blob: 70004f441cdf17e7a38bc25a9bb80ef7aa60b812 [file] [log] [blame]
//===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Bitcode writer implementation.
//
//===----------------------------------------------------------------------===//
#include "DXILBitcodeWriter.h"
#include "DXILValueEnumerator.h"
#include "PointerTypeAnalysis.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/BitcodeCommon.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "llvm/Bitstream/BitCodes.h"
#include "llvm/Bitstream/BitstreamWriter.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/UseListOrder.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Object/IRSymtab.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SHA1.h"
namespace llvm {
namespace dxil {
// Generates an enum to use as an index in the Abbrev array of Metadata record.
enum MetadataAbbrev : unsigned {
#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
#include "llvm/IR/Metadata.def"
LastPlusOne
};
class DXILBitcodeWriter {
/// These are manifest constants used by the bitcode writer. They do not need
/// to be kept in sync with the reader, but need to be consistent within this
/// file.
enum {
// VALUE_SYMTAB_BLOCK abbrev id's.
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
VST_ENTRY_7_ABBREV,
VST_ENTRY_6_ABBREV,
VST_BBENTRY_6_ABBREV,
// CONSTANTS_BLOCK abbrev id's.
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
CONSTANTS_INTEGER_ABBREV,
CONSTANTS_CE_CAST_Abbrev,
CONSTANTS_NULL_Abbrev,
// FUNCTION_BLOCK abbrev id's.
FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
FUNCTION_INST_BINOP_ABBREV,
FUNCTION_INST_BINOP_FLAGS_ABBREV,
FUNCTION_INST_CAST_ABBREV,
FUNCTION_INST_RET_VOID_ABBREV,
FUNCTION_INST_RET_VAL_ABBREV,
FUNCTION_INST_UNREACHABLE_ABBREV,
FUNCTION_INST_GEP_ABBREV,
};
// Cache some types
Type *I8Ty;
Type *I8PtrTy;
/// The stream created and owned by the client.
BitstreamWriter &Stream;
StringTableBuilder &StrtabBuilder;
/// The Module to write to bitcode.
const Module &M;
/// Enumerates ids for all values in the module.
ValueEnumerator VE;
/// Map that holds the correspondence between GUIDs in the summary index,
/// that came from indirect call profiles, and a value id generated by this
/// class to use in the VST and summary block records.
std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
/// Tracks the last value id recorded in the GUIDToValueMap.
unsigned GlobalValueId;
/// Saves the offset of the VSTOffset record that must eventually be
/// backpatched with the offset of the actual VST.
uint64_t VSTOffsetPlaceholder = 0;
/// Pointer to the buffer allocated by caller for bitcode writing.
const SmallVectorImpl<char> &Buffer;
/// The start bit of the identification block.
uint64_t BitcodeStartBit;
/// This maps values to their typed pointers
PointerTypeMap PointerMap;
public:
/// Constructs a ModuleBitcodeWriter object for the given Module,
/// writing to the provided \p Buffer.
DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
: I8Ty(Type::getInt8Ty(M.getContext())),
I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream),
StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer),
BitcodeStartBit(Stream.GetCurrentBitNo()),
PointerMap(PointerTypeAnalysis::run(M)) {
GlobalValueId = VE.getValues().size();
// Enumerate the typed pointers
for (auto El : PointerMap)
VE.EnumerateType(El.second);
}
/// Emit the current module to the bitstream.
void write();
static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
StringRef Str, unsigned AbbrevToUse);
static void writeIdentificationBlock(BitstreamWriter &Stream);
static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
static unsigned getEncodedComdatSelectionKind(const Comdat &C);
static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
static unsigned getEncodedLinkage(const GlobalValue &GV);
static unsigned getEncodedVisibility(const GlobalValue &GV);
static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
static unsigned getEncodedCastOpcode(unsigned Opcode);
static unsigned getEncodedUnaryOpcode(unsigned Opcode);
static unsigned getEncodedBinaryOpcode(unsigned Opcode);
static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
static unsigned getEncodedOrdering(AtomicOrdering Ordering);
static uint64_t getOptimizationFlags(const Value *V);
private:
void writeModuleVersion();
void writePerModuleGlobalValueSummary();
void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
GlobalValueSummary *Summary,
unsigned ValueID,
unsigned FSCallsAbbrev,
unsigned FSCallsProfileAbbrev,
const Function &F);
void writeModuleLevelReferences(const GlobalVariable &V,
SmallVector<uint64_t, 64> &NameVals,
unsigned FSModRefsAbbrev,
unsigned FSModVTableRefsAbbrev);
void assignValueId(GlobalValue::GUID ValGUID) {
GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
}
unsigned getValueId(GlobalValue::GUID ValGUID) {
const auto &VMI = GUIDToValueIdMap.find(ValGUID);
// Expect that any GUID value had a value Id assigned by an
// earlier call to assignValueId.
assert(VMI != GUIDToValueIdMap.end() &&
"GUID does not have assigned value Id");
return VMI->second;
}
// Helper to get the valueId for the type of value recorded in VI.
