blob: 5f67b396ad959c42ae12275a2f8ef0209042bd9f [file] [log] [blame]
//===-- SnippetGenerator.h --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Defines the abstract SnippetGenerator class for generating code that allows
/// measuring a certain property of instructions (e.g. latency).
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_SNIPPETGENERATOR_H
#define LLVM_TOOLS_LLVM_EXEGESIS_SNIPPETGENERATOR_H
#include "Assembler.h"
#include "BenchmarkCode.h"
#include "CodeTemplate.h"
#include "LlvmState.h"
#include "MCInstrDescView.h"
#include "RegisterAliasing.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Error.h"
#include <cstdlib>
#include <memory>
#include <vector>
namespace llvm {
namespace exegesis {
std::vector<CodeTemplate> getSingleton(CodeTemplate &&CT);
// Generates code templates that has a self-dependency.
Expected<std::vector<CodeTemplate>>
generateSelfAliasingCodeTemplates(InstructionTemplate Variant);
// Generates code templates without assignment constraints.
Expected<std::vector<CodeTemplate>>
generateUnconstrainedCodeTemplates(const InstructionTemplate &Variant,
StringRef Msg);
// A class representing failures that happened during Benchmark, they are used
// to report informations to the user.
class SnippetGeneratorFailure : public StringError {
public:
SnippetGeneratorFailure(const Twine &S);
};
// Common code for all benchmark modes.
class SnippetGenerator {
public:
struct Options {
unsigned MaxConfigsPerOpcode = 1;
};
explicit SnippetGenerator(const LLVMState &State, const Options &Opts);
virtual ~SnippetGenerator();
// Calls generateCodeTemplate and expands it into one or more BenchmarkCode.
Error generateConfigurations(const InstructionTemplate &Variant,
std::vector<BenchmarkCode> &Benchmarks,
const BitVector &ExtraForbiddenRegs) const;
// Given a snippet, computes which registers the setup code needs to define.
std::vector<RegisterValue> computeRegisterInitialValues(
const std::vector<InstructionTemplate> &Snippet) const;
protected:
const LLVMState &State;
const Options Opts;
private:
// API to be implemented by subclasses.
virtual Expected<std::vector<CodeTemplate>>
generateCodeTemplates(InstructionTemplate Variant,
const BitVector &ForbiddenRegisters) const = 0;
};
// A global Random Number Generator to randomize configurations.
// FIXME: Move random number generation into an object and make it seedable for
// unit tests.
std::mt19937 &randomGenerator();
// Picks a random unsigned integer from 0 to Max (inclusive).
size_t randomIndex(size_t Max);
// Picks a random bit among the bits set in Vector and returns its index.
// Precondition: Vector must have at least one bit set.
size_t randomBit(const BitVector &Vector);
// Picks a random configuration, then selects a random def and a random use from
// it and finally set the selected values in the provided InstructionInstances.
void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations,
InstructionTemplate &DefIB, InstructionTemplate &UseIB);
// Assigns a Random Value to all Variables in IT that are still Invalid.
// Do not use any of the registers in `ForbiddenRegs`.
Error randomizeUnsetVariables(const LLVMState &State,
const BitVector &ForbiddenRegs,
InstructionTemplate &IT);
// Combination generator.
//
// Example: given input {{0, 1}, {2}, {3, 4}} it will produce the following
// combinations: {0, 2, 3}, {0, 2, 4}, {1, 2, 3}, {1, 2, 4}.
//
// It is important to think of input as vector-of-vectors, where the
// outer vector is the variable space, and inner vector is choice space.
// The number of choices for each variable can be different.
//
// As for implementation, it is useful to think of this as a weird number,
// where each digit (==variable) may have different base (==number of choices).
// Thus modelling of 'produce next combination' is exactly analogous to the
// incrementing of an number - increment lowest digit (pick next choice for the
// variable), and if it wrapped to the beginning then increment next digit.
template <typename choice_type, typename choices_storage_type,
int variable_smallsize>
class CombinationGenerator {
template <typename T> struct WrappingIterator {
using value_type = T;
const ArrayRef<value_type> Range;
typename decltype(Range)::const_iterator Position;
// Rewind the tape, placing the position to again point at the beginning.
void rewind() { Position = Range.begin(); }
// Advance position forward, possibly wrapping to the beginning.
// Returns whether the wrap happened.
bool operator++() {
++Position;
bool Wrapped = Position == Range.end();
if (Wrapped)
rewind();
return Wrapped;
}
// Get the value at which we are currently pointing.
operator const value_type &() const { return *Position; }
WrappingIterator(ArrayRef<value_type> Range_) : Range(Range_) {
assert(!Range.empty() && "The range must not be empty.");
rewind();
}
};
const ArrayRef<choices_storage_type> VariablesChoices;
void performGeneration(
const function_ref<bool(ArrayRef<choice_type>)> Callback) const {
SmallVector<WrappingIterator<choice_type>, variable_smallsize>
VariablesState;
// 'increment' of the the whole VariablesState is defined identically to the
// increment of a number: starting from the least significant element,
// increment it, and if it wrapped, then propagate that carry by also
// incrementing next (more significant) element.
auto IncrementState =
[](MutableArrayRef<WrappingIterator<choice_type>> VariablesState)
-> bool {
for (WrappingIterator<choice_type> &Variable :
llvm::reverse(VariablesState)) {
bool Wrapped = ++Variable;
if (!Wrapped)
return false; // There you go, next combination is ready.
// We have carry - increment more significant variable next..
}
return true; // MSB variable wrapped, no more unique combinations.
};
// Initialize the per-variable state to refer to the possible choices for
// that variable.
VariablesState.reserve(VariablesChoices.size());
for (ArrayRef<choice_type> VC : VariablesChoices)
VariablesState.emplace_back(VC);
// Temporary buffer to store each combination before performing Callback.
SmallVector<choice_type, variable_smallsize> CurrentCombination;
CurrentCombination.resize(VariablesState.size());
while (true) {
// Gather the currently-selected variable choices into a vector.
for (auto I : llvm::zip(VariablesState, CurrentCombination))
std::get<1>(I) = std::get<0>(I);
// And pass the new combination into callback, as intended.
if (/*Abort=*/Callback(CurrentCombination))
return;
// And tick the state to next combination, which will be unique.
if (IncrementState(VariablesState))
return; // All combinations produced.
}
};
public:
CombinationGenerator(ArrayRef<choices_storage_type> VariablesChoices_)
: VariablesChoices(VariablesChoices_) {
#ifndef NDEBUG
assert(!VariablesChoices.empty() && "There should be some variables.");
llvm::for_each(VariablesChoices, [](ArrayRef<choice_type> VariableChoices) {
assert(!VariableChoices.empty() &&
"There must always be some choice, at least a placeholder one.");
});
#endif
}
// How many combinations can we produce, max?
// This is at most how many times the callback will be called.
size_t numCombinations() const {
size_t NumVariants = 1;
for (ArrayRef<choice_type> VariableChoices : VariablesChoices)
NumVariants *= VariableChoices.size();
assert(NumVariants >= 1 &&
"We should always end up producing at least one combination");
return NumVariants;
}
// Actually perform exhaustive combination generation.
// Each result will be passed into the callback.
void generate(const function_ref<bool(ArrayRef<choice_type>)> Callback) {
performGeneration(Callback);
}
};
} // namespace exegesis
} // namespace llvm
#endif // LLVM_TOOLS_LLVM_EXEGESIS_SNIPPETGENERATOR_H