| //===- TFUtilsTest.cpp - test for TFUtils ---------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Utils/TFUtils.h" |
| #include "llvm/AsmParser/Parser.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Testing/Support/SupportHelpers.h" |
| #include "gtest/gtest.h" |
| |
| using namespace llvm; |
| |
| extern const char *TestMainArgv0; |
| |
| // NOTE! This test model is currently also used by test/Transforms/Inline/ML tests |
| //- relevant if updating this model. |
| static std::string getModelPath() { |
| SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0); |
| llvm::sys::path::append(InputsDir, "ir2native_x86_64_model"); |
| return std::string(InputsDir); |
| } |
| |
| // Test observable behavior when no model is provided. |
| TEST(TFUtilsTest, NoModel) { |
| TFModelEvaluator Evaluator("", {}, {}); |
| EXPECT_FALSE(Evaluator.isValid()); |
| } |
| |
| // Test we can correctly load a savedmodel and evaluate it. |
| TEST(TFUtilsTest, LoadAndExecuteTest) { |
| // We use the ir2native model for test. We know it has one feature of |
| // dimension (1, 214) |
| const static int64_t KnownSize = 214; |
| std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>( |
| "serving_default_input_1", {1, KnownSize})}; |
| std::vector<TensorSpec> OutputSpecs{ |
| TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})}; |
| |
| TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs); |
| EXPECT_TRUE(Evaluator.isValid()); |
| |
| int32_t *V = Evaluator.getInput<int32_t>(0); |
| // Fill it up with 1's, we know the output. |
| for (auto I = 0; I < KnownSize; ++I) { |
| V[I] = 1; |
| } |
| { |
| auto ER = Evaluator.evaluate(); |
| EXPECT_TRUE(ER.hasValue()); |
| float Ret = *ER->getTensorValue<float>(0); |
| EXPECT_EQ(static_cast<int64_t>(Ret), 80); |
| EXPECT_EQ(ER->getUntypedTensorValue(0), |
| reinterpret_cast<const void *>(ER->getTensorValue<float>(0))); |
| } |
| // The input vector should be unchanged |
| for (auto I = 0; I < KnownSize; ++I) { |
| EXPECT_EQ(V[I], 1); |
| } |
| // Zero-out the unused position '0' of the instruction histogram, which is |
| // after the first 9 calculated values. Should the the same result. |
| V[9] = 0; |
| { |
| auto ER = Evaluator.evaluate(); |
| EXPECT_TRUE(ER.hasValue()); |
| float Ret = *ER->getTensorValue<float>(0); |
| EXPECT_EQ(static_cast<int64_t>(Ret), 80); |
| } |
| } |
| |
| // Test incorrect input setup |
| TEST(TFUtilsTest, EvalError) { |
| // We use the ir2native model for test. We know it has one feature of |
| // dimension (1, 214) |
| const static int64_t KnownSize = 213; |
| std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>( |
| "serving_default_input_1", {1, KnownSize})}; |
| std::vector<TensorSpec> OutputSpecs{ |
| TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})}; |
| |
| TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs); |
| EXPECT_TRUE(Evaluator.isValid()); |
| |
| int32_t *V = Evaluator.getInput<int32_t>(0); |
| // Fill it up with 1's, we know the output. |
| for (auto I = 0; I < KnownSize; ++I) { |
| V[I] = 1; |
| } |
| auto ER = Evaluator.evaluate(); |
| EXPECT_FALSE(ER.hasValue()); |
| EXPECT_FALSE(Evaluator.isValid()); |
| } |
| |
| TEST(TFUtilsTest, JSONParsing) { |
| auto Value = json::parse( |
| R"({"name": "tensor_name", |
| "port": 2, |
| "type": "int32_t", |
| "shape":[1,4] |
| })"); |
| EXPECT_TRUE(!!Value); |
| LLVMContext Ctx; |
| Optional<TensorSpec> Spec = getTensorSpecFromJSON(Ctx, *Value); |
| EXPECT_TRUE(Spec.hasValue()); |
| EXPECT_EQ(*Spec, TensorSpec::createSpec<int32_t>("tensor_name", {1, 4}, 2)); |
| } |
| |
| TEST(TFUtilsTest, JSONParsingInvalidTensorType) { |
| auto Value = json::parse( |
| R"( |
| {"name": "tensor_name", |
| "port": 2, |
| "type": "no such type", |
| "shape":[1,4] |
| } |
| )"); |
| EXPECT_TRUE(!!Value); |
| LLVMContext Ctx; |
| auto Spec = getTensorSpecFromJSON(Ctx, *Value); |
| EXPECT_FALSE(Spec.hasValue()); |
| } |
| |
| TEST(TFUtilsTest, TensorSpecSizesAndTypes) { |
| auto Spec1D = TensorSpec::createSpec<int16_t>("Hi1", {1}); |
| auto Spec2D = TensorSpec::createSpec<int16_t>("Hi2", {1, 1}); |
| auto Spec1DLarge = TensorSpec::createSpec<float>("Hi3", {10}); |
| auto Spec3DLarge = TensorSpec::createSpec<float>("Hi3", {2, 4, 10}); |
| EXPECT_TRUE(Spec1D.isElementType<int16_t>()); |
| EXPECT_FALSE(Spec3DLarge.isElementType<double>()); |
| EXPECT_EQ(Spec1D.getElementCount(), 1U); |
| EXPECT_EQ(Spec2D.getElementCount(), 1U); |