unsigned getValueId(ValueInfo VI) {
if (!VI.haveGVs() || !VI.getValue())
return getValueId(VI.getGUID());
return VE.getValueID(VI.getValue());
}
std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
uint64_t bitcodeStartBit() { return BitcodeStartBit; }
size_t addToStrtab(StringRef Str);
unsigned createDILocationAbbrev();
unsigned createGenericDINodeAbbrev();
void writeAttributeGroupTable();
void writeAttributeTable();
void writeTypeTable();
void writeComdats();
void writeValueSymbolTableForwardDecl();
void writeModuleInfo();
void writeValueAsMetadata(const ValueAsMetadata *MD,
SmallVectorImpl<uint64_t> &Record);
void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
unsigned &Abbrev);
void writeGenericDINode(const GenericDINode *N,
SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
llvm_unreachable("DXIL cannot contain GenericDI Nodes");
}
void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIGenericSubrange(const DIGenericSubrange *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
}
void writeDIEnumerator(const DIEnumerator *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIStringType(const DIStringType *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
llvm_unreachable("DXIL cannot contain DIStringType Nodes");
}
void writeDIDerivedType(const DIDerivedType *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDICompositeType(const DICompositeType *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDISubroutineType(const DISubroutineType *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDICompileUnit(const DICompileUnit *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDISubprogram(const DISubprogram *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDILexicalBlock(const DILexicalBlock *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDILexicalBlockFile(const DILexicalBlockFile *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDICommonBlock(const DICommonBlock *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
}
void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
llvm_unreachable("DXIL cannot contain DIMacro Nodes");
}
void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
}
void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
llvm_unreachable("DXIL cannot contain DIArgList Nodes");
}
void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDITemplateValueParameter(const DITemplateValueParameter *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIGlobalVariable(const DIGlobalVariable *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDILocalVariable(const DILocalVariable *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
llvm_unreachable("DXIL cannot contain DILabel Nodes");
}
void writeDIExpression(const DIExpression *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
}
void writeDIObjCProperty(const DIObjCProperty *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDIImportedEntity(const DIImportedEntity *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
unsigned createNamedMetadataAbbrev();
void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
unsigned createMetadataStringsAbbrev();
void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
SmallVectorImpl<uint64_t> &Record);
void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
SmallVectorImpl<uint64_t> &Record,
std::vector<unsigned> *MDAbbrevs = nullptr,
std::vector<uint64_t> *IndexPos = nullptr);
void writeModuleMetadata();
void writeFunctionMetadata(const Function &F);
void writeFunctionMetadataAttachment(const Function &F);
void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
const GlobalObject &GO);
void writeModuleMetadataKinds();
void writeOperandBundleTags();
void writeSyncScopeNames();
void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
void writeModuleConstants();
bool pushValueAndType(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals);
void writeOperandBundles(const CallBase &CB, unsigned InstID);
void pushValue(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals);
void pushValueSigned(const Value *V, unsigned InstID,
SmallVectorImpl<uint64_t> &Vals);
void writeInstruction(const Instruction &I, unsigned InstID,
SmallVectorImpl<unsigned> &Vals);
void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
void writeGlobalValueSymbolTable(
DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
void writeUseList(UseListOrder &&Order);
void writeUseListBlock(const Function *F);
void writeFunction(const Function &F);
void writeBlockInfo();
unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
unsigned getTypeID(Type *T, const Value *V = nullptr);
unsigned getTypeID(Type *T, const Function *F);
};
} // namespace dxil
} // namespace llvm
using namespace llvm;
using namespace llvm::dxil;
////////////////////////////////////////////////////////////////////////////////
/// Begin dxil::BitcodeWriter Implementation
////////////////////////////////////////////////////////////////////////////////
dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer,
raw_fd_stream *FS)
: Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) {
// Emit the file header.
Stream->Emit((unsigned)'B', 8);
Stream->Emit((unsigned)'C', 8);
Stream->Emit(0x0, 4);
Stream->Emit(0xC, 4);
Stream->Emit(0xE, 4);
Stream->Emit(0xD, 4);
}
dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
/// Write the specified module to the specified output stream.
void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
SmallVector<char, 0> Buffer;
Buffer.reserve(256 * 1024);
// If this is darwin or another generic macho target, reserve space for the
// header.
Triple TT(M.getTargetTriple());
if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
Writer.writeModule(M);
Writer.writeSymtab();
Writer.writeStrtab();
// Write the generated bitstream to "Out".
if (!Buffer.empty())
Out.write((char *)&Buffer.front(), Buffer.size());
}
void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
Stream->EnterSubblock(Block, 3);
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(Record));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
Stream->ExitBlock();
}
void BitcodeWriter::writeSymtab() {
assert(!WroteStrtab && !WroteSymtab);
// If any module has module-level inline asm, we will require a registered asm
// parser for the target so that we can create an accurate symbol table for
// the module.
for (Module *M : Mods) {
if (M->getModuleInlineAsm().empty())
continue;
}
WroteSymtab = true;
SmallVector<char, 0> Symtab;
// The irsymtab::build function may be unable to create a symbol table if the
// module is malformed (e.g. it contains an invalid alias). Writing a symbol
// table is not required for correctness, but we still want to be able to
// write malformed modules to bitcode files, so swallow the error.
if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
consumeError(std::move(E));
return;
}
writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
{Symtab.data(), Symtab.size()});
}
void BitcodeWriter::writeStrtab() {
assert(!WroteStrtab);
std::vector<char> Strtab;
StrtabBuilder.finalizeInOrder();
Strtab.resize(StrtabBuilder.getSize());
StrtabBuilder.write((uint8_t *)Strtab.data());
writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
{Strtab.data(), Strtab.size()});
WroteStrtab = true;
}
void BitcodeWriter::copyStrtab(StringRef Strtab) {
writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
WroteStrtab = true;
}
void BitcodeWriter::writeModule(const Module &M) {
assert(!WroteStrtab);
// The Mods vector is used by irsymtab::build, which requires non-const
// Modules in case it needs to materialize metadata. But the bitcode writer
// requires that the module is materialized, so we can cast to non-const here,
// after checking that it is in fact materialized.
