// of the N most recently-used chains.
#include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ModRef.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Vectorize.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <numeric>
#include <optional>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "load-store-vectorizer"
STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
namespace {
// Equivalence class key, the initial tuple by which we group loads/stores.
// Loads/stores with different EqClassKeys are never merged.
//
// (We could in theory remove element-size from the this tuple. We'd just need
// to fix up the vector packing/unpacking code.)
using EqClassKey =
std::tuple<const Value * /* result of getUnderlyingObject() */,
unsigned /* AddrSpace */,
unsigned /* Load/Store element size bits */,
char /* IsLoad; char b/c bool can't be a DenseMap key */
>;
[[maybe_unused]] llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const EqClassKey &K) {
const auto &[UnderlyingObject, AddrSpace, ElementSize, IsLoad] = K;
return OS << (IsLoad ? "load" : "store") << " of " << *UnderlyingObject
<< " of element size " << ElementSize << " bits in addrspace "
<< AddrSpace;
}
// A Chain is a set of instructions such that:
// - All instructions have the same equivalence class, so in particular all are
// loads, or all are stores.
// - We know the address accessed by the i'th chain elem relative to the
// chain's leader instruction, which is the first instr of the chain in BB
// order.
//
// Chains have two canonical orderings:
// - BB order, sorted by Instr->comesBefore.
// - Offset order, sorted by OffsetFromLeader.
// This pass switches back and forth between these orders.
struct ChainElem {
Instruction *Inst;
APInt OffsetFromLeader;
};
using Chain = SmallVector<ChainElem, 1>;
void sortChainInBBOrder(Chain &C) {
sort(C, [](auto &A, auto &B) { return A.Inst->comesBefore(B.Inst); });
}
void sortChainInOffsetOrder(Chain &C) {
sort(C, [](const auto &A, const auto &B) {
if (A.OffsetFromLeader != B.OffsetFromLeader)
return A.OffsetFromLeader.slt(B.OffsetFromLeader);
return A.Inst->comesBefore(B.Inst); // stable tiebreaker
});
}
[[maybe_unused]] void dumpChain(ArrayRef<ChainElem> C) {
for (const auto &E : C) {
dbgs() << " " << *E.Inst << " (offset " << E.OffsetFromLeader << ")\n";
}
}
using EquivalenceClassMap =
MapVector<EqClassKey, SmallVector<Instruction *, 8>>;
// FIXME: Assuming stack alignment of 4 is always good enough
constexpr unsigned StackAdjustedAlignment = 4;
Instruction *propagateMetadata(Instruction *I, const Chain &C) {
SmallVector<Value *, 8> Values;
for (const ChainElem &E : C)
Values.push_back(E.Inst);
return propagateMetadata(I, Values);
}
bool isInvariantLoad(const Instruction *I) {
const LoadInst *LI = dyn_cast<LoadInst>(I);
return LI != nullptr && LI->hasMetadata(LLVMContext::MD_invariant_load);
}
/// Reorders the instructions that I depends on (the instructions defining its
/// operands), to ensure they dominate I.
void reorder(Instruction *I) {
SmallPtrSet<Instruction *, 16> InstructionsToMove;
SmallVector<Instruction *, 16> Worklist;
Worklist.push_back(I);
while (!Worklist.empty()) {
Instruction *IW = Worklist.pop_back_val();
int NumOperands = IW->getNumOperands();
for (int i = 0; i < NumOperands; i++) {
Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
if (!IM || IM->getOpcode() == Instruction::PHI)
continue;
// If IM is in another BB, no need to move it, because this pass only
// vectorizes instructions within one BB.
if (IM->getParent() != I->getParent())
continue;
if (!IM->comesBefore(I)) {
InstructionsToMove.insert(IM);
Worklist.push_back(IM);
}
}
}
// All instructions to move should follow I. Start from I, not from begin().
for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;) {
Instruction *IM = &*(BBI++);
if (!InstructionsToMove.count(IM))
continue;
IM->moveBefore(I);
}
}
class Vectorizer {
Function &F;
AliasAnalysis &AA;
AssumptionCache &AC;
DominatorTree &DT;
ScalarEvolution &SE;
TargetTransformInfo &TTI;
const DataLayout &DL;
IRBuilder<> Builder;
// We could erase instrs right after vectorizing them, but that can mess up
// our BB iterators, and also can make the equivalence class keys point to
// freed memory. This is fixable, but it's simpler just to wait until we're
// done with the BB and erase all at once.
SmallVector<Instruction *, 128> ToErase;
public:
Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC,
DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI)
: F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI),
DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
bool run();
private:
static const unsigned MaxDepth = 3;
/// Runs the vectorizer on a "pseudo basic block", which is a range of
/// instructions [Begin, End) within one BB all of which have
/// isGuaranteedToTransferExecutionToSuccessor(I) == true.
bool runOnPseudoBB(BasicBlock::iterator Begin, BasicBlock::iterator End);
/// Runs the vectorizer on one equivalence class, i.e. one set of loads/stores
/// in the same BB with the same value for getUnderlyingObject() etc.
bool runOnEquivalenceClass(const EqClassKey &EqClassKey,
ArrayRef<Instruction *> EqClass);
/// Runs the vectorizer on one chain, i.e. a subset of an equivalence class
/// where all instructions access a known, constant offset from the first
/// instruction.
bool runOnChain(Chain &C);
/// Splits the chain into subchains of instructions which read/write a
/// contiguous block of memory. Discards any length-1 subchains (because
/// there's nothing to vectorize in there).
std::vector<Chain> splitChainByContiguity(Chain &C);
/// Splits the chain into subchains where it's safe to hoist loads up to the
/// beginning of the sub-chain and it's safe to sink loads up to the end of
/// the sub-chain. Discards any length-1 subchains.
std::vector<Chain> splitChainByMayAliasInstrs(Chain &C);
/// Splits the chain into subchains that make legal, aligned accesses.
/// Discards any length-1 subchains.
std::vector<Chain> splitChainByAlignment(Chain &C);
/// Converts the instrs in the chain into a single vectorized load or store.
/// Adds the old scalar loads/stores to ToErase.
bool vectorizeChain(Chain &C);
/// Tries to compute the offset in bytes PtrB - PtrA.
std::optional<APInt> getConstantOffset(Value *PtrA, Value *PtrB,
Instruction *ContextInst,
unsigned Depth = 0);
std::optional<APInt> getConstantOffsetComplexAddrs(Value *PtrA, Value *PtrB,
Instruction *ContextInst,
unsigned Depth);
std::optional<APInt> getConstantOffsetSelects(Value *PtrA, Value *PtrB,
Instruction *ContextInst,
unsigned Depth);
/// Gets the element type of the vector that the chain will load or store.
