| //===- ScalarEvolutionsTest.cpp - ScalarEvolution unit tests --------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/ScalarEvolutionNormalization.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/AsmParser/Parser.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "gtest/gtest.h" |
| |
| namespace llvm { |
| |
| // We use this fixture to ensure that we clean up ScalarEvolution before |
| // deleting the PassManager. |
| class ScalarEvolutionsTest : public testing::Test { |
| protected: |
| LLVMContext Context; |
| Module M; |
| TargetLibraryInfoImpl TLII; |
| TargetLibraryInfo TLI; |
| |
| std::unique_ptr<AssumptionCache> AC; |
| std::unique_ptr<DominatorTree> DT; |
| std::unique_ptr<LoopInfo> LI; |
| |
| ScalarEvolutionsTest() : M("", Context), TLII(), TLI(TLII) {} |
| |
| ScalarEvolution buildSE(Function &F) { |
| AC.reset(new AssumptionCache(F)); |
| DT.reset(new DominatorTree(F)); |
| LI.reset(new LoopInfo(*DT)); |
| return ScalarEvolution(F, TLI, *AC, *DT, *LI); |
| } |
| |
| void runWithSE( |
| Module &M, StringRef FuncName, |
| function_ref<void(Function &F, LoopInfo &LI, ScalarEvolution &SE)> Test) { |
| auto *F = M.getFunction(FuncName); |
| ASSERT_NE(F, nullptr) << "Could not find " << FuncName; |
| ScalarEvolution SE = buildSE(*F); |
| Test(*F, *LI, SE); |
| } |
| |
| static Optional<APInt> computeConstantDifference(ScalarEvolution &SE, |
| const SCEV *LHS, |
| const SCEV *RHS) { |
| return SE.computeConstantDifference(LHS, RHS); |
| } |
| |
| static bool matchURem(ScalarEvolution &SE, const SCEV *Expr, const SCEV *&LHS, |
| const SCEV *&RHS) { |
| return SE.matchURem(Expr, LHS, RHS); |
| } |
| }; |
| |
| TEST_F(ScalarEvolutionsTest, SCEVUnknownRAUW) { |
| FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), |
| std::vector<Type *>(), false); |
| Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); |
| BasicBlock *BB = BasicBlock::Create(Context, "entry", F); |
| ReturnInst::Create(Context, nullptr, BB); |
| |
| Type *Ty = Type::getInt1Ty(Context); |
| Constant *Init = Constant::getNullValue(Ty); |
| Value *V0 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V0"); |
| Value *V1 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V1"); |
| Value *V2 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V2"); |
| |
| ScalarEvolution SE = buildSE(*F); |
| |
| const SCEV *S0 = SE.getSCEV(V0); |
| const SCEV *S1 = SE.getSCEV(V1); |
| const SCEV *S2 = SE.getSCEV(V2); |
| |
| const SCEV *P0 = SE.getAddExpr(S0, S0); |
| const SCEV *P1 = SE.getAddExpr(S1, S1); |
| const SCEV *P2 = SE.getAddExpr(S2, S2); |
| |
| const SCEVMulExpr *M0 = cast<SCEVMulExpr>(P0); |
| const SCEVMulExpr *M1 = cast<SCEVMulExpr>(P1); |
| const SCEVMulExpr *M2 = cast<SCEVMulExpr>(P2); |
| |
| EXPECT_EQ(cast<SCEVConstant>(M0->getOperand(0))->getValue()->getZExtValue(), |
| 2u); |
| EXPECT_EQ(cast<SCEVConstant>(M1->getOperand(0))->getValue()->getZExtValue(), |
| 2u); |
| EXPECT_EQ(cast<SCEVConstant>(M2->getOperand(0))->getValue()->getZExtValue(), |
| 2u); |
| |
| // Before the RAUWs, these are all pointing to separate values. |
| EXPECT_EQ(cast<SCEVUnknown>(M0->getOperand(1))->getValue(), V0); |
| EXPECT_EQ(cast<SCEVUnknown>(M1->getOperand(1))->getValue(), V1); |
| EXPECT_EQ(cast<SCEVUnknown>(M2->getOperand(1))->getValue(), V2); |
| |
| // Do some RAUWs. |
| V2->replaceAllUsesWith(V1); |
| V1->replaceAllUsesWith(V0); |
| |
| // After the RAUWs, these should all be pointing to V0. |
| EXPECT_EQ(cast<SCEVUnknown>(M0->getOperand(1))->getValue(), V0); |
| EXPECT_EQ(cast<SCEVUnknown>(M1->getOperand(1))->getValue(), V0); |
| EXPECT_EQ(cast<SCEVUnknown>(M2->getOperand(1))->getValue(), V0); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SimplifiedPHI) { |
| FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), |
| std::vector<Type *>(), false); |
| Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); |
| BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); |
| BranchInst::Create(LoopBB, EntryBB); |
| BranchInst::Create(LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), |
| LoopBB); |
| ReturnInst::Create(Context, nullptr, ExitBB); |
| auto *Ty = Type::getInt32Ty(Context); |
| auto *PN = PHINode::Create(Ty, 2, "", &*LoopBB->begin()); |
| PN->addIncoming(Constant::getNullValue(Ty), EntryBB); |
| PN->addIncoming(UndefValue::get(Ty), LoopBB); |
| ScalarEvolution SE = buildSE(*F); |
| auto *S1 = SE.getSCEV(PN); |
| auto *S2 = SE.getSCEV(PN); |
| auto *ZeroConst = SE.getConstant(Ty, 0); |
| |
| // At some point, only the first call to getSCEV returned the simplified |
| // SCEVConstant and later calls just returned a SCEVUnknown referencing the |
| // PHI node. |
| EXPECT_EQ(S1, ZeroConst); |
| EXPECT_EQ(S1, S2); |
| } |
| |
| |
| static Instruction *getInstructionByName(Function &F, StringRef Name) { |
| for (auto &I : instructions(F)) |
| if (I.getName() == Name) |
| return &I; |
| llvm_unreachable("Expected to find instruction!"); |
| } |
| |
| static Value *getArgByName(Function &F, StringRef Name) { |
| for (auto &Arg : F.args()) |
| if (Arg.getName() == Name) |
| return &Arg; |
| llvm_unreachable("Expected to find instruction!"); |
| } |
| TEST_F(ScalarEvolutionsTest, CommutativeExprOperandOrder) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString( |
| "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" " |
| " " |
| "@var_0 = external global i32, align 4" |
| "@var_1 = external global i32, align 4" |
| "@var_2 = external global i32, align 4" |
| " " |
| "declare i32 @unknown(i32, i32, i32)" |
| " " |
| "define void @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) " |
| " local_unnamed_addr { " |
| "entry: " |
| " %entrycond = icmp sgt i32 %n, 0 " |
| " br i1 %entrycond, label %loop.ph, label %for.end " |
| " " |
| "loop.ph: " |
| " %a = load i32, i32* %A, align 4 " |
| " %b = load i32, i32* %B, align 4 " |
| " %mul = mul nsw i32 %b, %a " |
| " %iv0.init = getelementptr inbounds i8, i8* %arr, i32 %mul " |
| " br label %loop " |
| " " |
| "loop: " |
| " %iv0 = phi i8* [ %iv0.inc, %loop ], [ %iv0.init, %loop.ph ] " |
| " %iv1 = phi i32 [ %iv1.inc, %loop ], [ 0, %loop.ph ] " |
| " %conv = trunc i32 %iv1 to i8 " |