assert(M.isMaterialized());
Mods.push_back(const_cast<Module *>(&M));
DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
ModuleWriter.write();
}
////////////////////////////////////////////////////////////////////////////////
/// Begin dxil::BitcodeWriterBase Implementation
////////////////////////////////////////////////////////////////////////////////
unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
switch (Opcode) {
default:
llvm_unreachable("Unknown cast instruction!");
case Instruction::Trunc:
return bitc::CAST_TRUNC;
case Instruction::ZExt:
return bitc::CAST_ZEXT;
case Instruction::SExt:
return bitc::CAST_SEXT;
case Instruction::FPToUI:
return bitc::CAST_FPTOUI;
case Instruction::FPToSI:
return bitc::CAST_FPTOSI;
case Instruction::UIToFP:
return bitc::CAST_UITOFP;
case Instruction::SIToFP:
return bitc::CAST_SITOFP;
case Instruction::FPTrunc:
return bitc::CAST_FPTRUNC;
case Instruction::FPExt:
return bitc::CAST_FPEXT;
case Instruction::PtrToInt:
return bitc::CAST_PTRTOINT;
case Instruction::IntToPtr:
return bitc::CAST_INTTOPTR;
case Instruction::BitCast:
return bitc::CAST_BITCAST;
case Instruction::AddrSpaceCast:
return bitc::CAST_ADDRSPACECAST;
}
}
unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
switch (Opcode) {
default:
llvm_unreachable("Unknown binary instruction!");
case Instruction::FNeg:
return bitc::UNOP_FNEG;
}
}
unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
switch (Opcode) {
default:
llvm_unreachable("Unknown binary instruction!");
case Instruction::Add:
case Instruction::FAdd:
return bitc::BINOP_ADD;
case Instruction::Sub:
case Instruction::FSub:
return bitc::BINOP_SUB;
case Instruction::Mul:
case Instruction::FMul:
return bitc::BINOP_MUL;
case Instruction::UDiv:
return bitc::BINOP_UDIV;
case Instruction::FDiv:
case Instruction::SDiv:
return bitc::BINOP_SDIV;
case Instruction::URem:
return bitc::BINOP_UREM;
case Instruction::FRem:
case Instruction::SRem:
return bitc::BINOP_SREM;
case Instruction::Shl:
return bitc::BINOP_SHL;
case Instruction::LShr:
return bitc::BINOP_LSHR;
case Instruction::AShr:
return bitc::BINOP_ASHR;
case Instruction::And:
return bitc::BINOP_AND;
case Instruction::Or:
return bitc::BINOP_OR;
case Instruction::Xor:
return bitc::BINOP_XOR;
}
}
unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) {
if (!T->isOpaquePointerTy())
return VE.getTypeID(T);
auto It = PointerMap.find(V);
if (It != PointerMap.end())
return VE.getTypeID(It->second);
return VE.getTypeID(I8PtrTy);
}
unsigned DXILBitcodeWriter::getTypeID(Type *T, const Function *F) {
auto It = PointerMap.find(F);
if (It != PointerMap.end())
return VE.getTypeID(It->second);
return VE.getTypeID(T);
}
unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
switch (Op) {
default:
llvm_unreachable("Unknown RMW operation!");
case AtomicRMWInst::Xchg:
return bitc::RMW_XCHG;
case AtomicRMWInst::Add:
return bitc::RMW_ADD;
case AtomicRMWInst::Sub:
return bitc::RMW_SUB;
case AtomicRMWInst::And:
return bitc::RMW_AND;
case AtomicRMWInst::Nand:
return bitc::RMW_NAND;
case AtomicRMWInst::Or:
return bitc::RMW_OR;
case AtomicRMWInst::Xor:
return bitc::RMW_XOR;
case AtomicRMWInst::Max:
return bitc::RMW_MAX;
case AtomicRMWInst::Min:
return bitc::RMW_MIN;
case AtomicRMWInst::UMax:
return bitc::RMW_UMAX;
case AtomicRMWInst::UMin:
return bitc::RMW_UMIN;
case AtomicRMWInst::FAdd:
return bitc::RMW_FADD;
case AtomicRMWInst::FSub:
return bitc::RMW_FSUB;
case AtomicRMWInst::FMax:
return bitc::RMW_FMAX;
case AtomicRMWInst::FMin:
return bitc::RMW_FMIN;
}
}
unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
switch (Ordering) {
case AtomicOrdering::NotAtomic:
return bitc::ORDERING_NOTATOMIC;
case AtomicOrdering::Unordered:
return bitc::ORDERING_UNORDERED;
case AtomicOrdering::Monotonic:
return bitc::ORDERING_MONOTONIC;
case AtomicOrdering::Acquire:
return bitc::ORDERING_ACQUIRE;
case AtomicOrdering::Release:
return bitc::ORDERING_RELEASE;
case AtomicOrdering::AcquireRelease:
return bitc::ORDERING_ACQREL;
case AtomicOrdering::SequentiallyConsistent:
return bitc::ORDERING_SEQCST;
}
llvm_unreachable("Invalid ordering");
}
void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
unsigned Code, StringRef Str,
unsigned AbbrevToUse) {
SmallVector<unsigned, 64> Vals;
// Code: [strchar x N]
for (char C : Str) {
if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
AbbrevToUse = 0;
Vals.push_back(C);
}
// Emit the finished record.