/// This is nontrivial because the chain may contain elements of different
/// types; e.g. it's legal to have a chain that contains both i32 and float.
Type *getChainElemTy(const Chain &C);
/// Determines whether ChainElem can be moved up (if IsLoad) or down (if
/// !IsLoad) to ChainBegin -- i.e. there are no intervening may-alias
/// instructions.
///
/// The map ChainElemOffsets must contain all of the elements in
/// [ChainBegin, ChainElem] and their offsets from some arbitrary base
/// address. It's ok if it contains additional entries.
template <bool IsLoadChain>
bool isSafeToMove(
Instruction *ChainElem, Instruction *ChainBegin,
const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets);
/// Collects loads and stores grouped by "equivalence class", where:
/// - all elements in an eq class are a load or all are a store,
/// - they all load/store the same element size (it's OK to have e.g. i8 and
/// <4 x i8> in the same class, but not i32 and <4 x i8>), and
/// - they all have the same value for getUnderlyingObject().
EquivalenceClassMap collectEquivalenceClasses(BasicBlock::iterator Begin,
BasicBlock::iterator End);
/// Partitions Instrs into "chains" where every instruction has a known
/// constant offset from the first instr in the chain.
///
/// Postcondition: For all i, ret[i][0].second == 0, because the first instr
/// in the chain is the leader, and an instr touches distance 0 from itself.
std::vector<Chain> gatherChains(ArrayRef<Instruction *> Instrs);
};
class LoadStoreVectorizerLegacyPass : public FunctionPass {
public:
static char ID;
LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
initializeLoadStoreVectorizerLegacyPassPass(
*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override {
return "GPU Load and Store Vectorizer";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.setPreservesCFG();
}
};
} // end anonymous namespace
char LoadStoreVectorizerLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
"Vectorize load and Store instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
"Vectorize load and store instructions", false, false)
Pass *llvm::createLoadStoreVectorizerPass() {
return new LoadStoreVectorizerLegacyPass();
}
bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
// Don't vectorize when the attribute NoImplicitFloat is used.
if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
return false;
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
AssumptionCache &AC =
getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
return Vectorizer(F, AA, AC, DT, SE, TTI).run();
}
PreservedAnalyses LoadStoreVectorizerPass::run(Function &F,
FunctionAnalysisManager &AM) {
// Don't vectorize when the attribute NoImplicitFloat is used.
if (F.hasFnAttribute(Attribute::NoImplicitFloat))
return PreservedAnalyses::all();
AliasAnalysis &AA = AM.getResult<AAManager>(F);
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
bool Changed = Vectorizer(F, AA, AC, DT, SE, TTI).run();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return Changed ? PA : PreservedAnalyses::all();
}
bool Vectorizer::run() {
bool Changed = false;
// Break up the BB if there are any instrs which aren't guaranteed to transfer
// execution to their successor.
//
// Consider, for example:
//
// def assert_arr_len(int n) { if (n < 2) exit(); }
//
// load arr[0]
// call assert_array_len(arr.length)
// load arr[1]
//
// Even though assert_arr_len does not read or write any memory, we can't
// speculate the second load before the call. More info at
// https://github.com/llvm/llvm-project/issues/52950.
for (BasicBlock *BB : post_order(&F)) {
// BB must at least have a terminator.
assert(!BB->empty());
SmallVector<BasicBlock::iterator, 8> Barriers;
Barriers.push_back(BB->begin());
for (Instruction &I : *BB)
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
Barriers.push_back(I.getIterator());
Barriers.push_back(BB->end());
for (auto It = Barriers.begin(), End = std::prev(Barriers.end()); It != End;
++It)
Changed |= runOnPseudoBB(*It, *std::next(It));
for (Instruction *I : ToErase) {
auto *PtrOperand = getLoadStorePointerOperand(I);
if (I->use_empty())
I->eraseFromParent();
RecursivelyDeleteTriviallyDeadInstructions(PtrOperand);
}
ToErase.clear();
}
return Changed;
}
bool Vectorizer::runOnPseudoBB(BasicBlock::iterator Begin,
BasicBlock::iterator End) {
LLVM_DEBUG({
dbgs() << "LSV: Running on pseudo-BB [" << *Begin << " ... ";
if (End != Begin->getParent()->end())
dbgs() << *End;
else
dbgs() << "<BB end>";
dbgs() << ")\n";
});
bool Changed = false;
for (const auto &[EqClassKey, EqClass] :
collectEquivalenceClasses(Begin, End))
Changed |= runOnEquivalenceClass(EqClassKey, EqClass);
return Changed;
}
bool Vectorizer::runOnEquivalenceClass(const EqClassKey &EqClassKey,
ArrayRef<Instruction *> EqClass) {
bool Changed = false;
LLVM_DEBUG({
dbgs() << "LSV: Running on equivalence class of size " << EqClass.size()
<< " keyed on " << EqClassKey << ":\n";
for (Instruction *I : EqClass)
dbgs() << " " << *I << "\n";
});
std::vector<Chain> Chains = gatherChains(EqClass);
LLVM_DEBUG(dbgs() << "LSV: Got " << Chains.size()
<< " nontrivial chains.\n";);
for (Chain &C : Chains)
Changed |= runOnChain(C);
return Changed;
}
bool Vectorizer::runOnChain(Chain &C) {
LLVM_DEBUG({
dbgs() << "LSV: Running on chain with " << C.size() << " instructions:\n";
dumpChain(C);
});
// Split up the chain into increasingly smaller chains, until we can finally
// vectorize the chains.
//
// (Don't be scared by the depth of the loop nest here. These operations are
// all at worst O(n lg n) in the number of instructions, and splitting chains
// doesn't change the number of instrs. So the whole loop nest is O(n lg n).)
bool Changed = false;
for (auto &C : splitChainByMayAliasInstrs(C))
for (auto &C : splitChainByContiguity(C))
for (auto &C : splitChainByAlignment(C))
Changed |= vectorizeChain(C);
return Changed;
}
std::vector<Chain> Vectorizer::splitChainByMayAliasInstrs(Chain &C) {
if (C.empty())
return {};
sortChainInBBOrder(C);
LLVM_DEBUG({
dbgs() << "LSV: splitChainByMayAliasInstrs considering chain:\n";
dumpChain(C);
});
// We know that elements in the chain with nonverlapping offsets can't
// alias, but AA may not be smart enough to figure this out. Use a
// hashtable.
