blob: 3d9080f7997d5798e2c5c357a5b4c22ce06b9c1f [file] [log] [blame]
//===----- SVEIntrinsicOpts - SVE ACLE Intrinsics Opts --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Performs general IR level optimizations on SVE intrinsics.
//
// This pass performs the following optimizations:
//
// - removes unnecessary reinterpret intrinsics
// (llvm.aarch64.sve.convert.[to|from].svbool), e.g:
// %1 = @llvm.aarch64.sve.convert.to.svbool.nxv4i1(<vscale x 4 x i1> %a)
// %2 = @llvm.aarch64.sve.convert.from.svbool.nxv4i1(<vscale x 16 x i1> %1)
//
// - removes unnecessary ptrue intrinsics (llvm.aarch64.sve.ptrue), e.g:
// %1 = @llvm.aarch64.sve.ptrue.nxv4i1(i32 31)
// %2 = @llvm.aarch64.sve.ptrue.nxv8i1(i32 31)
// ; (%1 can be replaced with a reinterpret of %2)
//
// - optimizes ptest intrinsics and phi instructions where the operands are
// being needlessly converted to and from svbool_t.
//
//===----------------------------------------------------------------------===//
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "aarch64-sve-intrinsic-opts"
namespace llvm {
void initializeSVEIntrinsicOptsPass(PassRegistry &);
}
namespace {
struct SVEIntrinsicOpts : public ModulePass {
static char ID; // Pass identification, replacement for typeid
SVEIntrinsicOpts() : ModulePass(ID) {
initializeSVEIntrinsicOptsPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
static IntrinsicInst *isReinterpretToSVBool(Value *V);
bool coalescePTrueIntrinsicCalls(BasicBlock &BB,
SmallSetVector<IntrinsicInst *, 4> &PTrues);
bool optimizePTrueIntrinsicCalls(SmallSetVector<Function *, 4> &Functions);
/// Operates at the instruction-scope. I.e., optimizations are applied local
/// to individual instructions.
static bool optimizeIntrinsic(Instruction *I);
bool optimizeIntrinsicCalls(SmallSetVector<Function *, 4> &Functions);
/// Operates at the function-scope. I.e., optimizations are applied local to
/// the functions themselves.
bool optimizeFunctions(SmallSetVector<Function *, 4> &Functions);
static bool optimizeConvertFromSVBool(IntrinsicInst *I);
static bool optimizePTest(IntrinsicInst *I);
static bool processPhiNode(IntrinsicInst *I);
};
} // end anonymous namespace
void SVEIntrinsicOpts::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTreeWrapperPass>();
AU.setPreservesCFG();
}
char SVEIntrinsicOpts::ID = 0;
static const char *name = "SVE intrinsics optimizations";
INITIALIZE_PASS_BEGIN(SVEIntrinsicOpts, DEBUG_TYPE, name, false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_END(SVEIntrinsicOpts, DEBUG_TYPE, name, false, false)
namespace llvm {
ModulePass *createSVEIntrinsicOptsPass() { return new SVEIntrinsicOpts(); }
} // namespace llvm
/// Returns V if it's a cast from <n x 16 x i1> (aka svbool_t), nullptr
/// otherwise.
IntrinsicInst *SVEIntrinsicOpts::isReinterpretToSVBool(Value *V) {
IntrinsicInst *I = dyn_cast<IntrinsicInst>(V);
if (!I)
return nullptr;
if (I->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool)
return nullptr;
return I;
}
/// Checks if a ptrue intrinsic call is promoted. The act of promoting a
/// ptrue will introduce zeroing. For example:
///
/// %1 = <vscale x 4 x i1> call @llvm.aarch64.sve.ptrue.nxv4i1(i32 31)
/// %2 = <vscale x 16 x i1> call @llvm.aarch64.sve.convert.to.svbool.nxv4i1(<vscale x 4 x i1> %1)
/// %3 = <vscale x 8 x i1> call @llvm.aarch64.sve.convert.from.svbool.nxv8i1(<vscale x 16 x i1> %2)
///
/// %1 is promoted, because it is converted:
///
/// <vscale x 4 x i1> => <vscale x 16 x i1> => <vscale x 8 x i1>
///
/// via a sequence of the SVE reinterpret intrinsics convert.{to,from}.svbool.
bool isPTruePromoted(IntrinsicInst *PTrue) {
// Find all users of this intrinsic that are calls to convert-to-svbool
// reinterpret intrinsics.