Stream.EmitRecord(Code, Vals, AbbrevToUse);
}
uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
switch (Kind) {
case Attribute::Alignment:
return bitc::ATTR_KIND_ALIGNMENT;
case Attribute::AlwaysInline:
return bitc::ATTR_KIND_ALWAYS_INLINE;
case Attribute::ArgMemOnly:
return bitc::ATTR_KIND_ARGMEMONLY;
case Attribute::Builtin:
return bitc::ATTR_KIND_BUILTIN;
case Attribute::ByVal:
return bitc::ATTR_KIND_BY_VAL;
case Attribute::Convergent:
return bitc::ATTR_KIND_CONVERGENT;
case Attribute::InAlloca:
return bitc::ATTR_KIND_IN_ALLOCA;
case Attribute::Cold:
return bitc::ATTR_KIND_COLD;
case Attribute::InlineHint:
return bitc::ATTR_KIND_INLINE_HINT;
case Attribute::InReg:
return bitc::ATTR_KIND_IN_REG;
case Attribute::JumpTable:
return bitc::ATTR_KIND_JUMP_TABLE;
case Attribute::MinSize:
return bitc::ATTR_KIND_MIN_SIZE;
case Attribute::Naked:
return bitc::ATTR_KIND_NAKED;
case Attribute::Nest:
return bitc::ATTR_KIND_NEST;
case Attribute::NoAlias:
return bitc::ATTR_KIND_NO_ALIAS;
case Attribute::NoBuiltin:
return bitc::ATTR_KIND_NO_BUILTIN;
case Attribute::NoCapture:
return bitc::ATTR_KIND_NO_CAPTURE;
case Attribute::NoDuplicate:
return bitc::ATTR_KIND_NO_DUPLICATE;
case Attribute::NoImplicitFloat:
return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
case Attribute::NoInline:
return bitc::ATTR_KIND_NO_INLINE;
case Attribute::NonLazyBind:
return bitc::ATTR_KIND_NON_LAZY_BIND;
case Attribute::NonNull:
return bitc::ATTR_KIND_NON_NULL;
case Attribute::Dereferenceable:
return bitc::ATTR_KIND_DEREFERENCEABLE;
case Attribute::DereferenceableOrNull:
return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
case Attribute::NoRedZone:
return bitc::ATTR_KIND_NO_RED_ZONE;
case Attribute::NoReturn:
return bitc::ATTR_KIND_NO_RETURN;
case Attribute::NoUnwind:
return bitc::ATTR_KIND_NO_UNWIND;
case Attribute::OptimizeForSize:
return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
case Attribute::OptimizeNone:
return bitc::ATTR_KIND_OPTIMIZE_NONE;
case Attribute::ReadNone:
return bitc::ATTR_KIND_READ_NONE;
case Attribute::ReadOnly:
return bitc::ATTR_KIND_READ_ONLY;
case Attribute::Returned:
return bitc::ATTR_KIND_RETURNED;
case Attribute::ReturnsTwice:
return bitc::ATTR_KIND_RETURNS_TWICE;
case Attribute::SExt:
return bitc::ATTR_KIND_S_EXT;
case Attribute::StackAlignment:
return bitc::ATTR_KIND_STACK_ALIGNMENT;
case Attribute::StackProtect:
return bitc::ATTR_KIND_STACK_PROTECT;
case Attribute::StackProtectReq:
return bitc::ATTR_KIND_STACK_PROTECT_REQ;
case Attribute::StackProtectStrong:
return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
case Attribute::SafeStack:
return bitc::ATTR_KIND_SAFESTACK;
case Attribute::StructRet:
return bitc::ATTR_KIND_STRUCT_RET;
case Attribute::SanitizeAddress:
return bitc::ATTR_KIND_SANITIZE_ADDRESS;
case Attribute::SanitizeThread:
return bitc::ATTR_KIND_SANITIZE_THREAD;
case Attribute::SanitizeMemory:
return bitc::ATTR_KIND_SANITIZE_MEMORY;
case Attribute::UWTable:
return bitc::ATTR_KIND_UW_TABLE;
case Attribute::ZExt:
return bitc::ATTR_KIND_Z_EXT;
case Attribute::EndAttrKinds:
llvm_unreachable("Can not encode end-attribute kinds marker.");
case Attribute::None:
llvm_unreachable("Can not encode none-attribute.");
case Attribute::EmptyKey:
case Attribute::TombstoneKey:
llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
default:
llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
"should be stripped in DXILPrepare");
}
llvm_unreachable("Trying to encode unknown attribute");
}
void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
uint64_t V) {
if ((int64_t)V >= 0)
Vals.push_back(V << 1);
else
Vals.push_back((-V << 1) | 1);
}
void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
const APInt &A) {
// We have an arbitrary precision integer value to write whose
// bit width is > 64. However, in canonical unsigned integer
// format it is likely that the high bits are going to be zero.
// So, we only write the number of active words.
