| //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// The AMDGPU target machine contains all of the hardware specific |
| /// information needed to emit code for SI+ GPUs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPUTargetMachine.h" |
| #include "AMDGPU.h" |
| #include "AMDGPUAliasAnalysis.h" |
| #include "AMDGPUCtorDtorLowering.h" |
| #include "AMDGPUExportClustering.h" |
| #include "AMDGPUIGroupLP.h" |
| #include "AMDGPUMacroFusion.h" |
| #include "AMDGPURegBankSelect.h" |
| #include "AMDGPUTargetObjectFile.h" |
| #include "AMDGPUTargetTransformInfo.h" |
| #include "AMDGPUUnifyDivergentExitNodes.h" |
| #include "GCNIterativeScheduler.h" |
| #include "GCNSchedStrategy.h" |
| #include "GCNVOPDUtils.h" |
| #include "R600.h" |
| #include "R600MachineFunctionInfo.h" |
| #include "R600TargetMachine.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "SIMachineScheduler.h" |
| #include "TargetInfo/AMDGPUTargetInfo.h" |
| #include "Utils/AMDGPUBaseInfo.h" |
| #include "llvm/Analysis/CGSCCPassManager.h" |
| #include "llvm/CodeGen/GlobalISel/CSEInfo.h" |
| #include "llvm/CodeGen/GlobalISel/IRTranslator.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" |
| #include "llvm/CodeGen/GlobalISel/Legalizer.h" |
| #include "llvm/CodeGen/GlobalISel/Localizer.h" |
| #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" |
| #include "llvm/CodeGen/MIRParser/MIParser.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Passes/PassBuilder.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/IPO/AlwaysInliner.h" |
| #include "llvm/Transforms/IPO/GlobalDCE.h" |
| #include "llvm/Transforms/IPO/Internalize.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Scalar/GVN.h" |
| #include "llvm/Transforms/Scalar/InferAddressSpaces.h" |
| #include "llvm/Transforms/Utils.h" |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h" |
| #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" |
| #include <optional> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| namespace { |
| class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> { |
| public: |
| SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) |
| : RegisterRegAllocBase(N, D, C) {} |
| }; |
| |
| class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> { |
| public: |
| VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) |
| : RegisterRegAllocBase(N, D, C) {} |
| }; |
| |
| static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, |
| const TargetRegisterClass &RC) { |
| return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); |
| } |
| |
| static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, |
| const TargetRegisterClass &RC) { |
| return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); |
| } |
| |
| |
| /// -{sgpr|vgpr}-regalloc=... command line option. |
| static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } |
| |
| /// A dummy default pass factory indicates whether the register allocator is |
| /// overridden on the command line. |
| static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; |
| static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; |
| |
| static SGPRRegisterRegAlloc |
| defaultSGPRRegAlloc("default", |
| "pick SGPR register allocator based on -O option", |
| useDefaultRegisterAllocator); |
| |
| static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false, |
| RegisterPassParser<SGPRRegisterRegAlloc>> |
| SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), |
| cl::desc("Register allocator to use for SGPRs")); |
| |
| static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false, |
| RegisterPassParser<VGPRRegisterRegAlloc>> |
| VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), |
| cl::desc("Register allocator to use for VGPRs")); |
| |
| |
| static void initializeDefaultSGPRRegisterAllocatorOnce() { |
| RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); |
| |
| if (!Ctor) { |
| Ctor = SGPRRegAlloc; |
| SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); |
| } |
| } |
| |
| static void initializeDefaultVGPRRegisterAllocatorOnce() { |
| RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); |
| |
| if (!Ctor) { |
| Ctor = VGPRRegAlloc; |
| VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); |
| } |
| } |
| |
| static FunctionPass *createBasicSGPRRegisterAllocator() { |
| return createBasicRegisterAllocator(onlyAllocateSGPRs); |
| } |
| |
| static FunctionPass *createGreedySGPRRegisterAllocator() { |
| return createGreedyRegisterAllocator(onlyAllocateSGPRs); |
| } |
| |
| static FunctionPass *createFastSGPRRegisterAllocator() { |
| return createFastRegisterAllocator(onlyAllocateSGPRs, false); |
| } |
| |
| static FunctionPass *createBasicVGPRRegisterAllocator() { |
| return createBasicRegisterAllocator(onlyAllocateVGPRs); |
| } |
| |
| static FunctionPass *createGreedyVGPRRegisterAllocator() { |
| return createGreedyRegisterAllocator(onlyAllocateVGPRs); |
| } |
| |
| static FunctionPass *createFastVGPRRegisterAllocator() { |
| return createFastRegisterAllocator(onlyAllocateVGPRs, true); |
| } |
| |
| static SGPRRegisterRegAlloc basicRegAllocSGPR( |
| "basic", "basic register allocator", createBasicSGPRRegisterAllocator); |
| static SGPRRegisterRegAlloc greedyRegAllocSGPR( |
| "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); |
| |
| static SGPRRegisterRegAlloc fastRegAllocSGPR( |
| "fast", "fast register allocator", createFastSGPRRegisterAllocator); |
| |
| |
| static VGPRRegisterRegAlloc basicRegAllocVGPR( |
| "basic", "basic register allocator", createBasicVGPRRegisterAllocator); |
| static VGPRRegisterRegAlloc greedyRegAllocVGPR( |
| "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); |
| |
| static VGPRRegisterRegAlloc fastRegAllocVGPR( |
| "fast", "fast register allocator", createFastVGPRRegisterAllocator); |
| } |
| |
| static cl::opt<bool> |
| EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, |
| cl::desc("Run early if-conversion"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, |
| cl::desc("Run pre-RA exec mask optimizations"), |
| cl::init(true)); |
| |
| static cl::opt<bool> |
| LowerCtorDtor("amdgpu-lower-global-ctor-dtor", |
| cl::desc("Lower GPU ctor / dtors to globals on the device."), |
| cl::init(true), cl::Hidden); |
| |
| // Option to disable vectorizer for tests. |
| static cl::opt<bool> EnableLoadStoreVectorizer( |
| "amdgpu-load-store-vectorizer", |
| cl::desc("Enable load store vectorizer"), |
| cl::init(true), |
| cl::Hidden); |
| |
| // Option to control global loads scalarization |
| static cl::opt<bool> ScalarizeGlobal( |
| "amdgpu-scalarize-global-loads", |
| cl::desc("Enable global load scalarization"), |
| cl::init(true), |
| cl::Hidden); |
| |
| // Option to run internalize pass. |
| static cl::opt<bool> InternalizeSymbols( |
| "amdgpu-internalize-symbols", |
| cl::desc("Enable elimination of non-kernel functions and unused globals"), |
| cl::init(false), |
| cl::Hidden); |
| |
| // Option to inline all early. |
| static cl::opt<bool> EarlyInlineAll( |
| "amdgpu-early-inline-all", |
| cl::desc("Inline all functions early"), |
| cl::init(false), |
| cl::Hidden); |
| |
| static cl::opt<bool> RemoveIncompatibleFunctions( |
| "amdgpu-enable-remove-incompatible-functions", cl::Hidden, |
| cl::desc("Enable removal of functions when they" |
| "use features not supported by the target GPU"), |