| " store i8 %conv, i8* %iv0, align 1 " |
| " %iv0.inc = getelementptr inbounds i8, i8* %iv0, i32 %b " |
| " %iv1.inc = add nuw nsw i32 %iv1, 1 " |
| " %exitcond = icmp eq i32 %iv1.inc, %n " |
| " br i1 %exitcond, label %for.end.loopexit, label %loop " |
| " " |
| "for.end.loopexit: " |
| " br label %for.end " |
| " " |
| "for.end: " |
| " ret void " |
| "} " |
| " " |
| "define void @f_2(i32* %X, i32* %Y, i32* %Z) { " |
| " %x = load i32, i32* %X " |
| " %y = load i32, i32* %Y " |
| " %z = load i32, i32* %Z " |
| " ret void " |
| "} " |
| " " |
| "define void @f_3() { " |
| " %x = load i32, i32* @var_0" |
| " %y = load i32, i32* @var_1" |
| " %z = load i32, i32* @var_2" |
| " ret void" |
| "} " |
| " " |
| "define void @f_4(i32 %a, i32 %b, i32 %c) { " |
| " %x = call i32 @unknown(i32 %a, i32 %b, i32 %c)" |
| " %y = call i32 @unknown(i32 %b, i32 %c, i32 %a)" |
| " %z = call i32 @unknown(i32 %c, i32 %a, i32 %b)" |
| " ret void" |
| "} " |
| , |
| Err, C); |
| |
| assert(M && "Could not parse module?"); |
| assert(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "f_1", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *IV0 = getInstructionByName(F, "iv0"); |
| auto *IV0Inc = getInstructionByName(F, "iv0.inc"); |
| |
| auto *FirstExprForIV0 = SE.getSCEV(IV0); |
| auto *FirstExprForIV0Inc = SE.getSCEV(IV0Inc); |
| auto *SecondExprForIV0 = SE.getSCEV(IV0); |
| |
| EXPECT_TRUE(isa<SCEVAddRecExpr>(FirstExprForIV0)); |
| EXPECT_TRUE(isa<SCEVAddRecExpr>(FirstExprForIV0Inc)); |
| EXPECT_TRUE(isa<SCEVAddRecExpr>(SecondExprForIV0)); |
| }); |
| |
| auto CheckCommutativeMulExprs = [&](ScalarEvolution &SE, const SCEV *A, |
| const SCEV *B, const SCEV *C) { |
| EXPECT_EQ(SE.getMulExpr(A, B), SE.getMulExpr(B, A)); |
| EXPECT_EQ(SE.getMulExpr(B, C), SE.getMulExpr(C, B)); |
| EXPECT_EQ(SE.getMulExpr(A, C), SE.getMulExpr(C, A)); |
| |
| SmallVector<const SCEV *, 3> Ops0 = {A, B, C}; |
| SmallVector<const SCEV *, 3> Ops1 = {A, C, B}; |
| SmallVector<const SCEV *, 3> Ops2 = {B, A, C}; |
| SmallVector<const SCEV *, 3> Ops3 = {B, C, A}; |
| SmallVector<const SCEV *, 3> Ops4 = {C, B, A}; |
| SmallVector<const SCEV *, 3> Ops5 = {C, A, B}; |
| |
| auto *Mul0 = SE.getMulExpr(Ops0); |
| auto *Mul1 = SE.getMulExpr(Ops1); |
| auto *Mul2 = SE.getMulExpr(Ops2); |
| auto *Mul3 = SE.getMulExpr(Ops3); |
| auto *Mul4 = SE.getMulExpr(Ops4); |
| auto *Mul5 = SE.getMulExpr(Ops5); |
| |
| EXPECT_EQ(Mul0, Mul1) << "Expected " << *Mul0 << " == " << *Mul1; |
| EXPECT_EQ(Mul1, Mul2) << "Expected " << *Mul1 << " == " << *Mul2; |
| EXPECT_EQ(Mul2, Mul3) << "Expected " << *Mul2 << " == " << *Mul3; |
| EXPECT_EQ(Mul3, Mul4) << "Expected " << *Mul3 << " == " << *Mul4; |
| EXPECT_EQ(Mul4, Mul5) << "Expected " << *Mul4 << " == " << *Mul5; |
| }; |
| |
| for (StringRef FuncName : {"f_2", "f_3", "f_4"}) |
| runWithSE( |
| *M, FuncName, [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| CheckCommutativeMulExprs(SE, SE.getSCEV(getInstructionByName(F, "x")), |
| SE.getSCEV(getInstructionByName(F, "y")), |
| SE.getSCEV(getInstructionByName(F, "z"))); |
| }); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, CompareSCEVComplexity) { |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false); |
| Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *LoopBB = BasicBlock::Create(Context, "bb1", F); |
| BranchInst::Create(LoopBB, EntryBB); |
| |
| auto *Ty = Type::getInt32Ty(Context); |
| SmallVector<Instruction*, 8> Muls(8), Acc(8), NextAcc(8); |
| |
| Acc[0] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[1] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[2] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[3] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[4] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[5] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[6] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[7] = PHINode::Create(Ty, 2, "", LoopBB); |
| |
| for (int i = 0; i < 20; i++) { |
| Muls[0] = BinaryOperator::CreateMul(Acc[0], Acc[0], "", LoopBB); |
| NextAcc[0] = BinaryOperator::CreateAdd(Muls[0], Acc[4], "", LoopBB); |
| Muls[1] = BinaryOperator::CreateMul(Acc[1], Acc[1], "", LoopBB); |
| NextAcc[1] = BinaryOperator::CreateAdd(Muls[1], Acc[5], "", LoopBB); |
| Muls[2] = BinaryOperator::CreateMul(Acc[2], Acc[2], "", LoopBB); |
| NextAcc[2] = BinaryOperator::CreateAdd(Muls[2], Acc[6], "", LoopBB); |
| Muls[3] = BinaryOperator::CreateMul(Acc[3], Acc[3], "", LoopBB); |
| NextAcc[3] = BinaryOperator::CreateAdd(Muls[3], Acc[7], "", LoopBB); |
| |
| Muls[4] = BinaryOperator::CreateMul(Acc[4], Acc[4], "", LoopBB); |
| NextAcc[4] = BinaryOperator::CreateAdd(Muls[4], Acc[0], "", LoopBB); |
| Muls[5] = BinaryOperator::CreateMul(Acc[5], Acc[5], "", LoopBB); |
| NextAcc[5] = BinaryOperator::CreateAdd(Muls[5], Acc[1], "", LoopBB); |
| Muls[6] = BinaryOperator::CreateMul(Acc[6], Acc[6], "", LoopBB); |
| NextAcc[6] = BinaryOperator::CreateAdd(Muls[6], Acc[2], "", LoopBB); |
| Muls[7] = BinaryOperator::CreateMul(Acc[7], Acc[7], "", LoopBB); |
| NextAcc[7] = BinaryOperator::CreateAdd(Muls[7], Acc[3], "", LoopBB); |
| Acc = NextAcc; |
| } |
| |
| auto II = LoopBB->begin(); |
| for (int i = 0; i < 8; i++) { |
| PHINode *Phi = cast<PHINode>(&*II++); |
| Phi->addIncoming(Acc[i], LoopBB); |
| Phi->addIncoming(UndefValue::get(Ty), EntryBB); |
| } |
| |
| BasicBlock *ExitBB = BasicBlock::Create(Context, "bb2", F); |
| BranchInst::Create(LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), |
| LoopBB); |
| |
| Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB); |
| Acc[1] = BinaryOperator::CreateAdd(Acc[2], Acc[3], "", ExitBB); |
| Acc[2] = BinaryOperator::CreateAdd(Acc[4], Acc[5], "", ExitBB); |
| Acc[3] = BinaryOperator::CreateAdd(Acc[6], Acc[7], "", ExitBB); |
| Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB); |
| Acc[1] = BinaryOperator::CreateAdd(Acc[2], Acc[3], "", ExitBB); |
| Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB); |
| |
| ReturnInst::Create(Context, nullptr, ExitBB); |
| |
| ScalarEvolution SE = buildSE(*F); |
| |
| EXPECT_NE(nullptr, SE.getSCEV(Acc[0])); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, CompareValueComplexity) { |
| IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(Context); |
| PointerType *IntPtrPtrTy = IntPtrTy->getPointerTo(); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), {IntPtrTy, IntPtrTy}, false); |
| Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| |
| Value *X = &*F->arg_begin(); |
| Value *Y = &*std::next(F->arg_begin()); |
| |
| const int ValueDepth = 10; |
| for (int i = 0; i < ValueDepth; i++) { |
| X = new LoadInst(IntPtrTy, new IntToPtrInst(X, IntPtrPtrTy, "", EntryBB), |
| "", |
| /*isVolatile*/ false, EntryBB); |
| Y = new LoadInst(IntPtrTy, new IntToPtrInst(Y, IntPtrPtrTy, "", EntryBB), |
| "", |
| /*isVolatile*/ false, EntryBB); |
| } |
| |
| auto *MulA = BinaryOperator::CreateMul(X, Y, "", EntryBB); |
| auto *MulB = BinaryOperator::CreateMul(Y, X, "", EntryBB); |
| ReturnInst::Create(Context, nullptr, EntryBB); |
| |
| // This test isn't checking for correctness. Today making A and B resolve to |
| // the same SCEV would require deeper searching in CompareValueComplexity, |
| // which will slow down compilation. However, this test can fail (with LLVM's |
| // behavior still being correct) if we ever have a smarter |
| // CompareValueComplexity that is both fast and more accurate. |
| |
| ScalarEvolution SE = buildSE(*F); |
| auto *A = SE.getSCEV(MulA); |
| auto *B = SE.getSCEV(MulB); |
| EXPECT_NE(A, B); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVAddExpr) { |
| Type *Ty32 = Type::getInt32Ty(Context); |
| Type *ArgTys[] = {Type::getInt64Ty(Context), Ty32}; |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), ArgTys, false); |
| Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); |
| |
| Argument *A1 = &*F->arg_begin(); |
| Argument *A2 = &*(std::next(F->arg_begin())); |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| |
| Instruction *Trunc = CastInst::CreateTruncOrBitCast(A1, Ty32, "", EntryBB); |
| Instruction *Mul1 = BinaryOperator::CreateMul(Trunc, A2, "", EntryBB); |
| Instruction *Add1 = BinaryOperator::CreateAdd(Mul1, Trunc, "", EntryBB); |
| Mul1 = BinaryOperator::CreateMul(Add1, Trunc, "", EntryBB); |
| Instruction *Add2 = BinaryOperator::CreateAdd(Mul1, Add1, "", EntryBB); |
| // FIXME: The size of this is arbitrary and doesn't seem to change the |
| // result, but SCEV will do quadratic work for these so a large number here |
| // will be extremely slow. We should revisit what and how this is testing |
| // SCEV. |
| for (int i = 0; i < 10; i++) { |
| Mul1 = BinaryOperator::CreateMul(Add2, Add1, "", EntryBB); |
| Add1 = Add2; |
| Add2 = BinaryOperator::CreateAdd(Mul1, Add1, "", EntryBB); |
| } |
| |
| ReturnInst::Create(Context, nullptr, EntryBB); |
| ScalarEvolution SE = buildSE(*F); |
| EXPECT_NE(nullptr, SE.getSCEV(Mul1)); |
| } |
| |
| static Instruction &GetInstByName(Function &F, StringRef Name) { |
| for (auto &I : instructions(F)) |
| if (I.getName() == Name) |
| return I; |
| llvm_unreachable("Could not find instructions!"); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVNormalization) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString( |
| "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" " |
| " " |
| "@var_0 = external global i32, align 4" |
| "@var_1 = external global i32, align 4" |
| "@var_2 = external global i32, align 4" |
| " " |
| "declare i32 @unknown(i32, i32, i32)" |
| " " |
| "define void @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) " |
| " local_unnamed_addr { " |
| "entry: " |
| " br label %loop.ph " |
| " " |
| "loop.ph: " |
| " br label %loop " |
| " " |
| "loop: " |
| " %iv0 = phi i32 [ %iv0.inc, %loop ], [ 0, %loop.ph ] " |
| " %iv1 = phi i32 [ %iv1.inc, %loop ], [ -2147483648, %loop.ph ] " |
| " %iv0.inc = add i32 %iv0, 1 " |
| " %iv1.inc = add i32 %iv1, 3 " |
| " br i1 undef, label %for.end.loopexit, label %loop " |
| " " |
| "for.end.loopexit: " |
| " ret void " |
| "} " |
| " " |
| "define void @f_2(i32 %a, i32 %b, i32 %c, i32 %d) " |
| " local_unnamed_addr { " |
| "entry: " |
| " br label %loop_0 " |
| " " |
| "loop_0: " |
| " br i1 undef, label %loop_0, label %loop_1 " |
| " " |
| "loop_1: " |
| " br i1 undef, label %loop_2, label %loop_1 " |
| " " |
| " " |
| "loop_2: " |
| " br i1 undef, label %end, label %loop_2 " |
| " " |
| "end: " |
| " ret void " |
| "} " |
| , |
| Err, C); |
| |
| assert(M && "Could not parse module?"); |
| assert(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "f_1", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto &I0 = GetInstByName(F, "iv0"); |
| auto &I1 = *I0.getNextNode(); |
| |
| auto *S0 = cast<SCEVAddRecExpr>(SE.getSCEV(&I0)); |
| PostIncLoopSet Loops; |
| Loops.insert(S0->getLoop()); |
| auto *N0 = normalizeForPostIncUse(S0, Loops, SE); |
| auto *D0 = denormalizeForPostIncUse(N0, Loops, SE); |
| EXPECT_EQ(S0, D0) << *S0 << " " << *D0; |
| |
| auto *S1 = cast<SCEVAddRecExpr>(SE.getSCEV(&I1)); |
| Loops.clear(); |
| Loops.insert(S1->getLoop()); |
| auto *N1 = normalizeForPostIncUse(S1, Loops, SE); |
| auto *D1 = denormalizeForPostIncUse(N1, Loops, SE); |
| EXPECT_EQ(S1, D1) << *S1 << " " << *D1; |
| }); |
| |
| runWithSE(*M, "f_2", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *L2 = *LI.begin(); |
| auto *L1 = *std::next(LI.begin()); |
| auto *L0 = *std::next(LI.begin(), 2); |
| |
| auto GetAddRec = [&SE](const Loop *L, std::initializer_list<const SCEV *> Ops) { |
| SmallVector<const SCEV *, 4> OpsCopy(Ops); |
| return SE.getAddRecExpr(OpsCopy, L, SCEV::FlagAnyWrap); |
| }; |
| |
| auto GetAdd = [&SE](std::initializer_list<const SCEV *> Ops) { |
| SmallVector<const SCEV *, 4> OpsCopy(Ops); |
| return SE.getAddExpr(OpsCopy, SCEV::FlagAnyWrap); |
| }; |
| |
| // We first populate the AddRecs vector with a few "interesting" SCEV |
| // expressions, and then we go through the list and assert that each |
| // expression in it has an invertible normalization. |
| |
| std::vector<const SCEV *> Exprs; |
| { |
| const SCEV *V0 = SE.getSCEV(&*F.arg_begin()); |
| const SCEV *V1 = SE.getSCEV(&*std::next(F.arg_begin(), 1)); |
| const SCEV *V2 = SE.getSCEV(&*std::next(F.arg_begin(), 2)); |
| const SCEV *V3 = SE.getSCEV(&*std::next(F.arg_begin(), 3)); |