unsigned NumWords = A.getActiveWords();
const uint64_t *RawData = A.getRawData();
for (unsigned i = 0; i < NumWords; i++)
emitSignedInt64(Vals, RawData[i]);
}
uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
uint64_t Flags = 0;
if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
if (OBO->hasNoSignedWrap())
Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
if (OBO->hasNoUnsignedWrap())
Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
} else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
if (PEO->isExact())
Flags |= 1 << bitc::PEO_EXACT;
} else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
if (FPMO->hasAllowReassoc())
Flags |= bitc::AllowReassoc;
if (FPMO->hasNoNaNs())
Flags |= bitc::NoNaNs;
if (FPMO->hasNoInfs())
Flags |= bitc::NoInfs;
if (FPMO->hasNoSignedZeros())
Flags |= bitc::NoSignedZeros;
if (FPMO->hasAllowReciprocal())
Flags |= bitc::AllowReciprocal;
if (FPMO->hasAllowContract())
Flags |= bitc::AllowContract;
if (FPMO->hasApproxFunc())
Flags |= bitc::ApproxFunc;
}
return Flags;
}
unsigned
DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
switch (Linkage) {
case GlobalValue::ExternalLinkage:
return 0;
case GlobalValue::WeakAnyLinkage:
return 16;
case GlobalValue::AppendingLinkage:
return 2;
case GlobalValue::InternalLinkage:
return 3;
case GlobalValue::LinkOnceAnyLinkage:
return 18;
case GlobalValue::ExternalWeakLinkage:
return 7;
case GlobalValue::CommonLinkage:
return 8;
case GlobalValue::PrivateLinkage:
return 9;
case GlobalValue::WeakODRLinkage:
return 17;
case GlobalValue::LinkOnceODRLinkage:
return 19;
case GlobalValue::AvailableExternallyLinkage:
return 12;
}
llvm_unreachable("Invalid linkage");
}
unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
return getEncodedLinkage(GV.getLinkage());
}
unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
switch (GV.getVisibility()) {
case GlobalValue::DefaultVisibility:
return 0;
case GlobalValue::HiddenVisibility:
return 1;
case GlobalValue::ProtectedVisibility:
return 2;
}
llvm_unreachable("Invalid visibility");
}
unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
switch (GV.getDLLStorageClass()) {
case GlobalValue::DefaultStorageClass:
return 0;
case GlobalValue::DLLImportStorageClass:
return 1;
case GlobalValue::DLLExportStorageClass:
return 2;
}
llvm_unreachable("Invalid DLL storage class");
}
unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
switch (GV.getThreadLocalMode()) {
case GlobalVariable::NotThreadLocal:
return 0;
case GlobalVariable::GeneralDynamicTLSModel:
return 1;
case GlobalVariable::LocalDynamicTLSModel:
return 2;
case GlobalVariable::InitialExecTLSModel:
return 3;
case GlobalVariable::LocalExecTLSModel:
return 4;
}
llvm_unreachable("Invalid TLS model");
}
unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
switch (C.getSelectionKind()) {
case Comdat::Any:
return bitc::COMDAT_SELECTION_KIND_ANY;
case Comdat::ExactMatch:
return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
case Comdat::Largest:
return bitc::COMDAT_SELECTION_KIND_LARGEST;
case Comdat::NoDeduplicate:
return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
case Comdat::SameSize:
return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
}
llvm_unreachable("Invalid selection kind");
}
////////////////////////////////////////////////////////////////////////////////
/// Begin DXILBitcodeWriter Implementation
////////////////////////////////////////////////////////////////////////////////
void DXILBitcodeWriter::writeAttributeGroupTable() {
const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
VE.getAttributeGroups();
if (AttrGrps.empty())
return;
Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
unsigned AttrListIndex = Pair.first;
AttributeSet AS = Pair.second;
Record.push_back(VE.getAttributeGroupID(Pair));
Record.push_back(AttrListIndex);
for (Attribute Attr : AS) {
if (Attr.isEnumAttribute()) {
uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
"DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
Record.push_back(0);
Record.push_back(Val);
} else if (Attr.isIntAttribute()) {
uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
"DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
Record.push_back(1);
Record.push_back(Val);
Record.push_back(Attr.getValueAsInt());
} else {
StringRef Kind = Attr.getKindAsString();
StringRef Val = Attr.getValueAsString();
Record.push_back(Val.empty() ? 3 : 4);
Record.append(Kind.begin(), Kind.end());
Record.push_back(0);
if (!Val.empty()) {
Record.append(Val.begin(), Val.end());
Record.push_back(0);
}
}
}
Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
Record.clear();
}
Stream.ExitBlock();
}
void DXILBitcodeWriter::writeAttributeTable() {
const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
if (Attrs.empty())
return;
Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
AttributeList AL = Attrs[i];
for (unsigned i : AL.indexes()) {
AttributeSet AS = AL.getAttributes(i);
if (AS.hasAttributes())
Record.push_back(VE.getAttributeGroupID({i, AS}));
}
Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
Record.clear();
}
Stream.ExitBlock();
}
/// WriteTypeTable - Write out the type table for a module.
void DXILBitcodeWriter::writeTypeTable() {
const ValueEnumerator::TypeList &TypeList = VE.getTypes();
Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
SmallVector<uint64_t, 64> TypeVals;
uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
// Abbrev for TYPE_CODE_POINTER.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for TYPE_CODE_FUNCTION.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for TYPE_CODE_STRUCT_ANON.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for TYPE_CODE_STRUCT_NAME.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for TYPE_CODE_STRUCT_NAMED.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for TYPE_CODE_ARRAY.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Emit an entry count so the reader can reserve space.
TypeVals.push_back(TypeList.size());
Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
TypeVals.clear();
// Loop over all of the types, emitting each in turn.
for (Type *T : TypeList) {
int AbbrevToUse = 0;
unsigned Code = 0;
switch (T->getTypeID()) {
case Type::BFloatTyID:
case Type::X86_AMXTyID:
case Type::TokenTyID:
llvm_unreachable("These should never be used!!!");
break;
case Type::VoidTyID:
Code = bitc::TYPE_CODE_VOID;
break;
case Type::HalfTyID:
Code = bitc::TYPE_CODE_HALF;
break;
case Type::FloatTyID:
Code = bitc::TYPE_CODE_FLOAT;
break;
case Type::DoubleTyID:
Code = bitc::TYPE_CODE_DOUBLE;
break;
case Type::X86_FP80TyID:
Code = bitc::TYPE_CODE_X86_FP80;
break;
case Type::FP128TyID:
Code = bitc::TYPE_CODE_FP128;
break;
case Type::PPC_FP128TyID:
Code = bitc::TYPE_CODE_PPC_FP128;
break;
case Type::LabelTyID:
Code = bitc::TYPE_CODE_LABEL;
break;
case Type::MetadataTyID:
Code = bitc::TYPE_CODE_METADATA;
break;
case Type::X86_MMXTyID:
Code = bitc::TYPE_CODE_X86_MMX;
break;
case Type::IntegerTyID:
// INTEGER: [width]
Code = bitc::TYPE_CODE_INTEGER;
TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
break;
case Type::TypedPointerTyID: {
TypedPointerType *PTy = cast<TypedPointerType>(T);
// POINTER: [pointee type, address space]
Code = bitc::TYPE_CODE_POINTER;
TypeVals.push_back(getTypeID(PTy->getElementType()));
unsigned AddressSpace = PTy->getAddressSpace();
TypeVals.push_back(AddressSpace);
if (AddressSpace == 0)
AbbrevToUse = PtrAbbrev;
break;
}
case Type::PointerTyID: {
PointerType *PTy = cast<PointerType>(T);
// POINTER: [pointee type, address space]
Code = bitc::TYPE_CODE_POINTER;
// Emitting an empty struct type for the opaque pointer's type allows
// this to be order-independent. Non-struct types must be emitted in
// bitcode before they can be referenced.