| cl::init(true)); |
| |
| static cl::opt<bool> EnableSDWAPeephole( |
| "amdgpu-sdwa-peephole", |
| cl::desc("Enable SDWA peepholer"), |
| cl::init(true)); |
| |
| static cl::opt<bool> EnableDPPCombine( |
| "amdgpu-dpp-combine", |
| cl::desc("Enable DPP combiner"), |
| cl::init(true)); |
| |
| // Enable address space based alias analysis |
| static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, |
| cl::desc("Enable AMDGPU Alias Analysis"), |
| cl::init(true)); |
| |
| // Option to run late CFG structurizer |
| static cl::opt<bool, true> LateCFGStructurize( |
| "amdgpu-late-structurize", |
| cl::desc("Enable late CFG structurization"), |
| cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), |
| cl::Hidden); |
| |
| // Enable lib calls simplifications |
| static cl::opt<bool> EnableLibCallSimplify( |
| "amdgpu-simplify-libcall", |
| cl::desc("Enable amdgpu library simplifications"), |
| cl::init(true), |
| cl::Hidden); |
| |
| static cl::opt<bool> EnableLowerKernelArguments( |
| "amdgpu-ir-lower-kernel-arguments", |
| cl::desc("Lower kernel argument loads in IR pass"), |
| cl::init(true), |
| cl::Hidden); |
| |
| static cl::opt<bool> EnableRegReassign( |
| "amdgpu-reassign-regs", |
| cl::desc("Enable register reassign optimizations on gfx10+"), |
| cl::init(true), |
| cl::Hidden); |
| |
| static cl::opt<bool> OptVGPRLiveRange( |
| "amdgpu-opt-vgpr-liverange", |
| cl::desc("Enable VGPR liverange optimizations for if-else structure"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<ScanOptions> AMDGPUAtomicOptimizerStrategy( |
| "amdgpu-atomic-optimizer-strategy", |
| cl::desc("Select DPP or Iterative strategy for scan"), |
| cl::init(ScanOptions::Iterative), |
| cl::values( |
| clEnumValN(ScanOptions::DPP, "DPP", "Use DPP operations for scan"), |
| clEnumValN(ScanOptions::Iterative, "Iterative", |
| "Use Iterative approach for scan"), |
| clEnumValN(ScanOptions::None, "None", "Disable atomic optimizer"))); |
| |
| // Enable Mode register optimization |
| static cl::opt<bool> EnableSIModeRegisterPass( |
| "amdgpu-mode-register", |
| cl::desc("Enable mode register pass"), |
| cl::init(true), |
| cl::Hidden); |
| |
| // Enable GFX11+ s_delay_alu insertion |
| static cl::opt<bool> |
| EnableInsertDelayAlu("amdgpu-enable-delay-alu", |
| cl::desc("Enable s_delay_alu insertion"), |
| cl::init(true), cl::Hidden); |
| |
| // Enable GFX11+ VOPD |
| static cl::opt<bool> |
| EnableVOPD("amdgpu-enable-vopd", |
| cl::desc("Enable VOPD, dual issue of VALU in wave32"), |
| cl::init(true), cl::Hidden); |
| |
| // Option is used in lit tests to prevent deadcoding of patterns inspected. |
| static cl::opt<bool> |
| EnableDCEInRA("amdgpu-dce-in-ra", |
| cl::init(true), cl::Hidden, |
| cl::desc("Enable machine DCE inside regalloc")); |
| |
| static cl::opt<bool> EnableSetWavePriority("amdgpu-set-wave-priority", |
| cl::desc("Adjust wave priority"), |
| cl::init(false), cl::Hidden); |
| |
| static cl::opt<bool> EnableScalarIRPasses( |
| "amdgpu-scalar-ir-passes", |
| cl::desc("Enable scalar IR passes"), |
| cl::init(true), |
| cl::Hidden); |
| |
| static cl::opt<bool> EnableStructurizerWorkarounds( |
| "amdgpu-enable-structurizer-workarounds", |
| cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), |
| cl::Hidden); |
| |
| static cl::opt<bool, true> EnableLowerModuleLDS( |
| "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), |
| cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), |
| cl::Hidden); |
| |
| static cl::opt<bool> EnablePreRAOptimizations( |
| "amdgpu-enable-pre-ra-optimizations", |
| cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), |
| cl::Hidden); |
| |
| static cl::opt<bool> EnablePromoteKernelArguments( |
| "amdgpu-enable-promote-kernel-arguments", |
| cl::desc("Enable promotion of flat kernel pointer arguments to global"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> EnableImageIntrinsicOptimizer( |
| "amdgpu-enable-image-intrinsic-optimizer", |
| cl::desc("Enable image intrinsic optimizer pass"), cl::init(true), |
| cl::Hidden); |
| |
| static cl::opt<bool> EnableMaxIlpSchedStrategy( |
| "amdgpu-enable-max-ilp-scheduling-strategy", |
| cl::desc("Enable scheduling strategy to maximize ILP for a single wave."), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> EnableRewritePartialRegUses( |
| "amdgpu-enable-rewrite-partial-reg-uses", |
| cl::desc("Enable rewrite partial reg uses pass"), cl::init(false), |
| cl::Hidden); |
| |
| extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { |
| // Register the target |
| RegisterTargetMachine<R600TargetMachine> X(getTheR600Target()); |
| RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); |
| |
| PassRegistry *PR = PassRegistry::getPassRegistry(); |
| initializeR600ClauseMergePassPass(*PR); |
| initializeR600ControlFlowFinalizerPass(*PR); |
| initializeR600PacketizerPass(*PR); |
| initializeR600ExpandSpecialInstrsPassPass(*PR); |
| initializeR600VectorRegMergerPass(*PR); |
| initializeGlobalISel(*PR); |
| initializeAMDGPUDAGToDAGISelPass(*PR); |
| initializeGCNDPPCombinePass(*PR); |
| initializeSILowerI1CopiesPass(*PR); |
| initializeSILowerWWMCopiesPass(*PR); |
| initializeSILowerSGPRSpillsPass(*PR); |
| initializeSIFixSGPRCopiesPass(*PR); |
| initializeSIFixVGPRCopiesPass(*PR); |
| initializeSIFoldOperandsPass(*PR); |
| initializeSIPeepholeSDWAPass(*PR); |
| initializeSIShrinkInstructionsPass(*PR); |
| initializeSIOptimizeExecMaskingPreRAPass(*PR); |
| initializeSIOptimizeVGPRLiveRangePass(*PR); |
| initializeSILoadStoreOptimizerPass(*PR); |
| initializeAMDGPUCtorDtorLoweringLegacyPass(*PR); |
| initializeAMDGPUAlwaysInlinePass(*PR); |
| initializeAMDGPUAttributorPass(*PR); |
| initializeAMDGPUAnnotateKernelFeaturesPass(*PR); |
| initializeAMDGPUAnnotateUniformValuesPass(*PR); |
| initializeAMDGPUArgumentUsageInfoPass(*PR); |
| initializeAMDGPUAtomicOptimizerPass(*PR); |
| initializeAMDGPULowerKernelArgumentsPass(*PR); |
| initializeAMDGPUPromoteKernelArgumentsPass(*PR); |
| initializeAMDGPULowerKernelAttributesPass(*PR); |
| initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); |
| initializeAMDGPUPostLegalizerCombinerPass(*PR); |
| initializeAMDGPUPreLegalizerCombinerPass(*PR); |
| initializeAMDGPURegBankCombinerPass(*PR); |
| initializeAMDGPURegBankSelectPass(*PR); |
| initializeAMDGPUPromoteAllocaPass(*PR); |
| initializeAMDGPUPromoteAllocaToVectorPass(*PR); |
| initializeAMDGPUCodeGenPreparePass(*PR); |
| initializeAMDGPULateCodeGenPreparePass(*PR); |
| initializeAMDGPURemoveIncompatibleFunctionsPass(*PR); |
| initializeAMDGPULowerModuleLDSLegacyPass(*PR); |
| initializeAMDGPURewriteOutArgumentsPass(*PR); |
| initializeAMDGPURewriteUndefForPHILegacyPass(*PR); |
| initializeAMDGPUUnifyMetadataPass(*PR); |
| initializeSIAnnotateControlFlowPass(*PR); |
| initializeAMDGPUInsertDelayAluPass(*PR); |
| initializeSIInsertHardClausesPass(*PR); |
| initializeSIInsertWaitcntsPass(*PR); |
| initializeSIModeRegisterPass(*PR); |
| initializeSIWholeQuadModePass(*PR); |
| initializeSILowerControlFlowPass(*PR); |
| initializeSIPreEmitPeepholePass(*PR); |
| initializeSILateBranchLoweringPass(*PR); |
| initializeSIMemoryLegalizerPass(*PR); |
| initializeSIOptimizeExecMaskingPass(*PR); |
| initializeSIPreAllocateWWMRegsPass(*PR); |
| initializeSIFormMemoryClausesPass(*PR); |