DenseMap<Instruction *, APInt /*OffsetFromLeader*/> ChainOffsets;
for (const auto &E : C)
ChainOffsets.insert({&*E.Inst, E.OffsetFromLeader});
// Loads get hoisted up to the first load in the chain. Stores get sunk
// down to the last store in the chain. Our algorithm for loads is:
//
// - Take the first element of the chain. This is the start of a new chain.
// - Take the next element of `Chain` and check for may-alias instructions
// up to the start of NewChain. If no may-alias instrs, add it to
// NewChain. Otherwise, start a new NewChain.
//
// For stores it's the same except in the reverse direction.
//
// We expect IsLoad to be an std::bool_constant.
auto Impl = [&](auto IsLoad) {
// MSVC is unhappy if IsLoad is a capture, so pass it as an arg.
auto [ChainBegin, ChainEnd] = [&](auto IsLoad) {
if constexpr (IsLoad())
return std::make_pair(C.begin(), C.end());
else
return std::make_pair(C.rbegin(), C.rend());
}(IsLoad);
assert(ChainBegin != ChainEnd);
std::vector<Chain> Chains;
SmallVector<ChainElem, 1> NewChain;
NewChain.push_back(*ChainBegin);
for (auto ChainIt = std::next(ChainBegin); ChainIt != ChainEnd; ++ChainIt) {
if (isSafeToMove<IsLoad>(ChainIt->Inst, NewChain.front().Inst,
ChainOffsets)) {
LLVM_DEBUG(dbgs() << "LSV: No intervening may-alias instrs; can merge "
<< *ChainIt->Inst << " into " << *ChainBegin->Inst
<< "\n");
NewChain.push_back(*ChainIt);
} else {
LLVM_DEBUG(
dbgs() << "LSV: Found intervening may-alias instrs; cannot merge "
<< *ChainIt->Inst << " into " << *ChainBegin->Inst << "\n");
if (NewChain.size() > 1) {
LLVM_DEBUG({
dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n";
dumpChain(NewChain);
});
Chains.push_back(std::move(NewChain));
}
// Start a new chain.
NewChain = SmallVector<ChainElem, 1>({*ChainIt});
}
}
if (NewChain.size() > 1) {
LLVM_DEBUG({
dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n";
dumpChain(NewChain);
});
Chains.push_back(std::move(NewChain));
}
return Chains;
};
if (isa<LoadInst>(C[0].Inst))
return Impl(/*IsLoad=*/std::bool_constant<true>());
assert(isa<StoreInst>(C[0].Inst));
return Impl(/*IsLoad=*/std::bool_constant<false>());
}
std::vector<Chain> Vectorizer::splitChainByContiguity(Chain &C) {
if (C.empty())
return {};
sortChainInOffsetOrder(C);
LLVM_DEBUG({
dbgs() << "LSV: splitChainByContiguity considering chain:\n";
dumpChain(C);
});
std::vector<Chain> Ret;
Ret.push_back({C.front()});
for (auto It = std::next(C.begin()), End = C.end(); It != End; ++It) {
// `prev` accesses offsets [PrevDistFromBase, PrevReadEnd).
auto &CurChain = Ret.back();
const ChainElem &Prev = CurChain.back();
unsigned SzBits = DL.getTypeSizeInBits(getLoadStoreType(&*Prev.Inst));
assert(SzBits % 8 == 0 && "Non-byte sizes should have been filtered out by "
"collectEquivalenceClass");
APInt PrevReadEnd = Prev.OffsetFromLeader + SzBits / 8;
// Add this instruction to the end of the current chain, or start a new one.
bool AreContiguous = It->OffsetFromLeader == PrevReadEnd;
LLVM_DEBUG(dbgs() << "LSV: Instructions are "
<< (AreContiguous ? "" : "not ") << "contiguous: "
<< *Prev.Inst << " (ends at offset " << PrevReadEnd
<< ") -> " << *It->Inst << " (starts at offset "
<< It->OffsetFromLeader << ")\n");
if (AreContiguous)
CurChain.push_back(*It);
else
Ret.push_back({*It});
}
// Filter out length-1 chains, these are uninteresting.
llvm::erase_if(Ret, [](const auto &Chain) { return Chain.size() <= 1; });
return Ret;
}
Type *Vectorizer::getChainElemTy(const Chain &C) {
assert(!C.empty());
// The rules are:
// - If there are any pointer types in the chain, use an integer type.
// - Prefer an integer type if it appears in the chain.
// - Otherwise, use the first type in the chain.
//
// The rule about pointer types is a simplification when we merge e.g. a load
// of a ptr and a double. There's no direct conversion from a ptr to a
// double; it requires a ptrtoint followed by a bitcast.
//
// It's unclear to me if the other rules have any practical effect, but we do
// it to match this pass's previous behavior.
if (any_of(C, [](const ChainElem &E) {
return getLoadStoreType(E.Inst)->getScalarType()->isPointerTy();
})) {
return Type::getIntNTy(
F.getContext(),
DL.getTypeSizeInBits(getLoadStoreType(C[0].Inst)->getScalarType()));
}
for (const ChainElem &E : C)
if (Type *T = getLoadStoreType(E.Inst)->getScalarType(); T->isIntegerTy())
return T;
return getLoadStoreType(C[0].Inst)->getScalarType();
}
std::vector<Chain> Vectorizer::splitChainByAlignment(Chain &C) {
// We use a simple greedy algorithm.
// - Given a chain of length N, find all prefixes that
// (a) are not longer than the max register length, and
// (b) are a power of 2.
// - Starting from the longest prefix, try to create a vector of that length.
// - If one of them works, great. Repeat the algorithm on any remaining
// elements in the chain.
// - If none of them work, discard the first element and repeat on a chain
// of length N-1.
if (C.empty())
return {};
sortChainInOffsetOrder(C);
LLVM_DEBUG({
dbgs() << "LSV: splitChainByAlignment considering chain:\n";
dumpChain(C);
});
bool IsLoadChain = isa<LoadInst>(C[0].Inst);
auto getVectorFactor = [&](unsigned VF, unsigned LoadStoreSize,
unsigned ChainSizeBytes, VectorType *VecTy) {
return IsLoadChain ? TTI.getLoadVectorFactor(VF, LoadStoreSize,
ChainSizeBytes, VecTy)
: TTI.getStoreVectorFactor(VF, LoadStoreSize,
ChainSizeBytes, VecTy);
};
#ifndef NDEBUG
for (const auto &E : C) {
Type *Ty = getLoadStoreType(E.Inst)->getScalarType();
assert(isPowerOf2_32(DL.getTypeSizeInBits(Ty)) &&
"Should have filtered out non-power-of-two elements in "
"collectEquivalenceClasses.");
}
#endif
unsigned AS = getLoadStoreAddressSpace(C[0].Inst);
unsigned VecRegBytes = TTI.getLoadStoreVecRegBitWidth(AS) / 8;
std::vector<Chain> Ret;
for (unsigned CBegin = 0; CBegin < C.size(); ++CBegin) {
// Find candidate chains of size not greater than the largest vector reg.