if (PTy->isOpaquePointerTy()) {
TypeVals.push_back(false);
Code = bitc::TYPE_CODE_OPAQUE;
writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME,
"dxilOpaquePtrReservedName", StructNameAbbrev);
} else {
TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType()));
unsigned AddressSpace = PTy->getAddressSpace();
TypeVals.push_back(AddressSpace);
if (AddressSpace == 0)
AbbrevToUse = PtrAbbrev;
}
break;
}
case Type::FunctionTyID: {
FunctionType *FT = cast<FunctionType>(T);
// FUNCTION: [isvararg, retty, paramty x N]
Code = bitc::TYPE_CODE_FUNCTION;
TypeVals.push_back(FT->isVarArg());
TypeVals.push_back(getTypeID(FT->getReturnType()));
for (Type *PTy : FT->params())
TypeVals.push_back(getTypeID(PTy));
AbbrevToUse = FunctionAbbrev;
break;
}
case Type::StructTyID: {
StructType *ST = cast<StructType>(T);
// STRUCT: [ispacked, eltty x N]
TypeVals.push_back(ST->isPacked());
// Output all of the element types.
for (Type *ElTy : ST->elements())
TypeVals.push_back(getTypeID(ElTy));
if (ST->isLiteral()) {
Code = bitc::TYPE_CODE_STRUCT_ANON;
AbbrevToUse = StructAnonAbbrev;
} else {
if (ST->isOpaque()) {
Code = bitc::TYPE_CODE_OPAQUE;
} else {
Code = bitc::TYPE_CODE_STRUCT_NAMED;
AbbrevToUse = StructNamedAbbrev;
}
// Emit the name if it is present.
if (!ST->getName().empty())
writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
StructNameAbbrev);
}
break;
}
case Type::ArrayTyID: {
ArrayType *AT = cast<ArrayType>(T);
// ARRAY: [numelts, eltty]
Code = bitc::TYPE_CODE_ARRAY;
TypeVals.push_back(AT->getNumElements());
TypeVals.push_back(getTypeID(AT->getElementType()));
AbbrevToUse = ArrayAbbrev;
break;
}
case Type::FixedVectorTyID:
case Type::ScalableVectorTyID: {
VectorType *VT = cast<VectorType>(T);
// VECTOR [numelts, eltty]
Code = bitc::TYPE_CODE_VECTOR;
TypeVals.push_back(VT->getElementCount().getKnownMinValue());
TypeVals.push_back(getTypeID(VT->getElementType()));
break;
}
}
// Emit the finished record.
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
TypeVals.clear();
}
Stream.ExitBlock();
}
void DXILBitcodeWriter::writeComdats() {
SmallVector<uint16_t, 64> Vals;
for (const Comdat *C : VE.getComdats()) {
// COMDAT: [selection_kind, name]
Vals.push_back(getEncodedComdatSelectionKind(*C));
size_t Size = C->getName().size();
assert(isUInt<16>(Size));
Vals.push_back(Size);
for (char Chr : C->getName())
Vals.push_back((unsigned char)Chr);
Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
Vals.clear();
}
}
void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
/// Emit top-level description of module, including target triple, inline asm,
/// descriptors for global variables, and function prototype info.
/// Returns the bit offset to backpatch with the location of the real VST.
void DXILBitcodeWriter::writeModuleInfo() {
// Emit various pieces of data attached to a module.
if (!M.getTargetTriple().empty())
writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
0 /*TODO*/);
const std::string &DL = M.getDataLayoutStr();
if (!DL.empty())
writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
if (!M.getModuleInlineAsm().empty())
writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
0 /*TODO*/);
// Emit information about sections and GC, computing how many there are. Also
// compute the maximum alignment value.
std::map<std::string, unsigned> SectionMap;
std::map<std::string, unsigned> GCMap;
MaybeAlign MaxAlignment;
unsigned MaxGlobalType = 0;
const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
if (A)
MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
};
for (const GlobalVariable &GV : M.globals()) {
UpdateMaxAlignment(GV.getAlign());
MaxGlobalType = std::max(MaxGlobalType, getTypeID(GV.getValueType(), &GV));
if (GV.hasSection()) {
// Give section names unique ID's.
unsigned &Entry = SectionMap[std::string(GV.getSection())];
if (!Entry) {
writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
GV.getSection(), 0 /*TODO*/);
Entry = SectionMap.size();
}
}
}
for (const Function &F : M) {
UpdateMaxAlignment(F.getAlign());
if (F.hasSection()) {
// Give section names unique ID's.
unsigned &Entry = SectionMap[std::string(F.getSection())];
if (!Entry) {
writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
0 /*TODO*/);
Entry = SectionMap.size();
}
}
if (F.hasGC()) {
// Same for GC names.
unsigned &Entry = GCMap[F.getGC()];
if (!Entry) {
writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
0 /*TODO*/);
Entry = GCMap.size();
}
}
}
// Emit abbrev for globals, now that we know # sections and max alignment.
unsigned SimpleGVarAbbrev = 0;
if (!M.global_empty()) {
// Add an abbrev for common globals with no visibility or thread
// localness.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(MaxGlobalType + 1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
//| explicitType << 1
//| constant
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
if (!MaxAlignment) // Alignment.