| initializeSIPostRABundlerPass(*PR); |
| initializeGCNCreateVOPDPass(*PR); |
| initializeAMDGPUUnifyDivergentExitNodesPass(*PR); |
| initializeAMDGPUAAWrapperPassPass(*PR); |
| initializeAMDGPUExternalAAWrapperPass(*PR); |
| initializeAMDGPUImageIntrinsicOptimizerPass(*PR); |
| initializeAMDGPUPrintfRuntimeBindingPass(*PR); |
| initializeAMDGPUResourceUsageAnalysisPass(*PR); |
| initializeGCNNSAReassignPass(*PR); |
| initializeGCNPreRAOptimizationsPass(*PR); |
| initializeGCNPreRALongBranchRegPass(*PR); |
| initializeGCNRewritePartialRegUsesPass(*PR); |
| } |
| |
| static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { |
| return std::make_unique<AMDGPUTargetObjectFile>(); |
| } |
| |
| static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { |
| return new SIScheduleDAGMI(C); |
| } |
| |
| static ScheduleDAGInstrs * |
| createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { |
| const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); |
| ScheduleDAGMILive *DAG = |
| new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); |
| DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); |
| if (ST.shouldClusterStores()) |
| DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); |
| DAG->addMutation(createIGroupLPDAGMutation()); |
| DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); |
| DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); |
| return DAG; |
| } |
| |
| static ScheduleDAGInstrs * |
| createGCNMaxILPMachineScheduler(MachineSchedContext *C) { |
| ScheduleDAGMILive *DAG = |
| new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxILPSchedStrategy>(C)); |
| DAG->addMutation(createIGroupLPDAGMutation()); |
| return DAG; |
| } |
| |
| static ScheduleDAGInstrs * |
| createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { |
| const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); |
| auto DAG = new GCNIterativeScheduler(C, |
| GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); |
| DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); |
| if (ST.shouldClusterStores()) |
| DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); |
| return DAG; |
| } |
| |
| static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { |
| return new GCNIterativeScheduler(C, |
| GCNIterativeScheduler::SCHEDULE_MINREGFORCED); |
| } |
| |
| static ScheduleDAGInstrs * |
| createIterativeILPMachineScheduler(MachineSchedContext *C) { |
| const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); |
| auto DAG = new GCNIterativeScheduler(C, |
| GCNIterativeScheduler::SCHEDULE_ILP); |
| DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); |
| if (ST.shouldClusterStores()) |
| DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); |
| DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); |
| return DAG; |
| } |
| |
| static MachineSchedRegistry |
| SISchedRegistry("si", "Run SI's custom scheduler", |
| createSIMachineScheduler); |
| |
| static MachineSchedRegistry |
| GCNMaxOccupancySchedRegistry("gcn-max-occupancy", |
| "Run GCN scheduler to maximize occupancy", |
| createGCNMaxOccupancyMachineScheduler); |
| |
| static MachineSchedRegistry |
| GCNMaxILPSchedRegistry("gcn-max-ilp", "Run GCN scheduler to maximize ilp", |
| createGCNMaxILPMachineScheduler); |
| |
| static MachineSchedRegistry IterativeGCNMaxOccupancySchedRegistry( |
| "gcn-iterative-max-occupancy-experimental", |
| "Run GCN scheduler to maximize occupancy (experimental)", |
| createIterativeGCNMaxOccupancyMachineScheduler); |
| |
| static MachineSchedRegistry GCNMinRegSchedRegistry( |
| "gcn-iterative-minreg", |
| "Run GCN iterative scheduler for minimal register usage (experimental)", |
| createMinRegScheduler); |
| |
| static MachineSchedRegistry GCNILPSchedRegistry( |
| "gcn-iterative-ilp", |
| "Run GCN iterative scheduler for ILP scheduling (experimental)", |
| createIterativeILPMachineScheduler); |
| |
| static StringRef computeDataLayout(const Triple &TT) { |
| if (TT.getArch() == Triple::r600) { |
| // 32-bit pointers. |
| return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" |
| "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; |
| } |
| |
| // 32-bit private, local, and region pointers. 64-bit global, constant and |
| // flat. 160-bit non-integral fat buffer pointers that include a 128-bit |
| // buffer descriptor and a 32-bit offset, which are indexed by 32-bit values |
| // (address space 7), and 128-bit non-integral buffer resourcees (address |
| // space 8) which cannot be non-trivilally accessed by LLVM memory operations |
| // like getelementptr. |
| return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" |
| "-p7:160:256:256:32-p8:128:128-i64:64-v16:16-v24:32-v32:32-v48:64-v96:" |
| "128-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-" |
| "G1-ni:7:8"; |
| } |
| |
| LLVM_READNONE |
| static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { |
| if (!GPU.empty()) |
| return GPU; |
| |
| // Need to default to a target with flat support for HSA. |
| if (TT.getArch() == Triple::amdgcn) |
| return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; |
| |
| return "r600"; |
| } |
| |
| static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) { |
| // The AMDGPU toolchain only supports generating shared objects, so we |
| // must always use PIC. |
| return Reloc::PIC_; |
| } |
| |
| AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, |
| StringRef CPU, StringRef FS, |
| TargetOptions Options, |
| std::optional<Reloc::Model> RM, |
| std::optional<CodeModel::Model> CM, |
| CodeGenOptLevel OptLevel) |
| : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), |
| FS, Options, getEffectiveRelocModel(RM), |
| getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), |
| TLOF(createTLOF(getTargetTriple())) { |
| initAsmInfo(); |
| if (TT.getArch() == Triple::amdgcn) { |
| if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) |
| MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); |
| else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) |
| MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); |
| } |
| } |
| |
| bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; |
| bool AMDGPUTargetMachine::EnableFunctionCalls = false; |
| bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; |
| |
| AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; |
| |
| StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { |
| Attribute GPUAttr = F.getFnAttribute("target-cpu"); |
| return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); |
| } |
| |
| StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { |
| Attribute FSAttr = F.getFnAttribute("target-features"); |
| |
| return FSAttr.isValid() ? FSAttr.getValueAsString() |
| : getTargetFeatureString(); |
| } |
| |
| /// Predicate for Internalize pass. |
| static bool mustPreserveGV(const GlobalValue &GV) { |
| if (const Function *F = dyn_cast<Function>(&GV)) |
| return F->isDeclaration() || F->getName().startswith("__asan_") || |
| F->getName().startswith("__sanitizer_") || |
| AMDGPU::isEntryFunctionCC(F->getCallingConv()); |
| |
| GV.removeDeadConstantUsers(); |
| return !GV.use_empty(); |
| } |
| |
| void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { |
| AAM.registerFunctionAnalysis<AMDGPUAA>(); |
| } |
| |
| void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { |
| PB.registerPipelineParsingCallback( |
| [this](StringRef PassName, ModulePassManager &PM, |
| ArrayRef<PassBuilder::PipelineElement>) { |
| if (PassName == "amdgpu-unify-metadata") { |
| PM.addPass(AMDGPUUnifyMetadataPass()); |
| return true; |
| } |
| if (PassName == "amdgpu-printf-runtime-binding") { |
| PM.addPass(AMDGPUPrintfRuntimeBindingPass()); |
| return true; |
| } |
| if (PassName == "amdgpu-always-inline") { |
| PM.addPass(AMDGPUAlwaysInlinePass()); |
| return true; |
| } |
| if (PassName == "amdgpu-lower-module-lds") { |
| PM.addPass(AMDGPULowerModuleLDSPass(*this)); |
| return true; |
| } |
| if (PassName == "amdgpu-lower-ctor-dtor") { |
| PM.addPass(AMDGPUCtorDtorLoweringPass()); |
| return true; |
| } |
| return false; |
| }); |
| PB.registerPipelineParsingCallback( |
| [this](StringRef PassName, FunctionPassManager &PM, |
| ArrayRef<PassBuilder::PipelineElement>) { |
| if (PassName == "amdgpu-simplifylib") { |
| PM.addPass(AMDGPUSimplifyLibCallsPass()); |
| return true; |
| } |
| if (PassName == "amdgpu-image-intrinsic-opt") { |
| PM.addPass(AMDGPUImageIntrinsicOptimizerPass(*this)); |
| return true; |
| } |
| if (PassName == "amdgpu-usenative") { |
| PM.addPass(AMDGPUUseNativeCallsPass()); |
| return true; |
| } |
| if (PassName == "amdgpu-promote-alloca") { |
| PM.addPass(AMDGPUPromoteAllocaPass(*this)); |
| return true; |
| } |
| if (PassName == "amdgpu-promote-alloca-to-vector") { |
| PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); |
| return true; |
| } |
| if (PassName == "amdgpu-lower-kernel-attributes") { |
| PM.addPass(AMDGPULowerKernelAttributesPass()); |
| return true; |
| } |
| if (PassName == "amdgpu-promote-kernel-arguments") { |
| PM.addPass(AMDGPUPromoteKernelArgumentsPass()); |
| return true; |
| } |
| if (PassName == "amdgpu-unify-divergent-exit-nodes") { |
| PM.addPass(AMDGPUUnifyDivergentExitNodesPass()); |
| return true; |
| } |
| if (PassName == "amdgpu-atomic-optimizer") { |
| PM.addPass( |
| AMDGPUAtomicOptimizerPass(*this, AMDGPUAtomicOptimizerStrategy)); |
| return true; |
| } |
| if (PassName == "amdgpu-codegenprepare") { |
| PM.addPass(AMDGPUCodeGenPreparePass(*this)); |
| return true; |
| } |
| if (PassName == "amdgpu-lower-kernel-arguments") { |
| PM.addPass(AMDGPULowerKernelArgumentsPass(*this)); |
| return true; |
| } |
| if (PassName == "amdgpu-rewrite-undef-for-phi") { |
| PM.addPass(AMDGPURewriteUndefForPHIPass()); |
| return true; |
| } |
| return false; |
| }); |
| |
| PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { |
| FAM.registerPass([&] { return AMDGPUAA(); }); |
| }); |
| |
| PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { |
| if (AAName == "amdgpu-aa") { |
| AAM.registerFunctionAnalysis<AMDGPUAA>(); |
| return true; |
| } |
| return false; |
| }); |
| |
| PB.registerPipelineStartEPCallback( |
| [](ModulePassManager &PM, OptimizationLevel Level) { |
| FunctionPassManager FPM; |
| FPM.addPass(AMDGPUUseNativeCallsPass()); |
| if (EnableLibCallSimplify && Level != OptimizationLevel::O0) |
| FPM.addPass(AMDGPUSimplifyLibCallsPass()); |
| PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); |
| }); |
| |
| PB.registerPipelineEarlySimplificationEPCallback( |
| [](ModulePassManager &PM, OptimizationLevel Level) { |
| PM.addPass(AMDGPUPrintfRuntimeBindingPass()); |
| |
| if (Level == OptimizationLevel::O0) |
| return; |
| |
| PM.addPass(AMDGPUUnifyMetadataPass()); |
| |
| if (InternalizeSymbols) { |
| PM.addPass(InternalizePass(mustPreserveGV)); |
| PM.addPass(GlobalDCEPass()); |
| } |
| |
| if (EarlyInlineAll && !EnableFunctionCalls) |
| PM.addPass(AMDGPUAlwaysInlinePass()); |
| }); |
| |
| PB.registerCGSCCOptimizerLateEPCallback( |
| [this](CGSCCPassManager &PM, OptimizationLevel Level) { |
| if (Level == OptimizationLevel::O0) |
| return; |
| |
| FunctionPassManager FPM; |
| |
| // Add promote kernel arguments pass to the opt pipeline right before |
| // infer address spaces which is needed to do actual address space |
| // rewriting. |
| if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() && |
| EnablePromoteKernelArguments) |
| FPM.addPass(AMDGPUPromoteKernelArgumentsPass()); |
| |
| // Add infer address spaces pass to the opt pipeline after inlining |
| // but before SROA to increase SROA opportunities. |
| FPM.addPass(InferAddressSpacesPass()); |
| |
| // This should run after inlining to have any chance of doing |
| // anything, and before other cleanup optimizations. |
| FPM.addPass(AMDGPULowerKernelAttributesPass()); |
| |
| if (Level != OptimizationLevel::O0) { |
| // Promote alloca to vector before SROA and loop unroll. If we |
| // manage to eliminate allocas before unroll we may choose to unroll |
| // less. |
| FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); |
| } |
| |
| PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); |
| }); |
| } |
| |
| int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { |
| return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || |
| AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || |
| AddrSpace == AMDGPUAS::REGION_ADDRESS) |
| ? -1 |
| : 0; |
| } |
| |
| bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, |
| unsigned DestAS) const { |
| return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && |
| AMDGPU::isFlatGlobalAddrSpace(DestAS); |
| } |
| |
| unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { |
| const auto *LD = dyn_cast<LoadInst>(V); |
| if (!LD) |
| return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; |
| |
| // It must be a generic pointer loaded. |
| assert(V->getType()->isPointerTy() && |
| V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); |
| |
| const auto *Ptr = LD->getPointerOperand(); |
| if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) |
| return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; |
| // For a generic pointer loaded from the constant memory, it could be assumed |
| // as a global pointer since the constant memory is only populated on the |
| // host side. As implied by the offload programming model, only global |
| // pointers could be referenced on the host side. |
| return AMDGPUAS::GLOBAL_ADDRESS; |
| } |
| |
| std::pair<const Value *, unsigned> |
| AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const { |
| if (auto *II = dyn_cast<IntrinsicInst>(V)) { |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::amdgcn_is_shared: |
| return std::pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS); |
| case Intrinsic::amdgcn_is_private: |
| return std::pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS); |
| default: |
| break; |
| } |
| return std::pair(nullptr, -1); |
| } |
| // Check the global pointer predication based on |
| // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and |
| // the order of 'is_shared' and 'is_private' is not significant. |
| Value *Ptr; |
| if (match( |
| const_cast<Value *>(V), |
| m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))), |
| m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>( |
| m_Deferred(Ptr)))))) |
| return std::pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS); |
| |
| return std::pair(nullptr, -1); |
| } |
| |
| unsigned |
| AMDGPUTargetMachine::getAddressSpaceForPseudoSourceKind(unsigned Kind) const { |
| switch (Kind) { |