// These chains are over the closed interval [CBegin, CEnd].
SmallVector<std::pair<unsigned /*CEnd*/, unsigned /*SizeBytes*/>, 8>
CandidateChains;
for (unsigned CEnd = CBegin + 1, Size = C.size(); CEnd < Size; ++CEnd) {
APInt Sz = C[CEnd].OffsetFromLeader +
DL.getTypeStoreSize(getLoadStoreType(C[CEnd].Inst)) -
C[CBegin].OffsetFromLeader;
if (Sz.sgt(VecRegBytes))
break;
CandidateChains.push_back(
{CEnd, static_cast<unsigned>(Sz.getLimitedValue())});
}
// Consider the longest chain first.
for (auto It = CandidateChains.rbegin(), End = CandidateChains.rend();
It != End; ++It) {
auto [CEnd, SizeBytes] = *It;
LLVM_DEBUG(
dbgs() << "LSV: splitChainByAlignment considering candidate chain ["
<< *C[CBegin].Inst << " ... " << *C[CEnd].Inst << "]\n");
Type *VecElemTy = getChainElemTy(C);
// Note, VecElemTy is a power of 2, but might be less than one byte. For
// example, we can vectorize 2 x <2 x i4> to <4 x i4>, and in this case
// VecElemTy would be i4.
unsigned VecElemBits = DL.getTypeSizeInBits(VecElemTy);
// SizeBytes and VecElemBits are powers of 2, so they divide evenly.
assert((8 * SizeBytes) % VecElemBits == 0);
unsigned NumVecElems = 8 * SizeBytes / VecElemBits;
FixedVectorType *VecTy = FixedVectorType::get(VecElemTy, NumVecElems);
unsigned VF = 8 * VecRegBytes / VecElemBits;
// Check that TTI is happy with this vectorization factor.
unsigned TargetVF = getVectorFactor(VF, VecElemBits,
VecElemBits * NumVecElems / 8, VecTy);
if (TargetVF != VF && TargetVF < NumVecElems) {
LLVM_DEBUG(
dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
"because TargetVF="
<< TargetVF << " != VF=" << VF
<< " and TargetVF < NumVecElems=" << NumVecElems << "\n");
continue;
}
// Is a load/store with this alignment allowed by TTI and at least as fast
// as an unvectorized load/store?
//
// TTI and F are passed as explicit captures to WAR an MSVC misparse (??).
auto IsAllowedAndFast = [&, SizeBytes = SizeBytes, &TTI = TTI,
&F = F](Align Alignment) {
if (Alignment.value() % SizeBytes == 0)
return true;
unsigned VectorizedSpeed = 0;
bool AllowsMisaligned = TTI.allowsMisalignedMemoryAccesses(
F.getContext(), SizeBytes * 8, AS, Alignment, &VectorizedSpeed);
if (!AllowsMisaligned) {
LLVM_DEBUG(dbgs()
<< "LSV: Access of " << SizeBytes << "B in addrspace "
<< AS << " with alignment " << Alignment.value()
<< " is misaligned, and therefore can't be vectorized.\n");
return false;
}
unsigned ElementwiseSpeed = 0;
(TTI).allowsMisalignedMemoryAccesses((F).getContext(), VecElemBits, AS,
Alignment, &ElementwiseSpeed);
if (VectorizedSpeed < ElementwiseSpeed) {
LLVM_DEBUG(dbgs()
<< "LSV: Access of " << SizeBytes << "B in addrspace "
<< AS << " with alignment " << Alignment.value()
<< " has relative speed " << VectorizedSpeed
<< ", which is lower than the elementwise speed of "
<< ElementwiseSpeed
<< ". Therefore this access won't be vectorized.\n");
return false;
}
return true;
};
// If we're loading/storing from an alloca, align it if possible.
//
// FIXME: We eagerly upgrade the alignment, regardless of whether TTI
// tells us this is beneficial. This feels a bit odd, but it matches
// existing tests. This isn't *so* bad, because at most we align to 4
// bytes (current value of StackAdjustedAlignment).
//
// FIXME: We will upgrade the alignment of the alloca even if it turns out
// we can't vectorize for some other reason.
Value *PtrOperand = getLoadStorePointerOperand(C[CBegin].Inst);
bool IsAllocaAccess = AS == DL.getAllocaAddrSpace() &&
isa<AllocaInst>(PtrOperand->stripPointerCasts());
Align Alignment = getLoadStoreAlignment(C[CBegin].Inst);
Align PrefAlign = Align(StackAdjustedAlignment);
if (IsAllocaAccess && Alignment.value() % SizeBytes != 0 &&
IsAllowedAndFast(PrefAlign)) {
Align NewAlign = getOrEnforceKnownAlignment(
PtrOperand, PrefAlign, DL, C[CBegin].Inst, nullptr, &DT);
if (NewAlign >= Alignment) {
LLVM_DEBUG(dbgs()
<< "LSV: splitByChain upgrading alloca alignment from "
<< Alignment.value() << " to " << NewAlign.value()
<< "\n");
Alignment = NewAlign;
}
}
if (!IsAllowedAndFast(Alignment)) {
LLVM_DEBUG(
dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
"because its alignment is not AllowedAndFast: "
<< Alignment.value() << "\n");
continue;
}
if ((IsLoadChain &&
!TTI.isLegalToVectorizeLoadChain(SizeBytes, Alignment, AS)) ||
(!IsLoadChain &&
!TTI.isLegalToVectorizeStoreChain(SizeBytes, Alignment, AS))) {
LLVM_DEBUG(
dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
"because !isLegalToVectorizeLoad/StoreChain.");
continue;
}
// Hooray, we can vectorize this chain!