Abbv->Add(BitCodeAbbrevOp(0));
else {
unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(MaxEncAlignment + 1)));
}
if (SectionMap.empty()) // Section.
Abbv->Add(BitCodeAbbrevOp(0));
else
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(SectionMap.size() + 1)));
// Don't bother emitting vis + thread local.
SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
}
// Emit the global variable information.
SmallVector<unsigned, 64> Vals;
for (const GlobalVariable &GV : M.globals()) {
unsigned AbbrevToUse = 0;
// GLOBALVAR: [type, isconst, initid,
// linkage, alignment, section, visibility, threadlocal,
// unnamed_addr, externally_initialized, dllstorageclass,
// comdat]
Vals.push_back(getTypeID(GV.getValueType(), &GV));
Vals.push_back(
GV.getType()->getAddressSpace() << 2 | 2 |
(GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
// unsigned int and bool
Vals.push_back(
GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
Vals.push_back(getEncodedLinkage(GV));
Vals.push_back(getEncodedAlign(GV.getAlign()));
Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
: 0);
if (GV.isThreadLocal() ||
GV.getVisibility() != GlobalValue::DefaultVisibility ||
GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
GV.isExternallyInitialized() ||
GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
GV.hasComdat()) {
Vals.push_back(getEncodedVisibility(GV));
Vals.push_back(getEncodedThreadLocalMode(GV));
Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
Vals.push_back(GV.isExternallyInitialized());
Vals.push_back(getEncodedDLLStorageClass(GV));
Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
} else {
AbbrevToUse = SimpleGVarAbbrev;
}
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the function proto information.
for (const Function &F : M) {
// FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
// section, visibility, gc, unnamed_addr, prologuedata,
// dllstorageclass, comdat, prefixdata, personalityfn]
Vals.push_back(getTypeID(F.getFunctionType(), &F));
Vals.push_back(F.getCallingConv());
Vals.push_back(F.isDeclaration());
Vals.push_back(getEncodedLinkage(F));
Vals.push_back(VE.getAttributeListID(F.getAttributes()));
Vals.push_back(getEncodedAlign(F.getAlign()));
Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
: 0);
Vals.push_back(getEncodedVisibility(F));
Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
Vals.push_back(
F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
Vals.push_back(getEncodedDLLStorageClass(F));
Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
: 0);
Vals.push_back(
F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the alias information.
for (const GlobalAlias &A : M.aliases()) {
// ALIAS: [alias type, aliasee val#, linkage, visibility]
Vals.push_back(getTypeID(A.getValueType(), &A));
Vals.push_back(VE.getValueID(A.getAliasee()));
Vals.push_back(getEncodedLinkage(A));
Vals.push_back(getEncodedVisibility(A));
Vals.push_back(getEncodedDLLStorageClass(A));
Vals.push_back(getEncodedThreadLocalMode(A));
Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
Vals.clear();
}
}
void DXILBitcodeWriter::writeValueAsMetadata(
const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
// Mimic an MDNode with a value as one operand.
Value *V = MD->getValue();
Type *Ty = V->getType();
if (Function *F = dyn_cast<Function>(V))
Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace());
else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace());
Record.push_back(getTypeID(Ty));
Record.push_back(VE.getValueID(V));
Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
Record.clear();
}
void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
Metadata *MD = N->getOperand(i);
assert(!(MD && isa<LocalAsMetadata>(MD)) &&
"Unexpected function-local metadata");
Record.push_back(VE.getMetadataOrNullID(MD));
}
Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
: bitc::METADATA_NODE,
Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDILocation(const DILocation *N,
SmallVectorImpl<uint64_t> &Record,
unsigned &Abbrev) {
if (!Abbrev)
Abbrev = createDILocationAbbrev();
Record.push_back(N->isDistinct());
Record.push_back(N->getLine());
Record.push_back(N->getColumn());
Record.push_back(VE.getMetadataID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
Record.clear();
}
static uint64_t rotateSign(APInt Val) {
int64_t I = Val.getSExtValue();
uint64_t U = I;
return I < 0 ? ~(U << 1) : U << 1;
}
static uint64_t rotateSign(DISubrange::BoundType Val) {
return rotateSign(Val.get<ConstantInt *>()->getValue());
}
void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(
N->getCount().get<ConstantInt *>()->getValue().getSExtValue());
Record.push_back(rotateSign(N->getLowerBound()));
Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(rotateSign(N->getValue()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getEncoding());
Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getOffsetInBits());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getOffsetInBits());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
Record.push_back(N->getRuntimeLang());
Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDIFile(const DIFile *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getSourceLanguage());
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
Record.push_back(N->isOptimized());
Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
Record.push_back(N->getRuntimeVersion());
Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
Record.push_back(N->getEmissionKind());
Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
Record.push_back(/* subprograms */ 0);
Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
Record.push_back(N->getDWOId());
Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(N->isLocalToUnit());
Record.push_back(N->isDefinition());
Record.push_back(N->getScopeLine());
Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
Record.push_back(N->getVirtuality());
Record.push_back(N->getVirtualIndex());
Record.push_back(N->getFlags());
Record.push_back(N->isOptimized());
Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(N->getColumn());
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDILexicalBlockFile(
const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getDiscriminator());
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(/* line number */ 0);
Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDIModule(const DIModule *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
for (auto &I : N->operands())
Record.push_back(VE.getMetadataOrNullID(I));
Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDITemplateTypeParameter(
const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDITemplateValueParameter(
const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(VE.getMetadataOrNullID(N->getValue()));
Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(N->isLocalToUnit());
Record.push_back(N->isDefinition());
Record.push_back(/* N->getRawVariable() */ 0);
Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(N->getArg());
Record.push_back(N->getFlags());
Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.reserve(N->getElements().size() + 1);
Record.push_back(N->isDistinct());
Record.append(N->elements_begin(), N->elements_end());
Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
Record.clear();
}
void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
llvm_unreachable("DXIL does not support objc!!!");
}
void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
Record.clear();
}
unsigned DXILBitcodeWriter::createDILocationAbbrev() {
// Abbrev for METADATA_LOCATION.