| |
| Exprs.push_back(GetAddRec(L0, {V0})); // 0 |
| Exprs.push_back(GetAddRec(L0, {V0, V1})); // 1 |
| Exprs.push_back(GetAddRec(L0, {V0, V1, V2})); // 2 |
| Exprs.push_back(GetAddRec(L0, {V0, V1, V2, V3})); // 3 |
| |
| Exprs.push_back( |
| GetAddRec(L1, {Exprs[1], Exprs[2], Exprs[3], Exprs[0]})); // 4 |
| Exprs.push_back( |
| GetAddRec(L1, {Exprs[1], Exprs[2], Exprs[0], Exprs[3]})); // 5 |
| Exprs.push_back( |
| GetAddRec(L1, {Exprs[1], Exprs[3], Exprs[3], Exprs[1]})); // 6 |
| |
| Exprs.push_back(GetAdd({Exprs[6], Exprs[3], V2})); // 7 |
| |
| Exprs.push_back( |
| GetAddRec(L2, {Exprs[4], Exprs[3], Exprs[3], Exprs[5]})); // 8 |
| |
| Exprs.push_back( |
| GetAddRec(L2, {Exprs[4], Exprs[6], Exprs[7], Exprs[3], V0})); // 9 |
| } |
| |
| std::vector<PostIncLoopSet> LoopSets; |
| for (int i = 0; i < 8; i++) { |
| LoopSets.emplace_back(); |
| if (i & 1) |
| LoopSets.back().insert(L0); |
| if (i & 2) |
| LoopSets.back().insert(L1); |
| if (i & 4) |
| LoopSets.back().insert(L2); |
| } |
| |
| for (const auto &LoopSet : LoopSets) |
| for (auto *S : Exprs) { |
| { |
| auto *N = llvm::normalizeForPostIncUse(S, LoopSet, SE); |
| auto *D = llvm::denormalizeForPostIncUse(N, LoopSet, SE); |
| |
| // Normalization and then denormalizing better give us back the same |
| // value. |
| EXPECT_EQ(S, D) << "S = " << *S << " D = " << *D << " N = " << *N; |
| } |
| { |
| auto *D = llvm::denormalizeForPostIncUse(S, LoopSet, SE); |
| auto *N = llvm::normalizeForPostIncUse(D, LoopSet, SE); |
| |
| // Denormalization and then normalizing better give us back the same |
| // value. |
| EXPECT_EQ(S, N) << "S = " << *S << " N = " << *N; |
| } |
| } |
| }); |
| } |
| |
| // Expect the call of getZeroExtendExpr will not cost exponential time. |
| TEST_F(ScalarEvolutionsTest, SCEVZeroExtendExpr) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| |
| // Generate a function like below: |
| // define void @foo() { |
| // entry: |
| // br label %for.cond |
| // |
| // for.cond: |
| // %0 = phi i64 [ 100, %entry ], [ %dec, %for.inc ] |
| // %cmp = icmp sgt i64 %0, 90 |
| // br i1 %cmp, label %for.inc, label %for.cond1 |
| // |
| // for.inc: |
| // %dec = add nsw i64 %0, -1 |
| // br label %for.cond |
| // |
| // for.cond1: |
| // %1 = phi i64 [ 100, %for.cond ], [ %dec5, %for.inc2 ] |
| // %cmp3 = icmp sgt i64 %1, 90 |
| // br i1 %cmp3, label %for.inc2, label %for.cond4 |
| // |
| // for.inc2: |
| // %dec5 = add nsw i64 %1, -1 |
| // br label %for.cond1 |
| // |
| // ...... |
| // |
| // for.cond89: |
| // %19 = phi i64 [ 100, %for.cond84 ], [ %dec94, %for.inc92 ] |
| // %cmp93 = icmp sgt i64 %19, 90 |
| // br i1 %cmp93, label %for.inc92, label %for.end |
| // |
| // for.inc92: |
| // %dec94 = add nsw i64 %19, -1 |
| // br label %for.cond89 |
| // |
| // for.end: |
| // %gep = getelementptr i8, i8* null, i64 %dec |
| // %gep6 = getelementptr i8, i8* %gep, i64 %dec5 |
| // ...... |
| // %gep95 = getelementptr i8, i8* %gep91, i64 %dec94 |
| // ret void |
| // } |
| FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), {}, false); |
| Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", M); |
| |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *CondBB = BasicBlock::Create(Context, "for.cond", F); |
| BasicBlock *EndBB = BasicBlock::Create(Context, "for.end", F); |
| BranchInst::Create(CondBB, EntryBB); |
| BasicBlock *PrevBB = EntryBB; |
| |
| Type *I64Ty = Type::getInt64Ty(Context); |
| Type *I8Ty = Type::getInt8Ty(Context); |
| Type *I8PtrTy = Type::getInt8PtrTy(Context); |
| Value *Accum = Constant::getNullValue(I8PtrTy); |
| int Iters = 20; |
| for (int i = 0; i < Iters; i++) { |
| BasicBlock *IncBB = BasicBlock::Create(Context, "for.inc", F, EndBB); |
| auto *PN = PHINode::Create(I64Ty, 2, "", CondBB); |
| PN->addIncoming(ConstantInt::get(Context, APInt(64, 100)), PrevBB); |
| auto *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_SGT, PN, |
| ConstantInt::get(Context, APInt(64, 90)), "cmp", |
| CondBB); |
| BasicBlock *NextBB; |
| if (i != Iters - 1) |
| NextBB = BasicBlock::Create(Context, "for.cond", F, EndBB); |
| else |
| NextBB = EndBB; |
| BranchInst::Create(IncBB, NextBB, Cmp, CondBB); |
| auto *Dec = BinaryOperator::CreateNSWAdd( |
| PN, ConstantInt::get(Context, APInt(64, -1)), "dec", IncBB); |
| PN->addIncoming(Dec, IncBB); |
| BranchInst::Create(CondBB, IncBB); |
| |
| Accum = GetElementPtrInst::Create(I8Ty, Accum, PN, "gep", EndBB); |
| |
| PrevBB = CondBB; |
| CondBB = NextBB; |
| } |
| ReturnInst::Create(Context, nullptr, EndBB); |
| ScalarEvolution SE = buildSE(*F); |
| const SCEV *S = SE.getSCEV(Accum); |
| Type *I128Ty = Type::getInt128Ty(Context); |
| SE.getZeroExtendExpr(S, I128Ty); |
| } |
| |
| // Make sure that SCEV invalidates exit limits after invalidating the values it |
| // depends on when we forget a loop. |
| TEST_F(ScalarEvolutionsTest, SCEVExitLimitForgetLoop) { |
| /* |
| * Create the following code: |
| * func(i64 addrspace(10)* %arg) |
| * top: |
| * br label %L.ph |
| * L.ph: |
| * br label %L |
| * L: |
| * %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ] |
| * %add = add i64 %phi2, 1 |
| * %cond = icmp slt i64 %add, 1000; then becomes 2000. |
| * br i1 %cond, label %post, label %L2 |
| * post: |
| * ret void |
| * |
| */ |
| |
| // Create a module with non-integral pointers in it's datalayout |
| Module NIM("nonintegral", Context); |
| std::string DataLayout = M.getDataLayoutStr(); |
| if (!DataLayout.empty()) |
| DataLayout += "-"; |
| DataLayout += "ni:10"; |
| NIM.setDataLayout(DataLayout); |
| |
| Type *T_int64 = Type::getInt64Ty(Context); |
| Type *T_pint64 = T_int64->getPointerTo(10); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false); |
| Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM); |
| |
| BasicBlock *Top = BasicBlock::Create(Context, "top", F); |
| BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F); |
| BasicBlock *L = BasicBlock::Create(Context, "L", F); |
| BasicBlock *Post = BasicBlock::Create(Context, "post", F); |
| |
| IRBuilder<> Builder(Top); |
| Builder.CreateBr(LPh); |
| |
| Builder.SetInsertPoint(LPh); |
| Builder.CreateBr(L); |
| |
| Builder.SetInsertPoint(L); |