Chain &NewChain = Ret.emplace_back();
for (unsigned I = CBegin; I <= CEnd; ++I)
NewChain.push_back(C[I]);
CBegin = CEnd; // Skip over the instructions we've added to the chain.
break;
}
}
return Ret;
}
bool Vectorizer::vectorizeChain(Chain &C) {
if (C.size() < 2)
return false;
sortChainInOffsetOrder(C);
LLVM_DEBUG({
dbgs() << "LSV: Vectorizing chain of " << C.size() << " instructions:\n";
dumpChain(C);
});
Type *VecElemTy = getChainElemTy(C);
bool IsLoadChain = isa<LoadInst>(C[0].Inst);
unsigned AS = getLoadStoreAddressSpace(C[0].Inst);
unsigned ChainBytes = std::accumulate(
C.begin(), C.end(), 0u, [&](unsigned Bytes, const ChainElem &E) {
return Bytes + DL.getTypeStoreSize(getLoadStoreType(E.Inst));
});
assert(ChainBytes % DL.getTypeStoreSize(VecElemTy) == 0);
// VecTy is a power of 2 and 1 byte at smallest, but VecElemTy may be smaller
// than 1 byte (e.g. VecTy == <32 x i1>).
Type *VecTy = FixedVectorType::get(
VecElemTy, 8 * ChainBytes / DL.getTypeSizeInBits(VecElemTy));
Align Alignment = getLoadStoreAlignment(C[0].Inst);
// If this is a load/store of an alloca, we might have upgraded the alloca's
// alignment earlier. Get the new alignment.
if (AS == DL.getAllocaAddrSpace()) {
Alignment = std::max(
Alignment,
getOrEnforceKnownAlignment(getLoadStorePointerOperand(C[0].Inst),
MaybeAlign(), DL, C[0].Inst, nullptr, &DT));
}
// All elements of the chain must have the same scalar-type size.
#ifndef NDEBUG
for (const ChainElem &E : C)
assert(DL.getTypeStoreSize(getLoadStoreType(E.Inst)->getScalarType()) ==
DL.getTypeStoreSize(VecElemTy));
#endif
Instruction *VecInst;
if (IsLoadChain) {
// Loads get hoisted to the location of the first load in the chain. We may
// also need to hoist the (transitive) operands of the loads.
Builder.SetInsertPoint(
std::min_element(C.begin(), C.end(), [](const auto &A, const auto &B) {
return A.Inst->comesBefore(B.Inst);
})->Inst);
// Chain is in offset order, so C[0] is the instr with the lowest offset,
// i.e. the root of the vector.
VecInst = Builder.CreateAlignedLoad(VecTy,
getLoadStorePointerOperand(C[0].Inst),
Alignment);
unsigned VecIdx = 0;
for (const ChainElem &E : C) {
Instruction *I = E.Inst;
Value *V;
Type *T = getLoadStoreType(I);
if (auto *VT = dyn_cast<FixedVectorType>(T)) {
auto Mask = llvm::to_vector<8>(
llvm::seq<int>(VecIdx, VecIdx + VT->getNumElements()));
V = Builder.CreateShuffleVector(VecInst, Mask, I->getName());
VecIdx += VT->getNumElements();
} else {
V = Builder.CreateExtractElement(VecInst, Builder.getInt32(VecIdx),
I->getName());
++VecIdx;
}
if (V->getType() != I->getType())
V = Builder.CreateBitOrPointerCast(V, I->getType());
I->replaceAllUsesWith(V);
}
// Finally, we need to reorder the instrs in the BB so that the (transitive)
// operands of VecInst appear before it. To see why, suppose we have
// vectorized the following code:
//
// ptr1 = gep a, 1
// load1 = load i32 ptr1
// ptr0 = gep a, 0
// load0 = load i32 ptr0
//
// We will put the vectorized load at the location of the earliest load in
// the BB, i.e. load1. We get:
//
// ptr1 = gep a, 1
// loadv = load <2 x i32> ptr0
// load0 = extractelement loadv, 0
// load1 = extractelement loadv, 1
// ptr0 = gep a, 0
//
// Notice that loadv uses ptr0, which is defined *after* it!
reorder(VecInst);
} else {
// Stores get sunk to the location of the last store in the chain.
Builder.SetInsertPoint(
std::max_element(C.begin(), C.end(), [](auto &A, auto &B) {
return A.Inst->comesBefore(B.Inst);
})->Inst);
// Build the vector to store.
Value *Vec = PoisonValue::get(VecTy);
unsigned VecIdx = 0;
auto InsertElem = [&](Value *V) {
if (V->getType() != VecElemTy)
V = Builder.CreateBitOrPointerCast(V, VecElemTy);
Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(VecIdx++));
};
for (const ChainElem &E : C) {
auto I = cast<StoreInst>(E.Inst);
if (FixedVectorType *VT =
dyn_cast<FixedVectorType>(getLoadStoreType(I))) {
for (int J = 0, JE = VT->getNumElements(); J < JE; ++J) {
InsertElem(Builder.CreateExtractElement(I->getValueOperand(),
Builder.getInt32(J)));
}
} else {
InsertElem(I->getValueOperand());
}
}
// Chain is in offset order, so C[0] is the instr with the lowest offset,
// i.e. the root of the vector.
VecInst = Builder.CreateAlignedStore(
Vec,
getLoadStorePointerOperand(C[0].Inst),
Alignment);
}
propagateMetadata(VecInst, C);
for (const ChainElem &E : C)
ToErase.push_back(E.Inst);
++NumVectorInstructions;
NumScalarsVectorized += C.size();
return true;
}
template <bool IsLoadChain>
bool Vectorizer::isSafeToMove(
Instruction *ChainElem, Instruction *ChainBegin,
const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets) {
LLVM_DEBUG(dbgs() << "LSV: isSafeToMove(" << *ChainElem << " -> "
<< *ChainBegin << ")\n");
assert(isa<LoadInst>(ChainElem) == IsLoadChain);
if (ChainElem == ChainBegin)
return true;
// Invariant loads can always be reordered; by definition they are not
// clobbered by stores.
if (isInvariantLoad(ChainElem))
return true;
auto BBIt = std::next([&] {
if constexpr (IsLoadChain)
return BasicBlock::reverse_iterator(ChainElem);
else
return BasicBlock::iterator(ChainElem);
}());
auto BBItEnd = std::next([&] {
if constexpr (IsLoadChain)
return BasicBlock::reverse_iterator(ChainBegin);
else
return BasicBlock::iterator(ChainBegin);
}());
const APInt &ChainElemOffset = ChainOffsets.at(ChainElem);
const unsigned ChainElemSize =
DL.getTypeStoreSize(getLoadStoreType(ChainElem));
for (; BBIt != BBItEnd; ++BBIt) {
Instruction *I = &*BBIt;
if (!I->mayReadOrWriteMemory())
continue;
// Loads can be reordered with other loads.
if (IsLoadChain && isa<LoadInst>(I))
continue;
// Stores can be sunk below invariant loads.
if (!IsLoadChain && isInvariantLoad(I))
continue;
// If I is in the chain, we can tell whether it aliases ChainIt by checking
// what offset ChainIt accesses. This may be better than AA is able to do.