| EXPECT_EQ(Spec1DLarge.getElementCount(), 10U); |
| EXPECT_EQ(Spec3DLarge.getElementCount(), 80U); |
| EXPECT_EQ(Spec3DLarge.getElementByteSize(), sizeof(float)); |
| EXPECT_EQ(Spec1D.getElementByteSize(), sizeof(int16_t)); |
| } |
| |
| TEST(TFUtilsTest, Logger) { |
| std::vector<LoggedFeatureSpec> Features; |
| Features.push_back( |
| {TensorSpec::createSpec<float>("the_float", {2, 3}), None}); |
| Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {2}), |
| std::string("alternate_name")}); |
| |
| auto Rewards = TensorSpec::createSpec<float>("reward", {1}); |
| Logger L(Features, Rewards, true); |
| float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}; |
| int64_t F01[]{2, 3}; |
| |
| L.logTensorValue(0, F00, 6); |
| L.logTensorValue(1, F01, 2); |
| L.logReward<float>(3.4); |
| float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; |
| int64_t F11[]{-2, -3}; |
| L.logTensorValue(0, F10, 6); |
| L.logTensorValue(1, F11, 2); |
| L.logReward<float>(-3.0); |
| const auto *Expected = R"(feature_lists: { |
| feature_list: { |
| key: "the_float" value: { |
| feature: { float_list: { value: [0.000000e+00, 1.000000e-01, 2.000000e-01, 3.000000e-01, 4.000000e-01, 5.000000e-01] } } |
| feature: { float_list: { value: [0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00] } } |
| } |
| } |
| feature_list: { |
| key: "alternate_name" value: { |
| feature: { int64_list: { value: [2, 3] } } |
| feature: { int64_list: { value: [-2, -3] } } |
| } |
| } |
| feature_list: { |
| key: "reward" value: { |
| feature: { float_list: { value: [3.400000e+00] } } |
| feature: { float_list: { value: [-3.000000e+00] } } |
| } |
| } |
| } |
| )"; |
| std::string Result; |
| raw_string_ostream OS(Result); |
| L.print(OS); |
| EXPECT_EQ(Result, Expected); |
| } |
| |
| TEST(TFUtilsTest, LoggerNoReward) { |
| std::vector<LoggedFeatureSpec> Features; |
| Features.push_back( |
| {TensorSpec::createSpec<float>("the_float", {2, 3}), None}); |
| Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {2}), |
| std::string("alternate_name")}); |
| |
| auto Rewards = TensorSpec::createSpec<float>("reward", {1}); |
| Logger L(Features, Rewards, false); |
| float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}; |
| int64_t F01[]{2, 3}; |
| |
| L.logTensorValue(0, F00, 6); |
| L.logTensorValue(1, F01, 2); |
| float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; |
| int64_t F11[]{-2, -3}; |
| L.logTensorValue(0, F10, 6); |
| L.logTensorValue(1, F11, 2); |
| const auto *Expected = R"(feature_lists: { |
| feature_list: { |
| key: "the_float" value: { |
| feature: { float_list: { value: [0.000000e+00, 1.000000e-01, 2.000000e-01, 3.000000e-01, 4.000000e-01, 5.000000e-01] } } |
| feature: { float_list: { value: [0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00] } } |
| } |
| } |
| feature_list: { |
| key: "alternate_name" value: { |
| feature: { int64_list: { value: [2, 3] } } |
| feature: { int64_list: { value: [-2, -3] } } |
| } |
| } |
| } |
| )"; |
| std::string Result; |
| raw_string_ostream OS(Result); |
| L.print(OS); |
| EXPECT_EQ(Result, Expected); |
| } |
| |
| TEST(TFUtilsTest, LoggerFinalReward) { |
| std::vector<LoggedFeatureSpec> Features; |
| Features.push_back({TensorSpec::createSpec<float>("the_float", {1}), None}); |
| Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {1}), None}); |
| |
| auto Rewards = TensorSpec::createSpec<float>("reward", {1}); |
| Logger L(Features, Rewards, true); |
| for (size_t I = 0; I < 3; ++I) { |
| float F = static_cast<float>(I); |
| L.logTensorValue(0, &F); |
| L.logTensorValue(1, &I); |
| } |
| L.logFinalReward<float>(3.14); |
| const auto *Expected = R"(feature_lists: { |
| feature_list: { |
| key: "the_float" value: { |
| feature: { float_list: { value: [0.000000e+00] } } |
| feature: { float_list: { value: [1.000000e+00] } } |
| feature: { float_list: { value: [2.000000e+00] } } |
| } |
| } |
| feature_list: { |
| key: "the_int" value: { |
| feature: { int64_list: { value: [0] } } |
| feature: { int64_list: { value: [1] } } |
| feature: { int64_list: { value: [2] } } |
| } |
| } |
| feature_list: { |
| key: "reward" value: { |
| feature: { float_list: { value: [0.000000e+00] } } |
| feature: { float_list: { value: [0.000000e+00] } } |
| feature: { float_list: { value: [3.140000e+00] } } |
| } |
| } |
| } |
| )"; |
| std::string Result; |
| raw_string_ostream OS(Result); |
| L.print(OS); |
| EXPECT_EQ(Result, Expected); |
| } |