| PHINode *Phi = Builder.CreatePHI(T_int64, 2); |
| auto *Add = cast<Instruction>( |
| Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add")); |
| auto *Limit = ConstantInt::get(T_int64, 1000); |
| auto *Cond = cast<Instruction>( |
| Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Limit, "cond")); |
| auto *Br = cast<Instruction>(Builder.CreateCondBr(Cond, L, Post)); |
| Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh); |
| Phi->addIncoming(Add, L); |
| |
| Builder.SetInsertPoint(Post); |
| Builder.CreateRetVoid(); |
| |
| ScalarEvolution SE = buildSE(*F); |
| auto *Loop = LI->getLoopFor(L); |
| const SCEV *EC = SE.getBackedgeTakenCount(Loop); |
| EXPECT_FALSE(isa<SCEVCouldNotCompute>(EC)); |
| EXPECT_TRUE(isa<SCEVConstant>(EC)); |
| EXPECT_EQ(cast<SCEVConstant>(EC)->getAPInt().getLimitedValue(), 999u); |
| |
| // The add recurrence {5,+,1} does not correspond to any PHI in the IR, and |
| // that is relevant to this test. |
| auto *Five = SE.getConstant(APInt(/*numBits=*/64, 5)); |
| auto *AR = |
| SE.getAddRecExpr(Five, SE.getOne(T_int64), Loop, SCEV::FlagAnyWrap); |
| const SCEV *ARAtLoopExit = SE.getSCEVAtScope(AR, nullptr); |
| EXPECT_FALSE(isa<SCEVCouldNotCompute>(ARAtLoopExit)); |
| EXPECT_TRUE(isa<SCEVConstant>(ARAtLoopExit)); |
| EXPECT_EQ(cast<SCEVConstant>(ARAtLoopExit)->getAPInt().getLimitedValue(), |
| 1004u); |
| |
| SE.forgetLoop(Loop); |
| Br->eraseFromParent(); |
| Cond->eraseFromParent(); |
| |
| Builder.SetInsertPoint(L); |
| auto *NewCond = Builder.CreateICmp( |
| ICmpInst::ICMP_SLT, Add, ConstantInt::get(T_int64, 2000), "new.cond"); |
| Builder.CreateCondBr(NewCond, L, Post); |
| const SCEV *NewEC = SE.getBackedgeTakenCount(Loop); |
| EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewEC)); |
| EXPECT_TRUE(isa<SCEVConstant>(NewEC)); |
| EXPECT_EQ(cast<SCEVConstant>(NewEC)->getAPInt().getLimitedValue(), 1999u); |
| const SCEV *NewARAtLoopExit = SE.getSCEVAtScope(AR, nullptr); |
| EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewARAtLoopExit)); |
| EXPECT_TRUE(isa<SCEVConstant>(NewARAtLoopExit)); |
| EXPECT_EQ(cast<SCEVConstant>(NewARAtLoopExit)->getAPInt().getLimitedValue(), |
| 2004u); |
| } |
| |
| // Make sure that SCEV invalidates exit limits after invalidating the values it |
| // depends on when we forget a value. |
| TEST_F(ScalarEvolutionsTest, SCEVExitLimitForgetValue) { |
| /* |
| * Create the following code: |
| * func(i64 addrspace(10)* %arg) |
| * top: |
| * br label %L.ph |
| * L.ph: |
| * %load = load i64 addrspace(10)* %arg |
| * br label %L |
| * L: |
| * %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ] |
| * %add = add i64 %phi2, 1 |
| * %cond = icmp slt i64 %add, %load ; then becomes 2000. |
| * br i1 %cond, label %post, label %L2 |
| * post: |
| * ret void |
| * |
| */ |
| |
| // Create a module with non-integral pointers in it's datalayout |
| Module NIM("nonintegral", Context); |
| std::string DataLayout = M.getDataLayoutStr(); |
| if (!DataLayout.empty()) |
| DataLayout += "-"; |
| DataLayout += "ni:10"; |
| NIM.setDataLayout(DataLayout); |
| |
| Type *T_int64 = Type::getInt64Ty(Context); |
| Type *T_pint64 = T_int64->getPointerTo(10); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false); |
| Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM); |
| |
| Argument *Arg = &*F->arg_begin(); |
| |
| BasicBlock *Top = BasicBlock::Create(Context, "top", F); |
| BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F); |
| BasicBlock *L = BasicBlock::Create(Context, "L", F); |
| BasicBlock *Post = BasicBlock::Create(Context, "post", F); |
| |
| IRBuilder<> Builder(Top); |
| Builder.CreateBr(LPh); |
| |
| Builder.SetInsertPoint(LPh); |
| auto *Load = cast<Instruction>(Builder.CreateLoad(T_int64, Arg, "load")); |
| Builder.CreateBr(L); |
| |
| Builder.SetInsertPoint(L); |
| PHINode *Phi = Builder.CreatePHI(T_int64, 2); |
| auto *Add = cast<Instruction>( |
| Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add")); |
| auto *Cond = cast<Instruction>( |
| Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Load, "cond")); |
| auto *Br = cast<Instruction>(Builder.CreateCondBr(Cond, L, Post)); |
| Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh); |
| Phi->addIncoming(Add, L); |
| |
| Builder.SetInsertPoint(Post); |
| Builder.CreateRetVoid(); |
| |
| ScalarEvolution SE = buildSE(*F); |
| auto *Loop = LI->getLoopFor(L); |
| const SCEV *EC = SE.getBackedgeTakenCount(Loop); |
| EXPECT_FALSE(isa<SCEVCouldNotCompute>(EC)); |
| EXPECT_FALSE(isa<SCEVConstant>(EC)); |
| |
| SE.forgetValue(Load); |
| Br->eraseFromParent(); |
| Cond->eraseFromParent(); |
| Load->eraseFromParent(); |
| |
| Builder.SetInsertPoint(L); |
| auto *NewCond = Builder.CreateICmp( |
| ICmpInst::ICMP_SLT, Add, ConstantInt::get(T_int64, 2000), "new.cond"); |
| Builder.CreateCondBr(NewCond, L, Post); |
| const SCEV *NewEC = SE.getBackedgeTakenCount(Loop); |
| EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewEC)); |
| EXPECT_TRUE(isa<SCEVConstant>(NewEC)); |
| EXPECT_EQ(cast<SCEVConstant>(NewEC)->getAPInt().getLimitedValue(), 1999u); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVAddRecFromPHIwithLargeConstants) { |
| // Reference: https://reviews.llvm.org/D37265 |
| // Make sure that SCEV does not blow up when constructing an AddRec |
| // with predicates for a phi with the update pattern: |
| // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum |
| // when either the initial value of the Phi or the InvariantAccum are |
| // constants that are too large to fit in an ix but are zero when truncated to |
| // ix. |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false); |
| Function *F = |
| Function::Create(FTy, Function::ExternalLinkage, "addrecphitest", M); |
| |
| /* |
| Create IR: |
| entry: |
| br label %loop |
| loop: |
| %0 = phi i64 [-9223372036854775808, %entry], [%3, %loop] |
| %1 = shl i64 %0, 32 |
| %2 = ashr exact i64 %1, 32 |
| %3 = add i64 %2, -9223372036854775808 |
| br i1 undef, label %exit, label %loop |
| exit: |
| ret void |
| */ |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); |
| BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); |