| case PseudoSourceValue::Stack: |
| case PseudoSourceValue::FixedStack: |
| return AMDGPUAS::PRIVATE_ADDRESS; |
| case PseudoSourceValue::ConstantPool: |
| case PseudoSourceValue::GOT: |
| case PseudoSourceValue::JumpTable: |
| case PseudoSourceValue::GlobalValueCallEntry: |
| case PseudoSourceValue::ExternalSymbolCallEntry: |
| return AMDGPUAS::CONSTANT_ADDRESS; |
| } |
| return AMDGPUAS::FLAT_ADDRESS; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GCN Target Machine (SI+) |
| //===----------------------------------------------------------------------===// |
| |
| GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, |
| StringRef CPU, StringRef FS, |
| TargetOptions Options, |
| std::optional<Reloc::Model> RM, |
| std::optional<CodeModel::Model> CM, |
| CodeGenOptLevel OL, bool JIT) |
| : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} |
| |
| const TargetSubtargetInfo * |
| GCNTargetMachine::getSubtargetImpl(const Function &F) const { |
| StringRef GPU = getGPUName(F); |
| StringRef FS = getFeatureString(F); |
| |
| SmallString<128> SubtargetKey(GPU); |
| SubtargetKey.append(FS); |
| |
| auto &I = SubtargetMap[SubtargetKey]; |
| if (!I) { |
| // This needs to be done before we create a new subtarget since any |
| // creation will depend on the TM and the code generation flags on the |
| // function that reside in TargetOptions. |
| resetTargetOptions(F); |
| I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); |
| } |
| |
| I->setScalarizeGlobalBehavior(ScalarizeGlobal); |
| |
| return I.get(); |
| } |
| |
| TargetTransformInfo |
| GCNTargetMachine::getTargetTransformInfo(const Function &F) const { |
| return TargetTransformInfo(GCNTTIImpl(this, F)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AMDGPU Pass Setup |
| //===----------------------------------------------------------------------===// |
| |
| std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const { |
| return getStandardCSEConfigForOpt(TM->getOptLevel()); |
| } |
| |
| namespace { |
| |
| class GCNPassConfig final : public AMDGPUPassConfig { |
| public: |
| GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) |
| : AMDGPUPassConfig(TM, PM) { |
| // It is necessary to know the register usage of the entire call graph. We |
| // allow calls without EnableAMDGPUFunctionCalls if they are marked |
| // noinline, so this is always required. |
| setRequiresCodeGenSCCOrder(true); |
| substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); |
| } |
| |
| GCNTargetMachine &getGCNTargetMachine() const { |
| return getTM<GCNTargetMachine>(); |
| } |
| |
| ScheduleDAGInstrs * |
| createMachineScheduler(MachineSchedContext *C) const override; |
| |
| ScheduleDAGInstrs * |
| createPostMachineScheduler(MachineSchedContext *C) const override { |
| ScheduleDAGMI *DAG = new GCNPostScheduleDAGMILive( |
| C, std::make_unique<PostGenericScheduler>(C), |
| /*RemoveKillFlags=*/true); |
| const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); |
| DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); |
| if (ST.shouldClusterStores()) |
| DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); |
| DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII)); |
| DAG->addMutation(createIGroupLPDAGMutation()); |
| if (isPassEnabled(EnableVOPD, CodeGenOptLevel::Less)) |
| DAG->addMutation(createVOPDPairingMutation()); |
| return DAG; |
| } |
| |
| bool addPreISel() override; |
| void addMachineSSAOptimization() override; |
| bool addILPOpts() override; |
| bool addInstSelector() override; |
| bool addIRTranslator() override; |
| void addPreLegalizeMachineIR() override; |
| bool addLegalizeMachineIR() override; |
| void addPreRegBankSelect() override; |
| bool addRegBankSelect() override; |
| void addPreGlobalInstructionSelect() override; |
| bool addGlobalInstructionSelect() override; |
| void addFastRegAlloc() override; |
| void addOptimizedRegAlloc() override; |
| |
| FunctionPass *createSGPRAllocPass(bool Optimized); |
| FunctionPass *createVGPRAllocPass(bool Optimized); |
| FunctionPass *createRegAllocPass(bool Optimized) override; |
| |
| bool addRegAssignAndRewriteFast() override; |
| bool addRegAssignAndRewriteOptimized() override; |
| |
| void addPreRegAlloc() override; |
| bool addPreRewrite() override; |
| void addPostRegAlloc() override; |
| void addPreSched2() override; |
| void addPreEmitPass() override; |
| }; |
| |
| } // end anonymous namespace |
| |
| AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) |
| : TargetPassConfig(TM, PM) { |
| // Exceptions and StackMaps are not supported, so these passes will never do |
| // anything. |
| disablePass(&StackMapLivenessID); |
| disablePass(&FuncletLayoutID); |
| // Garbage collection is not supported. |
| disablePass(&GCLoweringID); |
| disablePass(&ShadowStackGCLoweringID); |
| } |
| |
| void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { |
| if (getOptLevel() == CodeGenOptLevel::Aggressive) |
| addPass(createGVNPass()); |
| else |
| addPass(createEarlyCSEPass()); |
| } |
| |
| void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { |
| addPass(createSeparateConstOffsetFromGEPPass()); |
| // ReassociateGEPs exposes more opportunities for SLSR. See |
| // the example in reassociate-geps-and-slsr.ll. |
| addPass(createStraightLineStrengthReducePass()); |
| // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or |
| // EarlyCSE can reuse. |
| addEarlyCSEOrGVNPass(); |
| // Run NaryReassociate after EarlyCSE/GVN to be more effective. |
| addPass(createNaryReassociatePass()); |
| // NaryReassociate on GEPs creates redundant common expressions, so run |
| // EarlyCSE after it. |
| addPass(createEarlyCSEPass()); |
| } |
| |
| void AMDGPUPassConfig::addIRPasses() { |
| const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); |
| |
| Triple::ArchType Arch = TM.getTargetTriple().getArch(); |
| if (RemoveIncompatibleFunctions && Arch == Triple::amdgcn) |
| addPass(createAMDGPURemoveIncompatibleFunctionsPass(&TM)); |
| |
| // There is no reason to run these. |
| disablePass(&StackMapLivenessID); |
| disablePass(&FuncletLayoutID); |
| disablePass(&PatchableFunctionID); |
| |
| addPass(createAMDGPUPrintfRuntimeBinding()); |
| if (LowerCtorDtor) |
| addPass(createAMDGPUCtorDtorLoweringLegacyPass()); |
| |
| if (isPassEnabled(EnableImageIntrinsicOptimizer)) |
| addPass(createAMDGPUImageIntrinsicOptimizerPass(&TM)); |
| |
| // Function calls are not supported, so make sure we inline everything. |
| addPass(createAMDGPUAlwaysInlinePass()); |
| addPass(createAlwaysInlinerLegacyPass()); |
| |
| // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. |
| if (Arch == Triple::r600) |
| addPass(createR600OpenCLImageTypeLoweringPass()); |
| |
| // Replace OpenCL enqueued block function pointers with global variables. |
| addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); |
| |
| // Runs before PromoteAlloca so the latter can account for function uses |
| if (EnableLowerModuleLDS) { |
| addPass(createAMDGPULowerModuleLDSLegacyPass(&TM)); |
| } |
| |
| // AMDGPUAttributor infers lack of llvm.amdgcn.lds.kernel.id calls, so run |
| // after their introduction |
| if (TM.getOptLevel() > CodeGenOptLevel::None) |
| addPass(createAMDGPUAttributorPass()); |
| |
| if (TM.getOptLevel() > CodeGenOptLevel::None) |
| addPass(createInferAddressSpacesPass()); |