SmallVector<IntrinsicInst *, 4> ConvertToUses;
for (User *User : PTrue->users()) {
if (match(User, m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>())) {
ConvertToUses.push_back(cast<IntrinsicInst>(User));
}
}
// If no such calls were found, this is ptrue is not promoted.
if (ConvertToUses.empty())
return false;
// Otherwise, try to find users of the convert-to-svbool intrinsics that are
// calls to the convert-from-svbool intrinsic, and would result in some lanes
// being zeroed.
const auto *PTrueVTy = cast<ScalableVectorType>(PTrue->getType());
for (IntrinsicInst *ConvertToUse : ConvertToUses) {
for (User *User : ConvertToUse->users()) {
auto *IntrUser = dyn_cast<IntrinsicInst>(User);
if (IntrUser && IntrUser->getIntrinsicID() ==
Intrinsic::aarch64_sve_convert_from_svbool) {
const auto *IntrUserVTy = cast<ScalableVectorType>(IntrUser->getType());
// Would some lanes become zeroed by the conversion?
if (IntrUserVTy->getElementCount().getKnownMinValue() >
PTrueVTy->getElementCount().getKnownMinValue())
// This is a promoted ptrue.
return true;
}
}
}
// If no matching calls were found, this is not a promoted ptrue.
return false;
}
/// Attempts to coalesce ptrues in a basic block.
bool SVEIntrinsicOpts::coalescePTrueIntrinsicCalls(
BasicBlock &BB, SmallSetVector<IntrinsicInst *, 4> &PTrues) {
if (PTrues.size() <= 1)
return false;
// Find the ptrue with the most lanes.
auto *MostEncompassingPTrue = *std::max_element(
PTrues.begin(), PTrues.end(), [](auto *PTrue1, auto *PTrue2) {
auto *PTrue1VTy = cast<ScalableVectorType>(PTrue1->getType());
auto *PTrue2VTy = cast<ScalableVectorType>(PTrue2->getType());
return PTrue1VTy->getElementCount().getKnownMinValue() <
PTrue2VTy->getElementCount().getKnownMinValue();
});
// Remove the most encompassing ptrue, as well as any promoted ptrues, leaving
// behind only the ptrues to be coalesced.
PTrues.remove(MostEncompassingPTrue);
PTrues.remove_if([](auto *PTrue) { return isPTruePromoted(PTrue); });
// Hoist MostEncompassingPTrue to the start of the basic block. It is always
// safe to do this, since ptrue intrinsic calls are guaranteed to have no
// predecessors.
MostEncompassingPTrue->moveBefore(BB, BB.getFirstInsertionPt());
LLVMContext &Ctx = BB.getContext();
IRBuilder<> Builder(Ctx);
Builder.SetInsertPoint(&BB, ++MostEncompassingPTrue->getIterator());
auto *MostEncompassingPTrueVTy =
cast<VectorType>(MostEncompassingPTrue->getType());
auto *ConvertToSVBool = Builder.CreateIntrinsic(
Intrinsic::aarch64_sve_convert_to_svbool, {MostEncompassingPTrueVTy},
{MostEncompassingPTrue});
for (auto *PTrue : PTrues) {
auto *PTrueVTy = cast<VectorType>(PTrue->getType());
Builder.SetInsertPoint(&BB, ++ConvertToSVBool->getIterator());
auto *ConvertFromSVBool =
Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
{PTrueVTy}, {ConvertToSVBool});
PTrue->replaceAllUsesWith(ConvertFromSVBool);
PTrue->eraseFromParent();
}
return true;
}
/// The goal of this function is to remove redundant calls to the SVE ptrue
/// intrinsic in each basic block within the given functions.
///
/// SVE ptrues have two representations in LLVM IR:
/// - a logical representation -- an arbitrary-width scalable vector of i1s,
/// i.e. <vscale x N x i1>.
/// - a physical representation (svbool, <vscale x 16 x i1>) -- a 16-element
/// scalable vector of i1s, i.e. <vscale x 16 x i1>.
///
/// The SVE ptrue intrinsic is used to create a logical representation of an SVE
/// predicate. Suppose that we have two SVE ptrue intrinsic calls: P1 and P2. If
/// P1 creates a logical SVE predicate that is at least as wide as the logical
/// SVE predicate created by P2, then all of the bits that are true in the
/// physical representation of P2 are necessarily also true in the physical
/// representation of P1. P1 'encompasses' P2, therefore, the intrinsic call to
/// P2 is redundant and can be replaced by an SVE reinterpret of P1 via
/// convert.{to,from}.svbool.
///
/// Currently, this pass only coalesces calls to SVE ptrue intrinsics
/// if they match the following conditions:
///
/// - the call to the intrinsic uses either the SV_ALL or SV_POW2 patterns.