| |
| // entry: |
| BranchInst::Create(LoopBB, EntryBB); |
| // loop: |
| auto *MinInt64 = |
| ConstantInt::get(Context, APInt(64, 0x8000000000000000U, true)); |
| auto *Int64_32 = ConstantInt::get(Context, APInt(64, 32)); |
| auto *Br = BranchInst::Create( |
| LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB); |
| auto *Phi = PHINode::Create(Type::getInt64Ty(Context), 2, "", Br); |
| auto *Shl = BinaryOperator::CreateShl(Phi, Int64_32, "", Br); |
| auto *AShr = BinaryOperator::CreateExactAShr(Shl, Int64_32, "", Br); |
| auto *Add = BinaryOperator::CreateAdd(AShr, MinInt64, "", Br); |
| Phi->addIncoming(MinInt64, EntryBB); |
| Phi->addIncoming(Add, LoopBB); |
| // exit: |
| ReturnInst::Create(Context, nullptr, ExitBB); |
| |
| // Make sure that SCEV doesn't blow up |
| ScalarEvolution SE = buildSE(*F); |
| SCEVUnionPredicate Preds; |
| const SCEV *Expr = SE.getSCEV(Phi); |
| EXPECT_NE(nullptr, Expr); |
| EXPECT_TRUE(isa<SCEVUnknown>(Expr)); |
| auto Result = SE.createAddRecFromPHIWithCasts(cast<SCEVUnknown>(Expr)); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVAddRecFromPHIwithLargeConstantAccum) { |
| // Make sure that SCEV does not blow up when constructing an AddRec |
| // with predicates for a phi with the update pattern: |
| // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum |
| // when the InvariantAccum is a constant that is too large to fit in an |
| // ix but are zero when truncated to ix, and the initial value of the |
| // phi is not a constant. |
| Type *Int32Ty = Type::getInt32Ty(Context); |
| SmallVector<Type *, 1> Types; |
| Types.push_back(Int32Ty); |
| FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false); |
| Function *F = |
| Function::Create(FTy, Function::ExternalLinkage, "addrecphitest", M); |
| |
| /* |
| Create IR: |
| define @addrecphitest(i32) |
| entry: |
| br label %loop |
| loop: |
| %1 = phi i32 [%0, %entry], [%4, %loop] |
| %2 = shl i32 %1, 16 |
| %3 = ashr exact i32 %2, 16 |
| %4 = add i32 %3, -2147483648 |
| br i1 undef, label %exit, label %loop |
| exit: |
| ret void |
| */ |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); |
| BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); |
| |
| // entry: |
| BranchInst::Create(LoopBB, EntryBB); |
| // loop: |
| auto *MinInt32 = ConstantInt::get(Context, APInt(32, 0x80000000U, true)); |
| auto *Int32_16 = ConstantInt::get(Context, APInt(32, 16)); |
| auto *Br = BranchInst::Create( |
| LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB); |
| auto *Phi = PHINode::Create(Int32Ty, 2, "", Br); |
| auto *Shl = BinaryOperator::CreateShl(Phi, Int32_16, "", Br); |
| auto *AShr = BinaryOperator::CreateExactAShr(Shl, Int32_16, "", Br); |
| auto *Add = BinaryOperator::CreateAdd(AShr, MinInt32, "", Br); |
| auto *Arg = &*(F->arg_begin()); |
| Phi->addIncoming(Arg, EntryBB); |
| Phi->addIncoming(Add, LoopBB); |
| // exit: |
| ReturnInst::Create(Context, nullptr, ExitBB); |
| |
| // Make sure that SCEV doesn't blow up |
| ScalarEvolution SE = buildSE(*F); |
| SCEVUnionPredicate Preds; |
| const SCEV *Expr = SE.getSCEV(Phi); |
| EXPECT_NE(nullptr, Expr); |
| EXPECT_TRUE(isa<SCEVUnknown>(Expr)); |
| auto Result = SE.createAddRecFromPHIWithCasts(cast<SCEVUnknown>(Expr)); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVFoldSumOfTruncs) { |
| // Verify that the following SCEV gets folded to a zero: |
| // (-1 * (trunc i64 (-1 * %0) to i32)) + (-1 * (trunc i64 %0 to i32) |
| Type *ArgTy = Type::getInt64Ty(Context); |
| Type *Int32Ty = Type::getInt32Ty(Context); |
| SmallVector<Type *, 1> Types; |
| Types.push_back(ArgTy); |
| FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false); |
| Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); |
| BasicBlock *BB = BasicBlock::Create(Context, "entry", F); |
| ReturnInst::Create(Context, nullptr, BB); |
| |
| ScalarEvolution SE = buildSE(*F); |
| |
| auto *Arg = &*(F->arg_begin()); |
| const auto *ArgSCEV = SE.getSCEV(Arg); |
| |
| // Build the SCEV |
| const auto *A0 = SE.getNegativeSCEV(ArgSCEV); |
| const auto *A1 = SE.getTruncateExpr(A0, Int32Ty); |
| const auto *A = SE.getNegativeSCEV(A1); |
| |
| const auto *B0 = SE.getTruncateExpr(ArgSCEV, Int32Ty); |
| const auto *B = SE.getNegativeSCEV(B0); |
| |
| const auto *Expr = SE.getAddExpr(A, B); |
| // Verify that the SCEV was folded to 0 |
| const auto *ZeroConst = SE.getConstant(Int32Ty, 0); |
| EXPECT_EQ(Expr, ZeroConst); |
| } |
| |
| // Check logic of SCEV expression size computation. |
| TEST_F(ScalarEvolutionsTest, SCEVComputeExpressionSize) { |
| /* |
| * Create the following code: |
| * void func(i64 %a, i64 %b) |
| * entry: |
| * %s1 = add i64 %a, 1 |
| * %s2 = udiv i64 %s1, %b |
| * br label %exit |
| * exit: |
| * ret |
| */ |
| |
| // Create a module. |
| Module M("SCEVComputeExpressionSize", Context); |
| |
| Type *T_int64 = Type::getInt64Ty(Context); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), { T_int64, T_int64 }, false); |
| Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M); |
| Argument *A = &*F->arg_begin(); |
| Argument *B = &*std::next(F->arg_begin()); |
| ConstantInt *C = ConstantInt::get(Context, APInt(64, 1)); |
| |
| BasicBlock *Entry = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *Exit = BasicBlock::Create(Context, "exit", F); |
| |
| IRBuilder<> Builder(Entry); |
| auto *S1 = cast<Instruction>(Builder.CreateAdd(A, C, "s1")); |
| auto *S2 = cast<Instruction>(Builder.CreateUDiv(S1, B, "s2")); |
| Builder.CreateBr(Exit); |
| |
| Builder.SetInsertPoint(Exit); |
| Builder.CreateRetVoid(); |
| |
| ScalarEvolution SE = buildSE(*F); |
| // Get S2 first to move it to cache. |
| const SCEV *AS = SE.getSCEV(A); |
| const SCEV *BS = SE.getSCEV(B); |
| const SCEV *CS = SE.getSCEV(C); |
| const SCEV *S1S = SE.getSCEV(S1); |
| const SCEV *S2S = SE.getSCEV(S2); |
| EXPECT_EQ(AS->getExpressionSize(), 1u); |
| EXPECT_EQ(BS->getExpressionSize(), 1u); |
| EXPECT_EQ(CS->getExpressionSize(), 1u); |
| EXPECT_EQ(S1S->getExpressionSize(), 3u); |
| EXPECT_EQ(S2S->getExpressionSize(), 5u); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVLoopDecIntrinsic) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString( |