//
// We should really only have duplicate offsets for stores (the duplicate
// loads should be CSE'ed), but in case we have a duplicate load, we'll
// split the chain so we don't have to handle this case specially.
if (auto OffsetIt = ChainOffsets.find(I); OffsetIt != ChainOffsets.end()) {
// I and ChainElem overlap if:
// - I and ChainElem have the same offset, OR
// - I's offset is less than ChainElem's, but I touches past the
// beginning of ChainElem, OR
// - ChainElem's offset is less than I's, but ChainElem touches past the
// beginning of I.
const APInt &IOffset = OffsetIt->second;
unsigned IElemSize = DL.getTypeStoreSize(getLoadStoreType(I));
if (IOffset == ChainElemOffset ||
(IOffset.sle(ChainElemOffset) &&
(IOffset + IElemSize).sgt(ChainElemOffset)) ||
(ChainElemOffset.sle(IOffset) &&
(ChainElemOffset + ChainElemSize).sgt(OffsetIt->second))) {
LLVM_DEBUG({
// Double check that AA also sees this alias. If not, we probably
// have a bug.
ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem));
assert(IsLoadChain ? isModSet(MR) : isModOrRefSet(MR));
dbgs() << "LSV: Found alias in chain: " << *I << "\n";
});
return false; // We found an aliasing instruction; bail.
}
continue; // We're confident there's no alias.
}
LLVM_DEBUG(dbgs() << "LSV: Querying AA for " << *I << "\n");
ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem));
if (IsLoadChain ? isModSet(MR) : isModOrRefSet(MR)) {
LLVM_DEBUG(dbgs() << "LSV: Found alias in chain:\n"
<< " Aliasing instruction:\n"
<< " " << *I << '\n'
<< " Aliased instruction and pointer:\n"
<< " " << *ChainElem << '\n'
<< " " << *getLoadStorePointerOperand(ChainElem)
<< '\n');
return false;
}
}
return true;
}
static bool checkNoWrapFlags(Instruction *I, bool Signed) {
BinaryOperator *BinOpI = cast<BinaryOperator>(I);
return (Signed && BinOpI->hasNoSignedWrap()) ||
(!Signed && BinOpI->hasNoUnsignedWrap());
}
static bool checkIfSafeAddSequence(const APInt &IdxDiff, Instruction *AddOpA,
unsigned MatchingOpIdxA, Instruction *AddOpB,
unsigned MatchingOpIdxB, bool Signed) {
LLVM_DEBUG(dbgs() << "LSV: checkIfSafeAddSequence IdxDiff=" << IdxDiff
<< ", AddOpA=" << *AddOpA << ", MatchingOpIdxA="
<< MatchingOpIdxA << ", AddOpB=" << *AddOpB
<< ", MatchingOpIdxB=" << MatchingOpIdxB
<< ", Signed=" << Signed << "\n");
// If both OpA and OpB are adds with NSW/NUW and with one of the operands
// being the same, we can guarantee that the transformation is safe if we can
// prove that OpA won't overflow when Ret added to the other operand of OpA.
// For example:
// %tmp7 = add nsw i32 %tmp2, %v0
// %tmp8 = sext i32 %tmp7 to i64
// ...
// %tmp11 = add nsw i32 %v0, 1
// %tmp12 = add nsw i32 %tmp2, %tmp11
// %tmp13 = sext i32 %tmp12 to i64
//
// Both %tmp7 and %tmp12 have the nsw flag and the first operand is %tmp2.
// It's guaranteed that adding 1 to %tmp7 won't overflow because %tmp11 adds
// 1 to %v0 and both %tmp11 and %tmp12 have the nsw flag.
assert(AddOpA->getOpcode() == Instruction::Add &&
AddOpB->getOpcode() == Instruction::Add &&
checkNoWrapFlags(AddOpA, Signed) && checkNoWrapFlags(AddOpB, Signed));
if (AddOpA->getOperand(MatchingOpIdxA) ==
AddOpB->getOperand(MatchingOpIdxB)) {
Value *OtherOperandA = AddOpA->getOperand(MatchingOpIdxA == 1 ? 0 : 1);
Value *OtherOperandB = AddOpB->getOperand(MatchingOpIdxB == 1 ? 0 : 1);
Instruction *OtherInstrA = dyn_cast<Instruction>(OtherOperandA);
Instruction *OtherInstrB = dyn_cast<Instruction>(OtherOperandB);
// Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`.
if (OtherInstrB && OtherInstrB->getOpcode() == Instruction::Add &&
checkNoWrapFlags(OtherInstrB, Signed) &&
isa<ConstantInt>(OtherInstrB->getOperand(1))) {
int64_t CstVal =
cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
if (OtherInstrB->getOperand(0) == OtherOperandA &&
IdxDiff.getSExtValue() == CstVal)
return true;
}
// Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`.
if (OtherInstrA && OtherInstrA->getOpcode() == Instruction::Add &&
checkNoWrapFlags(OtherInstrA, Signed) &&
isa<ConstantInt>(OtherInstrA->getOperand(1))) {
int64_t CstVal =
cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
if (OtherInstrA->getOperand(0) == OtherOperandB &&
IdxDiff.getSExtValue() == -CstVal)
return true;
}
// Match `x +nsw/nuw (y +nsw/nuw c)` and
// `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`.
if (OtherInstrA && OtherInstrB &&
OtherInstrA->getOpcode() == Instruction::Add &&
OtherInstrB->getOpcode() == Instruction::Add &&
checkNoWrapFlags(OtherInstrA, Signed) &&
checkNoWrapFlags(OtherInstrB, Signed) &&
isa<ConstantInt>(OtherInstrA->getOperand(1)) &&
isa<ConstantInt>(OtherInstrB->getOperand(1))) {
int64_t CstValA =
cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
int64_t CstValB =
cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
if (OtherInstrA->getOperand(0) == OtherInstrB->getOperand(0) &&
IdxDiff.getSExtValue() == (CstValB - CstValA))
return true;
}
}
return false;
}
std::optional<APInt> Vectorizer::getConstantOffsetComplexAddrs(
Value *PtrA, Value *PtrB, Instruction *ContextInst, unsigned Depth) {
LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetComplexAddrs PtrA=" << *PtrA
<< " PtrB=" << *PtrB << " ContextInst=" << *ContextInst
<< " Depth=" << Depth << "\n");
auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
if (!GEPA || !GEPB)
return getConstantOffsetSelects(PtrA, PtrB, ContextInst, Depth);
// Look through GEPs after checking they're the same except for the last
// index.