/// SV_ALL indicates that all bits of the predicate vector are to be set to
/// true. SV_POW2 indicates that all bits of the predicate vector up to the
/// largest power-of-two are to be set to true.
/// - the result of the call to the intrinsic is not promoted to a wider
/// predicate. In this case, keeping the extra ptrue leads to better codegen
/// -- coalescing here would create an irreducible chain of SVE reinterprets
/// via convert.{to,from}.svbool.
///
/// EXAMPLE:
///
/// %1 = <vscale x 8 x i1> ptrue(i32 SV_ALL)
/// ; Logical: <1, 1, 1, 1, 1, 1, 1, 1>
/// ; Physical: <1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0>
/// ...
///
/// %2 = <vscale x 4 x i1> ptrue(i32 SV_ALL)
/// ; Logical: <1, 1, 1, 1>
/// ; Physical: <1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0>
/// ...
///
/// Here, %2 can be replaced by an SVE reinterpret of %1, giving, for instance:
///
/// %1 = <vscale x 8 x i1> ptrue(i32 i31)
/// %2 = <vscale x 16 x i1> convert.to.svbool(<vscale x 8 x i1> %1)
/// %3 = <vscale x 4 x i1> convert.from.svbool(<vscale x 16 x i1> %2)
///
bool SVEIntrinsicOpts::optimizePTrueIntrinsicCalls(
SmallSetVector<Function *, 4> &Functions) {
bool Changed = false;
for (auto *F : Functions) {
for (auto &BB : *F) {
SmallSetVector<IntrinsicInst *, 4> SVAllPTrues;
SmallSetVector<IntrinsicInst *, 4> SVPow2PTrues;
// For each basic block, collect the used ptrues and try to coalesce them.
for (Instruction &I : BB) {
if (I.use_empty())
continue;
auto *IntrI = dyn_cast<IntrinsicInst>(&I);
if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
continue;
const auto PTruePattern =
cast<ConstantInt>(IntrI->getOperand(0))->getZExtValue();
if (PTruePattern == AArch64SVEPredPattern::all)
SVAllPTrues.insert(IntrI);
if (PTruePattern == AArch64SVEPredPattern::pow2)
SVPow2PTrues.insert(IntrI);
}
Changed |= coalescePTrueIntrinsicCalls(BB, SVAllPTrues);
Changed |= coalescePTrueIntrinsicCalls(BB, SVPow2PTrues);
}
}
return Changed;
}
/// The function will remove redundant reinterprets casting in the presence
/// of the control flow
bool SVEIntrinsicOpts::processPhiNode(IntrinsicInst *X) {
SmallVector<Instruction *, 32> Worklist;
auto RequiredType = X->getType();
auto *PN = dyn_cast<PHINode>(X->getArgOperand(0));
assert(PN && "Expected Phi Node!");
// Don't create a new Phi unless we can remove the old one.
if (!PN->hasOneUse())
return false;
for (Value *IncValPhi : PN->incoming_values()) {
auto *Reinterpret = isReinterpretToSVBool(IncValPhi);
if (!Reinterpret ||
RequiredType != Reinterpret->getArgOperand(0)->getType())
return false;
}
// Create the new Phi
LLVMContext &Ctx = PN->getContext();
IRBuilder<> Builder(Ctx);
Builder.SetInsertPoint(PN);
PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
Worklist.push_back(PN);
for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
Worklist.push_back(Reinterpret);
}
// Cleanup Phi Node and reinterprets
X->replaceAllUsesWith(NPN);
X->eraseFromParent();
for (auto &I : Worklist)
if (I->use_empty())
I->eraseFromParent();
return true;
}
bool SVEIntrinsicOpts::optimizePTest(IntrinsicInst *I) {
IntrinsicInst *Op1 = dyn_cast<IntrinsicInst>(I->getArgOperand(0));
IntrinsicInst *Op2 = dyn_cast<IntrinsicInst>(I->getArgOperand(1));
if (Op1 && Op2 &&
Op1->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
Op2->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
Op1->getArgOperand(0)->getType() == Op2->getArgOperand(0)->getType()) {
Value *Ops[] = {Op1->getArgOperand(0), Op2->getArgOperand(0)};
Type *Tys[] = {Op1->getArgOperand(0)->getType()};
Module *M = I->getParent()->getParent()->getParent();
auto Fn = Intrinsic::getDeclaration(M, I->getIntrinsicID(), Tys);
auto CI = CallInst::Create(Fn, Ops, I->getName(), I);
I->replaceAllUsesWith(CI);
I->eraseFromParent();
if (Op1->use_empty())
Op1->eraseFromParent();
if (Op1 != Op2 && Op2->use_empty())
Op2->eraseFromParent();
return true;
}
return false;
}
bool SVEIntrinsicOpts::optimizeConvertFromSVBool(IntrinsicInst *I) {
assert(I->getIntrinsicID() == Intrinsic::aarch64_sve_convert_from_svbool &&
"Unexpected opcode");
// If the reinterpret instruction operand is a PHI Node
if (isa<PHINode>(I->getArgOperand(0)))
return processPhiNode(I);
SmallVector<Instruction *, 32> CandidatesForRemoval;
Value *Cursor = I->getOperand(0), *EarliestReplacement = nullptr;
const auto *IVTy = cast<VectorType>(I->getType());
// Walk the chain of conversions.