| "define void @foo(i32 %N) { " |
| "entry: " |
| " %cmp3 = icmp sgt i32 %N, 0 " |
| " br i1 %cmp3, label %for.body, label %for.cond.cleanup " |
| "for.cond.cleanup: " |
| " ret void " |
| "for.body: " |
| " %i.04 = phi i32 [ %inc, %for.body ], [ 100, %entry ] " |
| " %inc = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 %i.04, i32 1) " |
| " %exitcond = icmp ne i32 %inc, 0 " |
| " br i1 %exitcond, label %for.cond.cleanup, label %for.body " |
| "} " |
| "declare i32 @llvm.loop.decrement.reg.i32.i32.i32(i32, i32) ", |
| Err, C); |
| |
| ASSERT_TRUE(M && "Could not parse module?"); |
| ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "foo", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *ScevInc = SE.getSCEV(getInstructionByName(F, "inc")); |
| EXPECT_TRUE(isa<SCEVAddRecExpr>(ScevInc)); |
| }); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVComputeConstantDifference) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString( |
| "define void @foo(i32 %sz, i32 %pp) { " |
| "entry: " |
| " %v0 = add i32 %pp, 0 " |
| " %v3 = add i32 %pp, 3 " |
| " br label %loop.body " |
| "loop.body: " |
| " %iv = phi i32 [ %iv.next, %loop.body ], [ 0, %entry ] " |
| " %xa = add nsw i32 %iv, %v0 " |
| " %yy = add nsw i32 %iv, %v3 " |
| " %xb = sub nsw i32 %yy, 3 " |
| " %iv.next = add nsw i32 %iv, 1 " |
| " %cmp = icmp sle i32 %iv.next, %sz " |
| " br i1 %cmp, label %loop.body, label %exit " |
| "exit: " |
| " ret void " |
| "} ", |
| Err, C); |
| |
| ASSERT_TRUE(M && "Could not parse module?"); |
| ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *ScevV0 = SE.getSCEV(getInstructionByName(F, "v0")); // %pp |
| auto *ScevV3 = SE.getSCEV(getInstructionByName(F, "v3")); // (3 + %pp) |
| auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1} |
| auto *ScevXA = SE.getSCEV(getInstructionByName(F, "xa")); // {%pp,+,1} |
| auto *ScevYY = SE.getSCEV(getInstructionByName(F, "yy")); // {(3 + %pp),+,1} |
| auto *ScevXB = SE.getSCEV(getInstructionByName(F, "xb")); // {%pp,+,1} |
| auto *ScevIVNext = SE.getSCEV(getInstructionByName(F, "iv.next")); // {1,+,1} |
| |
| auto diff = [&SE](const SCEV *LHS, const SCEV *RHS) -> Optional<int> { |
| auto ConstantDiffOrNone = computeConstantDifference(SE, LHS, RHS); |
| if (!ConstantDiffOrNone) |
| return None; |
| |
| auto ExtDiff = ConstantDiffOrNone->getSExtValue(); |
| int Diff = ExtDiff; |
| assert(Diff == ExtDiff && "Integer overflow"); |
| return Diff; |
| }; |
| |
| EXPECT_EQ(diff(ScevV3, ScevV0), 3); |
| EXPECT_EQ(diff(ScevV0, ScevV3), -3); |
| EXPECT_EQ(diff(ScevV0, ScevV0), 0); |
| EXPECT_EQ(diff(ScevV3, ScevV3), 0); |
| EXPECT_EQ(diff(ScevIV, ScevIV), 0); |
| EXPECT_EQ(diff(ScevXA, ScevXB), 0); |
| EXPECT_EQ(diff(ScevXA, ScevYY), -3); |
| EXPECT_EQ(diff(ScevYY, ScevXB), 3); |
| EXPECT_EQ(diff(ScevIV, ScevIVNext), -1); |
| EXPECT_EQ(diff(ScevIVNext, ScevIV), 1); |
| EXPECT_EQ(diff(ScevIVNext, ScevIVNext), 0); |
| EXPECT_EQ(diff(ScevV0, ScevIV), None); |
| EXPECT_EQ(diff(ScevIVNext, ScevV3), None); |
| EXPECT_EQ(diff(ScevYY, ScevV3), None); |
| }); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVrewriteUnknowns) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString( |
| "define void @foo(i32 %i) { " |
| "entry: " |
| " %cmp3 = icmp ult i32 %i, 16 " |
| " br i1 %cmp3, label %loop.body, label %exit " |
| "loop.body: " |
| " %iv = phi i32 [ %iv.next, %loop.body ], [ %i, %entry ] " |
| " %iv.next = add nsw i32 %iv, 1 " |
| " %cmp = icmp eq i32 %iv.next, 16 " |
| " br i1 %cmp, label %exit, label %loop.body " |
| "exit: " |
| " ret void " |
| "} ", |
| Err, C); |
| |
| ASSERT_TRUE(M && "Could not parse module?"); |
| ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1} |
| auto *ScevI = SE.getSCEV(getArgByName(F, "i")); // {0,+,1} |
| |
| ValueToSCEVMapTy RewriteMap; |
| RewriteMap[cast<SCEVUnknown>(ScevI)->getValue()] = |
| SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17)); |
| auto *WithUMin = SCEVParameterRewriter::rewrite(ScevIV, SE, RewriteMap); |
| |
| EXPECT_NE(WithUMin, ScevIV); |
| auto *AR = dyn_cast<SCEVAddRecExpr>(WithUMin); |
| EXPECT_TRUE(AR); |
| EXPECT_EQ(AR->getStart(), |
| SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17))); |
| EXPECT_EQ(AR->getStepRecurrence(SE), |
| cast<SCEVAddRecExpr>(ScevIV)->getStepRecurrence(SE)); |
| }); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVAddNUW) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString("define void @foo(i32 %x) { " |
| " ret void " |
| "} ", |
| Err, C); |
| |
| ASSERT_TRUE(M && "Could not parse module?"); |
| ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *X = SE.getSCEV(getArgByName(F, "x")); |
| auto *One = SE.getOne(X->getType()); |
| auto *Sum = SE.getAddExpr(X, One, SCEV::FlagNUW); |
| EXPECT_TRUE(SE.isKnownPredicate(ICmpInst::ICMP_UGE, Sum, X)); |
| EXPECT_TRUE(SE.isKnownPredicate(ICmpInst::ICMP_UGT, Sum, X)); |
| }); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVgetRanges) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString( |
| "define void @foo(i32 %i) { " |
| "entry: " |
| " br label %loop.body " |
| "loop.body: " |
| " %iv = phi i32 [ %iv.next, %loop.body ], [ 0, %entry ] " |
| " %iv.next = add nsw i32 %iv, 1 " |
| " %cmp = icmp eq i32 %iv.next, 16 " |
| " br i1 %cmp, label %exit, label %loop.body " |
| "exit: " |
| " ret void " |
| "} ", |
| Err, C); |
| |
| runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1} |
| auto *ScevI = SE.getSCEV(getArgByName(F, "i")); |
| EXPECT_EQ(SE.getUnsignedRange(ScevIV).getLower(), 0); |
| EXPECT_EQ(SE.getUnsignedRange(ScevIV).getUpper(), 16); |
| |
| auto *Add = SE.getAddExpr(ScevI, ScevIV); |
| ValueToSCEVMapTy RewriteMap; |
| RewriteMap[cast<SCEVUnknown>(ScevI)->getValue()] = |
| SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17)); |
| auto *AddWithUMin = SCEVParameterRewriter::rewrite(Add, SE, RewriteMap); |
| EXPECT_EQ(SE.getUnsignedRange(AddWithUMin).getLower(), 0); |
| EXPECT_EQ(SE.getUnsignedRange(AddWithUMin).getUpper(), 33); |
| }); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVgetExitLimitForGuardedLoop) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString( |