if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
GEPA->getPointerOperand() != GEPB->getPointerOperand())
return std::nullopt;
gep_type_iterator GTIA = gep_type_begin(GEPA);
gep_type_iterator GTIB = gep_type_begin(GEPB);
for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
if (GTIA.getOperand() != GTIB.getOperand())
return std::nullopt;
++GTIA;
++GTIB;
}
Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
OpA->getType() != OpB->getType())
return std::nullopt;
uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
// Only look through a ZExt/SExt.
if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
return std::nullopt;
bool Signed = isa<SExtInst>(OpA);
// At this point A could be a function parameter, i.e. not an instruction
Value *ValA = OpA->getOperand(0);
OpB = dyn_cast<Instruction>(OpB->getOperand(0));
if (!OpB || ValA->getType() != OpB->getType())
return std::nullopt;
const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
const SCEV *IdxDiffSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
if (IdxDiffSCEV == SE.getCouldNotCompute())
return std::nullopt;
ConstantRange IdxDiffRange = SE.getSignedRange(IdxDiffSCEV);
if (!IdxDiffRange.isSingleElement())
return std::nullopt;
APInt IdxDiff = *IdxDiffRange.getSingleElement();
LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetComplexAddrs IdxDiff=" << IdxDiff
<< "\n");
// Now we need to prove that adding IdxDiff to ValA won't overflow.
bool Safe = false;
// First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
// ValA, we're okay.
if (OpB->getOpcode() == Instruction::Add &&
isa<ConstantInt>(OpB->getOperand(1)) &&
IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) &&
checkNoWrapFlags(OpB, Signed))
Safe = true;
// Second attempt: check if we have eligible add NSW/NUW instruction
// sequences.
OpA = dyn_cast<Instruction>(ValA);
if (!Safe && OpA && OpA->getOpcode() == Instruction::Add &&
OpB->getOpcode() == Instruction::Add && checkNoWrapFlags(OpA, Signed) &&
checkNoWrapFlags(OpB, Signed)) {
// In the checks below a matching operand in OpA and OpB is an operand which
// is the same in those two instructions. Below we account for possible
// orders of the operands of these add instructions.
for (unsigned MatchingOpIdxA : {0, 1})
for (unsigned MatchingOpIdxB : {0, 1})
if (!Safe)
Safe = checkIfSafeAddSequence(IdxDiff, OpA, MatchingOpIdxA, OpB,
MatchingOpIdxB, Signed);
}
unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
// Third attempt:
//
// Assuming IdxDiff is positive: If all set bits of IdxDiff or any higher
// order bit other than the sign bit are known to be zero in ValA, we can add
// Diff to it while guaranteeing no overflow of any sort.
//
// If IdxDiff is negative, do the same, but swap ValA and ValB.
if (!Safe) {
// When computing known bits, use the GEPs as context instructions, since
// they likely are in the same BB as the load/store.
KnownBits Known(BitWidth);
computeKnownBits((IdxDiff.sge(0) ? ValA : OpB), Known, DL, 0, &AC,
ContextInst, &DT);
APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
if (Signed)
BitsAllowedToBeSet.clearBit(BitWidth - 1);
if (BitsAllowedToBeSet.ult(IdxDiff.abs()))
return std::nullopt;
Safe = true;
}
if (Safe)
return IdxDiff * Stride;
return std::nullopt;
}
std::optional<APInt> Vectorizer::getConstantOffsetSelects(
Value *PtrA, Value *PtrB, Instruction *ContextInst, unsigned Depth) {
if (Depth++ == MaxDepth)
return std::nullopt;
if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
if (SelectA->getCondition() != SelectB->getCondition())
return std::nullopt;
LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetSelects, PtrA=" << *PtrA
<< ", PtrB=" << *PtrB << ", ContextInst="
<< *ContextInst << ", Depth=" << Depth << "\n");
std::optional<APInt> TrueDiff = getConstantOffset(
SelectA->getTrueValue(), SelectB->getTrueValue(), ContextInst, Depth);
if (!TrueDiff.has_value())
return std::nullopt;
std::optional<APInt> FalseDiff =
getConstantOffset(SelectA->getFalseValue(), SelectB->getFalseValue(),
ContextInst, Depth);
if (TrueDiff == FalseDiff)
return TrueDiff;
}
}
return std::nullopt;
}
EquivalenceClassMap
Vectorizer::collectEquivalenceClasses(BasicBlock::iterator Begin,
BasicBlock::iterator End) {
EquivalenceClassMap Ret;
auto getUnderlyingObject = [](const Value *Ptr) -> const Value * {
const Value *ObjPtr = llvm::getUnderlyingObject(Ptr);
if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
// The select's themselves are distinct instructions even if they share
// the same condition and evaluate to consecutive pointers for true and
// false values of the condition. Therefore using the select's themselves
// for grouping instructions would put consecutive accesses into different
// lists and they won't be even checked for being consecutive, and won't
// be vectorized.
return Sel->getCondition();
}
return ObjPtr;
};
for (Instruction &I : make_range(Begin, End)) {
auto *LI = dyn_cast<LoadInst>(&I);
auto *SI = dyn_cast<StoreInst>(&I);
if (!LI && !SI)
continue;
if ((LI && !LI->isSimple()) || (SI && !SI->isSimple()))
continue;
if ((LI && !TTI.isLegalToVectorizeLoad(LI)) ||
(SI && !TTI.isLegalToVectorizeStore(SI)))
continue;
Type *Ty = getLoadStoreType(&I);
if (!VectorType::isValidElementType(Ty->getScalarType()))
continue;
// Skip weird non-byte sizes. They probably aren't worth the effort of
// handling correctly.
unsigned TySize = DL.getTypeSizeInBits(Ty);
if ((TySize % 8) != 0)
continue;
// Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
// functions are currently using an integer type for the vectorized
// load/store, and does not support casting between the integer type and a
// vector of pointers (e.g. i64 to <2 x i16*>)
if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
continue;
Value *Ptr = getLoadStorePointerOperand(&I);
unsigned AS = Ptr->getType()->getPointerAddressSpace();
unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
unsigned VF = VecRegSize / TySize;
VectorType *VecTy = dyn_cast<VectorType>(Ty);
// Only handle power-of-two sized elements.