while (Cursor) {
// If the type of the cursor has fewer lanes than the final result, zeroing
// must take place, which breaks the equivalence chain.
const auto *CursorVTy = cast<VectorType>(Cursor->getType());
if (CursorVTy->getElementCount().getKnownMinValue() <
IVTy->getElementCount().getKnownMinValue())
break;
// If the cursor has the same type as I, it is a viable replacement.
if (Cursor->getType() == IVTy)
EarliestReplacement = Cursor;
auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);
// If this is not an SVE conversion intrinsic, this is the end of the chain.
if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
Intrinsic::aarch64_sve_convert_to_svbool ||
IntrinsicCursor->getIntrinsicID() ==
Intrinsic::aarch64_sve_convert_from_svbool))
break;
CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
Cursor = IntrinsicCursor->getOperand(0);
}
// If no viable replacement in the conversion chain was found, there is
// nothing to do.
if (!EarliestReplacement)
return false;
I->replaceAllUsesWith(EarliestReplacement);
I->eraseFromParent();
while (!CandidatesForRemoval.empty()) {
Instruction *Candidate = CandidatesForRemoval.pop_back_val();
if (Candidate->use_empty())
Candidate->eraseFromParent();
}
return true;
}
bool SVEIntrinsicOpts::optimizeIntrinsic(Instruction *I) {
IntrinsicInst *IntrI = dyn_cast<IntrinsicInst>(I);
if (!IntrI)
return false;
switch (IntrI->getIntrinsicID()) {
case Intrinsic::aarch64_sve_convert_from_svbool:
return optimizeConvertFromSVBool(IntrI);
case Intrinsic::aarch64_sve_ptest_any:
case Intrinsic::aarch64_sve_ptest_first:
case Intrinsic::aarch64_sve_ptest_last:
return optimizePTest(IntrI);
default:
return false;
}
return true;
}
bool SVEIntrinsicOpts::optimizeIntrinsicCalls(
SmallSetVector<Function *, 4> &Functions) {
bool Changed = false;
for (auto *F : Functions) {
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>(*F).getDomTree();
// Traverse the DT with an rpo walk so we see defs before uses, allowing
// simplification to be done incrementally.
BasicBlock *Root = DT->getRoot();
ReversePostOrderTraversal<BasicBlock *> RPOT(Root);
for (auto *BB : RPOT)
for (Instruction &I : make_early_inc_range(*BB))
Changed |= optimizeIntrinsic(&I);
}
return Changed;
}
bool SVEIntrinsicOpts::optimizeFunctions(
SmallSetVector<Function *, 4> &Functions) {
bool Changed = false;
Changed |= optimizePTrueIntrinsicCalls(Functions);
Changed |= optimizeIntrinsicCalls(Functions);
return Changed;
}
bool SVEIntrinsicOpts::runOnModule(Module &M) {
bool Changed = false;
SmallSetVector<Function *, 4> Functions;
// Check for SVE intrinsic declarations first so that we only iterate over
// relevant functions. Where an appropriate declaration is found, store the
// function(s) where it is used so we can target these only.
for (auto &F : M.getFunctionList()) {
if (!F.isDeclaration())
continue;
switch (F.getIntrinsicID()) {
case Intrinsic::aarch64_sve_convert_from_svbool:
case Intrinsic::aarch64_sve_ptest_any:
case Intrinsic::aarch64_sve_ptest_first:
case Intrinsic::aarch64_sve_ptest_last:
case Intrinsic::aarch64_sve_ptrue:
for (User *U : F.users())
Functions.insert(cast<Instruction>(U)->getFunction());
break;
default:
break;
}
}
if (!Functions.empty())
Changed |= optimizeFunctions(Functions);
return Changed;
}