| "define void @foo(i32 %i) { " |
| "entry: " |
| " %cmp3 = icmp ult i32 %i, 16 " |
| " br i1 %cmp3, label %loop.body, label %exit " |
| "loop.body: " |
| " %iv = phi i32 [ %iv.next, %loop.body ], [ %i, %entry ] " |
| " %iv.next = add nsw i32 %iv, 1 " |
| " %cmp = icmp eq i32 %iv.next, 16 " |
| " br i1 %cmp, label %exit, label %loop.body " |
| "exit: " |
| " ret void " |
| "} ", |
| Err, C); |
| |
| ASSERT_TRUE(M && "Could not parse module?"); |
| ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1} |
| const Loop *L = cast<SCEVAddRecExpr>(ScevIV)->getLoop(); |
| |
| const SCEV *BTC = SE.getBackedgeTakenCount(L); |
| EXPECT_FALSE(isa<SCEVConstant>(BTC)); |
| const SCEV *MaxBTC = SE.getConstantMaxBackedgeTakenCount(L); |
| EXPECT_EQ(cast<SCEVConstant>(MaxBTC)->getAPInt(), 15); |
| }); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, ImpliedViaAddRecStart) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString( |
| "define void @foo(i32* %p) { " |
| "entry: " |
| " %x = load i32, i32* %p, !range !0 " |
| " br label %loop " |
| "loop: " |
| " %iv = phi i32 [ %x, %entry], [%iv.next, %backedge] " |
| " %ne.check = icmp ne i32 %iv, 0 " |
| " br i1 %ne.check, label %backedge, label %exit " |
| "backedge: " |
| " %iv.next = add i32 %iv, -1 " |
| " br label %loop " |
| "exit:" |
| " ret void " |
| "} " |
| "!0 = !{i32 0, i32 2147483647}", |
| Err, C); |
| |
| ASSERT_TRUE(M && "Could not parse module?"); |
| ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *X = SE.getSCEV(getInstructionByName(F, "x")); |
| auto *Context = getInstructionByName(F, "iv.next"); |
| EXPECT_TRUE(SE.isKnownPredicateAt(ICmpInst::ICMP_NE, X, |
| SE.getZero(X->getType()), Context)); |
| }); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, UnsignedIsImpliedViaOperations) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = |
| parseAssemblyString("define void @foo(i32* %p1, i32* %p2) { " |
| "entry: " |
| " %x = load i32, i32* %p1, !range !0 " |
| " %cond = icmp ne i32 %x, 0 " |
| " br i1 %cond, label %guarded, label %exit " |
| "guarded: " |
| " %y = add i32 %x, -1 " |
| " ret void " |
| "exit: " |
| " ret void " |
| "} " |
| "!0 = !{i32 0, i32 2147483647}", |
| Err, C); |
| |
| ASSERT_TRUE(M && "Could not parse module?"); |
| ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *X = SE.getSCEV(getInstructionByName(F, "x")); |
| auto *Y = SE.getSCEV(getInstructionByName(F, "y")); |
| auto *Guarded = getInstructionByName(F, "y")->getParent(); |
| ASSERT_TRUE(Guarded); |
| EXPECT_TRUE( |
| SE.isBasicBlockEntryGuardedByCond(Guarded, ICmpInst::ICMP_ULT, Y, X)); |
| EXPECT_TRUE( |
| SE.isBasicBlockEntryGuardedByCond(Guarded, ICmpInst::ICMP_UGT, X, Y)); |
| }); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, ProveImplicationViaNarrowing) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString( |
| "define i32 @foo(i32 %start, i32* %q) { " |
| "entry: " |
| " %wide.start = zext i32 %start to i64 " |
| " br label %loop " |
| "loop: " |
| " %wide.iv = phi i64 [%wide.start, %entry], [%wide.iv.next, %backedge] " |
| " %iv = phi i32 [%start, %entry], [%iv.next, %backedge] " |
| " %cond = icmp eq i64 %wide.iv, 0 " |
| " br i1 %cond, label %exit, label %backedge " |
| "backedge: " |
| " %iv.next = add i32 %iv, -1 " |
| " %index = zext i32 %iv.next to i64 " |
| " %load.addr = getelementptr i32, i32* %q, i64 %index " |
| " %stop = load i32, i32* %load.addr " |
| " %loop.cond = icmp eq i32 %stop, 0 " |
| " %wide.iv.next = add nsw i64 %wide.iv, -1 " |
| " br i1 %loop.cond, label %loop, label %failure " |
| "exit: " |
| " ret i32 0 " |
| "failure: " |
| " unreachable " |
| "} ", |
| Err, C); |
| |
| ASSERT_TRUE(M && "Could not parse module?"); |
| ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *IV = SE.getSCEV(getInstructionByName(F, "iv")); |
| auto *Zero = SE.getZero(IV->getType()); |
| auto *Backedge = getInstructionByName(F, "iv.next")->getParent(); |
| ASSERT_TRUE(Backedge); |
| (void)IV; |
| (void)Zero; |
| // FIXME: This can only be proved with turned on option |
| // scalar-evolution-use-expensive-range-sharpening which is currently off. |
| // Enable the check once it's switched true by default. |
| // EXPECT_TRUE(SE.isBasicBlockEntryGuardedByCond(Backedge, |
| // ICmpInst::ICMP_UGT, |
| // IV, Zero)); |
| }); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, MatchURem) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString( |
| "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" " |
| " " |
| "define void @test(i32 %a, i32 %b, i16 %c, i64 %d) {" |
| "entry: " |
| " %rem1 = urem i32 %a, 2" |
| " %rem2 = urem i32 %a, 5" |
| " %rem3 = urem i32 %a, %b" |
| " %c.ext = zext i16 %c to i32" |
| " %rem4 = urem i32 %c.ext, 2" |
| " %ext = zext i32 %rem4 to i64" |
| " %rem5 = urem i64 %d, 17179869184" |
| " ret void " |
| "} ", |
| Err, C); |
| |
| assert(M && "Could not parse module?"); |
| assert(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| for (auto *N : {"rem1", "rem2", "rem3", "rem5"}) { |
| auto *URemI = getInstructionByName(F, N); |
| auto *S = SE.getSCEV(URemI); |
| const SCEV *LHS, *RHS; |
| EXPECT_TRUE(matchURem(SE, S, LHS, RHS)); |
| EXPECT_EQ(LHS, SE.getSCEV(URemI->getOperand(0))); |
| EXPECT_EQ(RHS, SE.getSCEV(URemI->getOperand(1))); |
| EXPECT_EQ(LHS->getType(), S->getType()); |
| EXPECT_EQ(RHS->getType(), S->getType()); |
| } |
| |
| // Check the case where the urem operand is zero-extended. Make sure the |
| // match results are extended to the size of the input expression. |
| auto *Ext = getInstructionByName(F, "ext"); |
| auto *URem1 = getInstructionByName(F, "rem4"); |
| auto *S = SE.getSCEV(Ext); |
| const SCEV *LHS, *RHS; |
| EXPECT_TRUE(matchURem(SE, S, LHS, RHS)); |
| EXPECT_NE(LHS, SE.getSCEV(URem1->getOperand(0))); |
| // RHS and URem1->getOperand(1) have different widths, so compare the |
| // integer values. |
| EXPECT_EQ(cast<SCEVConstant>(RHS)->getValue()->getZExtValue(), |
| cast<SCEVConstant>(SE.getSCEV(URem1->getOperand(1))) |
| ->getValue() |
| ->getZExtValue()); |
| EXPECT_EQ(LHS->getType(), S->getType()); |
| EXPECT_EQ(RHS->getType(), S->getType()); |
| }); |
| } |
| |
| } // end namespace llvm |