| |
| // Run atomic optimizer before Atomic Expand |
| if ((TM.getTargetTriple().getArch() == Triple::amdgcn) && |
| (TM.getOptLevel() >= CodeGenOptLevel::Less) && |
| (AMDGPUAtomicOptimizerStrategy != ScanOptions::None)) { |
| addPass(createAMDGPUAtomicOptimizerPass(AMDGPUAtomicOptimizerStrategy)); |
| } |
| |
| addPass(createAtomicExpandPass()); |
| |
| if (TM.getOptLevel() > CodeGenOptLevel::None) { |
| addPass(createAMDGPUPromoteAlloca()); |
| |
| if (isPassEnabled(EnableScalarIRPasses)) |
| addStraightLineScalarOptimizationPasses(); |
| |
| if (EnableAMDGPUAliasAnalysis) { |
| addPass(createAMDGPUAAWrapperPass()); |
| addPass(createExternalAAWrapperPass([](Pass &P, Function &, |
| AAResults &AAR) { |
| if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) |
| AAR.addAAResult(WrapperPass->getResult()); |
| })); |
| } |
| |
| if (TM.getTargetTriple().getArch() == Triple::amdgcn) { |
| // TODO: May want to move later or split into an early and late one. |
| addPass(createAMDGPUCodeGenPreparePass()); |
| } |
| |
| // Try to hoist loop invariant parts of divisions AMDGPUCodeGenPrepare may |
| // have expanded. |
| if (TM.getOptLevel() > CodeGenOptLevel::Less) |
| addPass(createLICMPass()); |
| } |
| |
| TargetPassConfig::addIRPasses(); |
| |
| // EarlyCSE is not always strong enough to clean up what LSR produces. For |
| // example, GVN can combine |
| // |
| // %0 = add %a, %b |
| // %1 = add %b, %a |
| // |
| // and |
| // |
| // %0 = shl nsw %a, 2 |
| // %1 = shl %a, 2 |
| // |
| // but EarlyCSE can do neither of them. |
| if (isPassEnabled(EnableScalarIRPasses)) |
| addEarlyCSEOrGVNPass(); |
| } |
| |
| void AMDGPUPassConfig::addCodeGenPrepare() { |
| if (TM->getTargetTriple().getArch() == Triple::amdgcn) { |
| // FIXME: This pass adds 2 hacky attributes that can be replaced with an |
| // analysis, and should be removed. |
| addPass(createAMDGPUAnnotateKernelFeaturesPass()); |
| } |
| |
| if (TM->getTargetTriple().getArch() == Triple::amdgcn && |
| EnableLowerKernelArguments) |
| addPass(createAMDGPULowerKernelArgumentsPass()); |
| |
| TargetPassConfig::addCodeGenPrepare(); |
| |
| if (isPassEnabled(EnableLoadStoreVectorizer)) |
| addPass(createLoadStoreVectorizerPass()); |
| |
| // LowerSwitch pass may introduce unreachable blocks that can |
| // cause unexpected behavior for subsequent passes. Placing it |
| // here seems better that these blocks would get cleaned up by |
| // UnreachableBlockElim inserted next in the pass flow. |
| addPass(createLowerSwitchPass()); |
| } |
| |
| bool AMDGPUPassConfig::addPreISel() { |
| if (TM->getOptLevel() > CodeGenOptLevel::None) |
| addPass(createFlattenCFGPass()); |
| return false; |
| } |
| |
| bool AMDGPUPassConfig::addInstSelector() { |
| addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); |
| return false; |
| } |
| |
| bool AMDGPUPassConfig::addGCPasses() { |
| // Do nothing. GC is not supported. |
| return false; |
| } |
| |
| llvm::ScheduleDAGInstrs * |
| AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const { |
| const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); |
| ScheduleDAGMILive *DAG = createGenericSchedLive(C); |
| DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); |
| if (ST.shouldClusterStores()) |
| DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); |
| return DAG; |
| } |
| |
| MachineFunctionInfo *R600TargetMachine::createMachineFunctionInfo( |
| BumpPtrAllocator &Allocator, const Function &F, |
| const TargetSubtargetInfo *STI) const { |
| return R600MachineFunctionInfo::create<R600MachineFunctionInfo>( |
| Allocator, F, static_cast<const R600Subtarget *>(STI)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GCN Pass Setup |
| //===----------------------------------------------------------------------===// |
| |
| ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( |
| MachineSchedContext *C) const { |
| const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); |
| if (ST.enableSIScheduler()) |
| return createSIMachineScheduler(C); |
| |
| if (EnableMaxIlpSchedStrategy) |
| return createGCNMaxILPMachineScheduler(C); |
| |
| return createGCNMaxOccupancyMachineScheduler(C); |
| } |
| |
| bool GCNPassConfig::addPreISel() { |
| AMDGPUPassConfig::addPreISel(); |
| |
| if (TM->getOptLevel() > CodeGenOptLevel::None) |
| addPass(createAMDGPULateCodeGenPreparePass()); |
| |
| if (TM->getOptLevel() > CodeGenOptLevel::None) |
| addPass(createSinkingPass()); |
| |
| // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit |
| // regions formed by them. |
| addPass(&AMDGPUUnifyDivergentExitNodesID); |
| if (!LateCFGStructurize) { |
| if (EnableStructurizerWorkarounds) { |
| addPass(createFixIrreduciblePass()); |
| addPass(createUnifyLoopExitsPass()); |
| } |
| addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions |
| } |
| addPass(createAMDGPUAnnotateUniformValues()); |
| if (!LateCFGStructurize) { |
| addPass(createSIAnnotateControlFlowPass()); |
| // TODO: Move this right after structurizeCFG to avoid extra divergence |
| // analysis. This depends on stopping SIAnnotateControlFlow from making |
| // control flow modifications. |
| addPass(createAMDGPURewriteUndefForPHILegacyPass()); |
| } |
| addPass(createLCSSAPass()); |
| |
| if (TM->getOptLevel() > CodeGenOptLevel::Less) |
| addPass(&AMDGPUPerfHintAnalysisID); |
| |
| return false; |
| } |
| |
| void GCNPassConfig::addMachineSSAOptimization() { |
| TargetPassConfig::addMachineSSAOptimization(); |
| |
| // We want to fold operands after PeepholeOptimizer has run (or as part of |
| // it), because it will eliminate extra copies making it easier to fold the |
| // real source operand. We want to eliminate dead instructions after, so that |
| // we see fewer uses of the copies. We then need to clean up the dead |
| // instructions leftover after the operands are folded as well. |
| // |
| // XXX - Can we get away without running DeadMachineInstructionElim again? |
| addPass(&SIFoldOperandsID); |
| if (EnableDPPCombine) |
| addPass(&GCNDPPCombineID); |
| addPass(&SILoadStoreOptimizerID); |
| if (isPassEnabled(EnableSDWAPeephole)) { |
| addPass(&SIPeepholeSDWAID); |
| addPass(&EarlyMachineLICMID); |
| addPass(&MachineCSEID); |
| addPass(&SIFoldOperandsID); |
| } |
| addPass(&DeadMachineInstructionElimID); |
| addPass(createSIShrinkInstructionsPass()); |
| } |
| |
| bool GCNPassConfig::addILPOpts() { |
| if (EnableEarlyIfConversion) |
| addPass(&EarlyIfConverterID); |
| |
| TargetPassConfig::addILPOpts(); |
| return false; |
| } |
| |
| bool GCNPassConfig::addInstSelector() { |
| AMDGPUPassConfig::addInstSelector(); |
| addPass(&SIFixSGPRCopiesID); |
| addPass(createSILowerI1CopiesPass()); |
| return false; |
| } |
| |
| bool GCNPassConfig::addIRTranslator() { |
| addPass(new IRTranslator(getOptLevel())); |
| return false; |
| } |
| |
| void GCNPassConfig::addPreLegalizeMachineIR() { |
| bool IsOptNone = getOptLevel() == CodeGenOptLevel::None; |
| addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); |
| addPass(new Localizer()); |
| } |
| |
| bool GCNPassConfig::addLegalizeMachineIR() { |
| addPass(new Legalizer()); |
| return false; |
| } |
| |
| void GCNPassConfig::addPreRegBankSelect() { |
| bool IsOptNone = getOptLevel() == CodeGenOptLevel::None; |
| addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); |