if ((!VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(Ty))) ||
(VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(VecTy->getScalarType()))))
continue;
// No point in looking at these if they're too big to vectorize.
if (TySize > VecRegSize / 2 ||
(VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
continue;
Ret[{getUnderlyingObject(Ptr), AS,
DL.getTypeSizeInBits(getLoadStoreType(&I)->getScalarType()),
/*IsLoad=*/LI != nullptr}]
.push_back(&I);
}
return Ret;
}
std::vector<Chain> Vectorizer::gatherChains(ArrayRef<Instruction *> Instrs) {
if (Instrs.empty())
return {};
unsigned AS = getLoadStoreAddressSpace(Instrs[0]);
unsigned ASPtrBits = DL.getIndexSizeInBits(AS);
#ifndef NDEBUG
// Check that Instrs is in BB order and all have the same addr space.
for (size_t I = 1; I < Instrs.size(); ++I) {
assert(Instrs[I - 1]->comesBefore(Instrs[I]));
assert(getLoadStoreAddressSpace(Instrs[I]) == AS);
}
#endif
// Machinery to build an MRU-hashtable of Chains.
//
// (Ideally this could be done with MapVector, but as currently implemented,
// moving an element to the front of a MapVector is O(n).)
struct InstrListElem : ilist_node<InstrListElem>,
std::pair<Instruction *, Chain> {
explicit InstrListElem(Instruction *I)
: std::pair<Instruction *, Chain>(I, {}) {}
};
struct InstrListElemDenseMapInfo {
using PtrInfo = DenseMapInfo<InstrListElem *>;
using IInfo = DenseMapInfo<Instruction *>;
static InstrListElem *getEmptyKey() { return PtrInfo::getEmptyKey(); }
static InstrListElem *getTombstoneKey() {
return PtrInfo::getTombstoneKey();
}
static unsigned getHashValue(const InstrListElem *E) {
return IInfo::getHashValue(E->first);
}
static bool isEqual(const InstrListElem *A, const InstrListElem *B) {
if (A == getEmptyKey() || B == getEmptyKey())
return A == getEmptyKey() && B == getEmptyKey();
if (A == getTombstoneKey() || B == getTombstoneKey())
return A == getTombstoneKey() && B == getTombstoneKey();
return IInfo::isEqual(A->first, B->first);
}
};
SpecificBumpPtrAllocator<InstrListElem> Allocator;
simple_ilist<InstrListElem> MRU;
DenseSet<InstrListElem *, InstrListElemDenseMapInfo> Chains;
// Compare each instruction in `instrs` to leader of the N most recently-used
// chains. This limits the O(n^2) behavior of this pass while also allowing
// us to build arbitrarily long chains.
for (Instruction *I : Instrs) {
constexpr int MaxChainsToTry = 64;
bool MatchFound = false;
auto ChainIter = MRU.begin();
for (size_t J = 0; J < MaxChainsToTry && ChainIter != MRU.end();
++J, ++ChainIter) {
std::optional<APInt> Offset = getConstantOffset(
getLoadStorePointerOperand(ChainIter->first),
getLoadStorePointerOperand(I),
/*ContextInst=*/
(ChainIter->first->comesBefore(I) ? I : ChainIter->first));
if (Offset.has_value()) {
// `Offset` might not have the expected number of bits, if e.g. AS has a
// different number of bits than opaque pointers.
ChainIter->second.push_back(ChainElem{I, Offset.value()});
// Move ChainIter to the front of the MRU list.
MRU.remove(*ChainIter);
MRU.push_front(*ChainIter);
MatchFound = true;
break;
}
}
if (!MatchFound) {
APInt ZeroOffset(ASPtrBits, 0);
InstrListElem *E = new (Allocator.Allocate()) InstrListElem(I);
E->second.push_back(ChainElem{I, ZeroOffset});
MRU.push_front(*E);
Chains.insert(E);
}
}
std::vector<Chain> Ret;
Ret.reserve(Chains.size());
// Iterate over MRU rather than Chains so the order is deterministic.
for (auto &E : MRU)
if (E.second.size() > 1)
Ret.push_back(std::move(E.second));
return Ret;
}
std::optional<APInt> Vectorizer::getConstantOffset(Value *PtrA, Value *PtrB,
Instruction *ContextInst,
unsigned Depth) {
LLVM_DEBUG(dbgs() << "LSV: getConstantOffset, PtrA=" << *PtrA
<< ", PtrB=" << *PtrB << ", ContextInst= " << *ContextInst
<< ", Depth=" << Depth << "\n");
// We'll ultimately return a value of this bit width, even if computations
// happen in a different width.
unsigned OrigBitWidth = DL.getIndexTypeSizeInBits(PtrA->getType());
APInt OffsetA(OrigBitWidth, 0);
APInt OffsetB(OrigBitWidth, 0);
PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());
if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
return std::nullopt;
// If we have to shrink the pointer, stripAndAccumulateInBoundsConstantOffsets
// should properly handle a possible overflow and the value should fit into
// the smallest data type used in the cast/gep chain.
assert(OffsetA.getSignificantBits() <= NewPtrBitWidth &&
OffsetB.getSignificantBits() <= NewPtrBitWidth);
OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
if (PtrA == PtrB)
return (OffsetB - OffsetA).sextOrTrunc(OrigBitWidth);
// Try to compute B - A.
const SCEV *DistScev = SE.getMinusSCEV(SE.getSCEV(PtrB), SE.getSCEV(PtrA));
if (DistScev != SE.getCouldNotCompute()) {
LLVM_DEBUG(dbgs() << "LSV: SCEV PtrB - PtrA =" << *DistScev << "\n");
ConstantRange DistRange = SE.getSignedRange(DistScev);
if (DistRange.isSingleElement()) {
// Handle index width (the width of Dist) != pointer width (the width of
// the Offset*s at this point).
APInt Dist = DistRange.getSingleElement()->sextOrTrunc(NewPtrBitWidth);
return (OffsetB - OffsetA + Dist).sextOrTrunc(OrigBitWidth);
}
}
std::optional<APInt> Diff =
getConstantOffsetComplexAddrs(PtrA, PtrB, ContextInst, Depth);
if (Diff.has_value())
return (OffsetB - OffsetA + Diff->sext(OffsetB.getBitWidth()))
.sextOrTrunc(OrigBitWidth);
return std::nullopt;
}