| } |
| |
| bool GCNPassConfig::addRegBankSelect() { |
| addPass(new AMDGPURegBankSelect()); |
| return false; |
| } |
| |
| void GCNPassConfig::addPreGlobalInstructionSelect() { |
| bool IsOptNone = getOptLevel() == CodeGenOptLevel::None; |
| addPass(createAMDGPURegBankCombiner(IsOptNone)); |
| } |
| |
| bool GCNPassConfig::addGlobalInstructionSelect() { |
| addPass(new InstructionSelect(getOptLevel())); |
| return false; |
| } |
| |
| void GCNPassConfig::addPreRegAlloc() { |
| if (LateCFGStructurize) { |
| addPass(createAMDGPUMachineCFGStructurizerPass()); |
| } |
| } |
| |
| void GCNPassConfig::addFastRegAlloc() { |
| // FIXME: We have to disable the verifier here because of PHIElimination + |
| // TwoAddressInstructions disabling it. |
| |
| // This must be run immediately after phi elimination and before |
| // TwoAddressInstructions, otherwise the processing of the tied operand of |
| // SI_ELSE will introduce a copy of the tied operand source after the else. |
| insertPass(&PHIEliminationID, &SILowerControlFlowID); |
| |
| insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); |
| insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); |
| |
| TargetPassConfig::addFastRegAlloc(); |
| } |
| |
| void GCNPassConfig::addOptimizedRegAlloc() { |
| // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation |
| // instructions that cause scheduling barriers. |
| insertPass(&MachineSchedulerID, &SIWholeQuadModeID); |
| insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); |
| |
| if (OptExecMaskPreRA) |
| insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); |
| |
| if (EnableRewritePartialRegUses) |
| insertPass(&RenameIndependentSubregsID, &GCNRewritePartialRegUsesID); |
| |
| if (isPassEnabled(EnablePreRAOptimizations)) |
| insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); |
| |
| // This is not an essential optimization and it has a noticeable impact on |
| // compilation time, so we only enable it from O2. |
| if (TM->getOptLevel() > CodeGenOptLevel::Less) |
| insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); |
| |
| // FIXME: when an instruction has a Killed operand, and the instruction is |
| // inside a bundle, seems only the BUNDLE instruction appears as the Kills of |
| // the register in LiveVariables, this would trigger a failure in verifier, |
| // we should fix it and enable the verifier. |
| if (OptVGPRLiveRange) |
| insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID); |
| // This must be run immediately after phi elimination and before |
| // TwoAddressInstructions, otherwise the processing of the tied operand of |
| // SI_ELSE will introduce a copy of the tied operand source after the else. |
| insertPass(&PHIEliminationID, &SILowerControlFlowID); |
| |
| if (EnableDCEInRA) |
| insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); |
| |
| TargetPassConfig::addOptimizedRegAlloc(); |
| } |
| |
| bool GCNPassConfig::addPreRewrite() { |
| addPass(&SILowerWWMCopiesID); |
| if (EnableRegReassign) |
| addPass(&GCNNSAReassignID); |
| return true; |
| } |
| |
| FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { |
| // Initialize the global default. |
| llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, |
| initializeDefaultSGPRRegisterAllocatorOnce); |
| |
| RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); |
| if (Ctor != useDefaultRegisterAllocator) |
| return Ctor(); |
| |
| if (Optimized) |
| return createGreedyRegisterAllocator(onlyAllocateSGPRs); |
| |
| return createFastRegisterAllocator(onlyAllocateSGPRs, false); |
| } |
| |
| FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { |
| // Initialize the global default. |
| llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, |
| initializeDefaultVGPRRegisterAllocatorOnce); |
| |
| RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); |
| if (Ctor != useDefaultRegisterAllocator) |
| return Ctor(); |
| |
| if (Optimized) |
| return createGreedyVGPRRegisterAllocator(); |
| |
| return createFastVGPRRegisterAllocator(); |
| } |
| |
| FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { |
| llvm_unreachable("should not be used"); |
| } |
| |
| static const char RegAllocOptNotSupportedMessage[] = |
| "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; |
| |
| bool GCNPassConfig::addRegAssignAndRewriteFast() { |
| if (!usingDefaultRegAlloc()) |
| report_fatal_error(RegAllocOptNotSupportedMessage); |
| |
| addPass(&GCNPreRALongBranchRegID); |
| |
| addPass(createSGPRAllocPass(false)); |
| |
| // Equivalent of PEI for SGPRs. |
| addPass(&SILowerSGPRSpillsID); |
| |
| addPass(createVGPRAllocPass(false)); |
| |
| addPass(&SILowerWWMCopiesID); |
| return true; |
| } |
| |
| bool GCNPassConfig::addRegAssignAndRewriteOptimized() { |
| if (!usingDefaultRegAlloc()) |
| report_fatal_error(RegAllocOptNotSupportedMessage); |
| |
| addPass(&GCNPreRALongBranchRegID); |
| |
| addPass(createSGPRAllocPass(true)); |
| |
| // Commit allocated register changes. This is mostly necessary because too |
| // many things rely on the use lists of the physical registers, such as the |
| // verifier. This is only necessary with allocators which use LiveIntervals, |
| // since FastRegAlloc does the replacements itself. |
| addPass(createVirtRegRewriter(false)); |
| |
| // Equivalent of PEI for SGPRs. |
| addPass(&SILowerSGPRSpillsID); |
| |
| addPass(createVGPRAllocPass(true)); |
| |
| addPreRewrite(); |
| addPass(&VirtRegRewriterID); |
| |
| return true; |
| } |
| |
| void GCNPassConfig::addPostRegAlloc() { |
| addPass(&SIFixVGPRCopiesID); |
| if (getOptLevel() > CodeGenOptLevel::None) |
| addPass(&SIOptimizeExecMaskingID); |
| TargetPassConfig::addPostRegAlloc(); |
| } |
| |
| void GCNPassConfig::addPreSched2() { |
| if (TM->getOptLevel() > CodeGenOptLevel::None) |
| addPass(createSIShrinkInstructionsPass()); |
| addPass(&SIPostRABundlerID); |
| } |
| |
| void GCNPassConfig::addPreEmitPass() { |
| if (isPassEnabled(EnableVOPD, CodeGenOptLevel::Less)) |
| addPass(&GCNCreateVOPDID); |
| addPass(createSIMemoryLegalizerPass()); |
| addPass(createSIInsertWaitcntsPass()); |
| |
| addPass(createSIModeRegisterPass()); |
| |
| if (getOptLevel() > CodeGenOptLevel::None) |
| addPass(&SIInsertHardClausesID); |
| |
| addPass(&SILateBranchLoweringPassID); |
| if (isPassEnabled(EnableSetWavePriority, CodeGenOptLevel::Less)) |
| addPass(createAMDGPUSetWavePriorityPass()); |
| if (getOptLevel() > CodeGenOptLevel::None) |
| addPass(&SIPreEmitPeepholeID); |
| // The hazard recognizer that runs as part of the post-ra scheduler does not |
| // guarantee to be able handle all hazards correctly. This is because if there |
| // are multiple scheduling regions in a basic block, the regions are scheduled |
| // bottom up, so when we begin to schedule a region we don't know what |
| // instructions were emitted directly before it. |
| // |
| // Here we add a stand-alone hazard recognizer pass which can handle all |
| // cases. |
| addPass(&PostRAHazardRecognizerID); |
| |
| if (isPassEnabled(EnableInsertDelayAlu, CodeGenOptLevel::Less)) |
| addPass(&AMDGPUInsertDelayAluID); |
| |
| addPass(&BranchRelaxationPassID); |
| } |
| |
| TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { |
| return new GCNPassConfig(*this, PM); |
| } |
| |
| void GCNTargetMachine::registerMachineRegisterInfoCallback( |
| MachineFunction &MF) const { |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| MF.getRegInfo().addDelegate(MFI); |
| } |
| |
| MachineFunctionInfo *GCNTargetMachine::createMachineFunctionInfo( |
| BumpPtrAllocator &Allocator, const Function &F, |
| const TargetSubtargetInfo *STI) const { |
| return SIMachineFunctionInfo::create<SIMachineFunctionInfo>( |
| Allocator, F, static_cast<const GCNSubtarget *>(STI)); |
| } |
| |
| yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { |
| return new yaml::SIMachineFunctionInfo(); |
| } |
| |
| yaml::MachineFunctionInfo * |
| GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { |
| const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| return new yaml::SIMachineFunctionInfo( |
| *MFI, *MF.getSubtarget<GCNSubtarget>().getRegisterInfo(), MF); |
| } |
| |
| bool GCNTargetMachine::parseMachineFunctionInfo( |
| const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, |
| SMDiagnostic &Error, SMRange &SourceRange) const { |
| const yaml::SIMachineFunctionInfo &YamlMFI = |
| static_cast<const yaml::SIMachineFunctionInfo &>(MFI_); |
| MachineFunction &MF = PFS.MF; |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) |
| return true; |
| |
| if (MFI->Occupancy == 0) { |
| // Fixup the subtarget dependent default value. |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); |
| } |
| |
| auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { |
| Register TempReg; |
| if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { |
| SourceRange = RegName.SourceRange; |
| return true; |
| } |
| RegVal = TempReg; |
| |
| return false; |
| }; |
| |
| auto parseOptionalRegister = [&](const yaml::StringValue &RegName, |
| Register &RegVal) { |
| return !RegName.Value.empty() && parseRegister(RegName, RegVal); |
| }; |
| |
| if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy)) |
| return true; |
| |
| if (parseOptionalRegister(YamlMFI.SGPRForEXECCopy, MFI->SGPRForEXECCopy)) |
| return true; |
| |
| if (parseOptionalRegister(YamlMFI.LongBranchReservedReg, |
| MFI->LongBranchReservedReg)) |
| return true; |
| |
| auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { |
| // Create a diagnostic for a the register string literal. |
| const MemoryBuffer &Buffer = |
| *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); |
| Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, |
| RegName.Value.size(), SourceMgr::DK_Error, |
| "incorrect register class for field", RegName.Value, |
| std::nullopt, std::nullopt); |
| SourceRange = RegName.SourceRange; |
| return true; |
| }; |
| |
| if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || |
| parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || |
| parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) |
| return true; |
| |
| if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && |
| !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { |
| return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); |
| } |
| |
| if (MFI->FrameOffsetReg != AMDGPU::FP_REG && |
| !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { |
| return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); |
| } |
| |
| if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && |
| !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { |
| return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); |
| } |
| |
| for (const auto &YamlReg : YamlMFI.WWMReservedRegs) { |
| Register ParsedReg; |
| if (parseRegister(YamlReg, ParsedReg)) |
| return true; |
| |
| MFI->reserveWWMRegister(ParsedReg); |
| } |
| |
| auto parseAndCheckArgument = [&](const std::optional<yaml::SIArgument> &A, |
| const TargetRegisterClass &RC, |
| ArgDescriptor &Arg, unsigned UserSGPRs, |
| unsigned SystemSGPRs) { |
| // Skip parsing if it's not present. |
| if (!A) |
| return false; |
| |
| if (A->IsRegister) { |
| Register Reg; |
| if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { |
| SourceRange = A->RegisterName.SourceRange; |
| return true; |
| } |
| if (!RC.contains(Reg)) |
| return diagnoseRegisterClass(A->RegisterName); |
| Arg = ArgDescriptor::createRegister(Reg); |
| } else |
| Arg = ArgDescriptor::createStack(A->StackOffset); |
| // Check and apply the optional mask. |
| if (A->Mask) |
| Arg = ArgDescriptor::createArg(Arg, *A->Mask); |
| |
| MFI->NumUserSGPRs += UserSGPRs; |
| MFI->NumSystemSGPRs += SystemSGPRs; |
| return false; |
| }; |
| |
| if (YamlMFI.ArgInfo && |
| (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, |
| AMDGPU::SGPR_128RegClass, |
| MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, |
| AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, |
| 2, 0) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, |
| MFI->ArgInfo.QueuePtr, 2, 0) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, |
| AMDGPU::SReg_64RegClass, |
| MFI->ArgInfo.KernargSegmentPtr, 2, 0) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, |
| AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, |
| 2, 0) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, |
| AMDGPU::SReg_64RegClass, |
| MFI->ArgInfo.FlatScratchInit, 2, 0) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, |
| AMDGPU::SGPR_32RegClass, |
| MFI->ArgInfo.PrivateSegmentSize, 0, 0) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->LDSKernelId, |
| AMDGPU::SGPR_32RegClass, |
| MFI->ArgInfo.LDSKernelId, 0, 1) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, |
| AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, |
| 0, 1) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, |
| AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, |
| 0, 1) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, |
| AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, |
| 0, 1) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, |
| AMDGPU::SGPR_32RegClass, |
| MFI->ArgInfo.WorkGroupInfo, 0, 1) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, |
| AMDGPU::SGPR_32RegClass, |
| MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, |
| AMDGPU::SReg_64RegClass, |
| MFI->ArgInfo.ImplicitArgPtr, 0, 0) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, |
| AMDGPU::SReg_64RegClass, |
| MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, |
| AMDGPU::VGPR_32RegClass, |
| MFI->ArgInfo.WorkItemIDX, 0, 0) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, |
| AMDGPU::VGPR_32RegClass, |
| MFI->ArgInfo.WorkItemIDY, 0, 0) || |
| parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, |
| AMDGPU::VGPR_32RegClass, |
| MFI->ArgInfo.WorkItemIDZ, 0, 0))) |
| return true; |
| |
| MFI->Mode.IEEE = YamlMFI.Mode.IEEE; |
| MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; |
| |
| // FIXME: Move proper support for denormal-fp-math into base MachineFunction |
| MFI->Mode.FP32Denormals.Input = YamlMFI.Mode.FP32InputDenormals |
| ? DenormalMode::IEEE |
| : DenormalMode::PreserveSign; |
| MFI->Mode.FP32Denormals.Output = YamlMFI.Mode.FP32OutputDenormals |
| ? DenormalMode::IEEE |
| : DenormalMode::PreserveSign; |
| |
| MFI->Mode.FP64FP16Denormals.Input = YamlMFI.Mode.FP64FP16InputDenormals |
| ? DenormalMode::IEEE |
| : DenormalMode::PreserveSign; |
| MFI->Mode.FP64FP16Denormals.Output = YamlMFI.Mode.FP64FP16OutputDenormals |
| ? DenormalMode::IEEE |
| : DenormalMode::PreserveSign; |
| |
| return false; |
| } |