//
// Assume the column is usually under 128, and always output the inlined-at
// location (it's never more expensive than building an array size 1).
std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
return Stream.EmitAbbrev(std::move(Abbv));
}
unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
// Abbrev for METADATA_GENERIC_DEBUG.
//
// Assume the column is usually under 128, and always output the inlined-at
// location (it's never more expensive than building an array size 1).
std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
return Stream.EmitAbbrev(std::move(Abbv));
}
void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
SmallVectorImpl<uint64_t> &Record,
std::vector<unsigned> *MDAbbrevs,
std::vector<uint64_t> *IndexPos) {
if (MDs.empty())
return;
// Initialize MDNode abbreviations.
#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
#include "llvm/IR/Metadata.def"
for (const Metadata *MD : MDs) {
if (IndexPos)
IndexPos->push_back(Stream.GetCurrentBitNo());
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
assert(N->isResolved() && "Expected forward references to be resolved");
switch (N->getMetadataID()) {
default:
llvm_unreachable("Invalid MDNode subclass");
#define HANDLE_MDNODE_LEAF(CLASS) \
case Metadata::CLASS##Kind: \
if (MDAbbrevs) \
write##CLASS(cast<CLASS>(N), Record, \
(*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
else \
write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
continue;
#include "llvm/IR/Metadata.def"
}
}
writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
}
}
unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
return Stream.EmitAbbrev(std::move(Abbv));
}
void DXILBitcodeWriter::writeMetadataStrings(
ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
for (const Metadata *MD : Strings) {
const MDString *MDS = cast<MDString>(MD);
// Code: [strchar x N]
Record.append(MDS->bytes_begin(), MDS->bytes_end());
// Emit the finished record.
Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record,
createMetadataStringsAbbrev());
Record.clear();
}
}
void DXILBitcodeWriter::writeModuleMetadata() {
if (!VE.hasMDs() && M.named_metadata_empty())
return;
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
// Emit all abbrevs upfront, so that the reader can jump in the middle of the
// block and load any metadata.
std::vector<unsigned> MDAbbrevs;
MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
createGenericDINodeAbbrev();
unsigned NameAbbrev = 0;
if (!M.named_metadata_empty()) {
// Abbrev for METADATA_NAME.
std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
}
SmallVector<uint64_t, 64> Record;
writeMetadataStrings(VE.getMDStrings(), Record);
std::vector<uint64_t> IndexPos;
IndexPos.reserve(VE.getNonMDStrings().size());
writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
// Write named metadata.
for (const NamedMDNode &NMD : M.named_metadata()) {
// Write name.
StringRef Str = NMD.getName();
Record.append(Str.bytes_begin(), Str.bytes_end());
Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
Record.clear();
// Write named metadata operands.
for (const MDNode *N : NMD.operands())
Record.push_back(VE.getMetadataID(N));
Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
if (!VE.hasMDs())
return;
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
SmallVector<uint64_t, 64> Record;
writeMetadataStrings(VE.getMDStrings(), Record);
writeMetadataRecords(VE.getNonMDStrings(), Record);
Stream.ExitBlock();
}
void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
SmallVector<uint64_t, 64> Record;
// Write metadata attachments
// METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
F.getAllMetadata(MDs);
if (!MDs.empty()) {
for (const auto &I : MDs) {
Record.push_back(I.first);
Record.push_back(VE.getMetadataID(I.second));
}
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
Record.clear();
}
for (const BasicBlock &BB : F)
for (const Instruction &I : BB) {
MDs.clear();
I.getAllMetadataOtherThanDebugLoc(MDs);
// If no metadata, ignore instruction.
if (MDs.empty())
continue;
Record.push_back(VE.getInstructionID(&I));
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
Record.push_back(MDs[i].first);
Record.push_back(VE.getMetadataID(MDs[i].second));
}
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
void DXILBitcodeWriter::writeModuleMetadataKinds() {
SmallVector<uint64_t, 64> Record;
// Write metadata kinds
// METADATA_KIND - [n x [id, name]]
SmallVector<StringRef, 8> Names;
M.getMDKindNames(Names);
if (Names.empty())
return;
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
Record.push_back(MDKindID);
StringRef KName = Names[MDKindID];
Record.append(KName.begin(), KName.end());
Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
bool isGlobal) {
if (FirstVal == LastVal)
return;
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
unsigned AggregateAbbrev = 0;
unsigned String8Abbrev = 0;
unsigned CString7Abbrev = 0;
unsigned CString6Abbrev = 0;
// If this is a constant pool for the module, emit module-specific abbrevs.
if (isGlobal) {
// Abbrev for CST_CODE_AGGREGATE.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(
BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for CST_CODE_STRING.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for CST_CODE_CSTRING.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for CST_CODE_CSTRING.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
}
SmallVector<uint64_t, 64> Record;
const ValueEnumerator::ValueList &Vals = VE.getValues();
Type *LastTy = nullptr;
for (unsigned i = FirstVal; i != LastVal; ++i) {
const Value *V = Vals[i].first;
// If we need to switch types, do so now.
if (V->getType() != LastTy) {
LastTy = V->getType();
Record.push_back(getTypeID(LastTy));
Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
CONSTANTS_SETTYPE_ABBREV);
Record.clear();
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Record.push_back(unsigned(IA->hasSideEffects()) |
unsigned(IA->isAlignStack()) << 1 |
unsigned(IA->getDialect() & 1) << 2);
// Add the asm string.
const std::string &AsmStr = IA->getAsmString();
Record.push_back(AsmStr.size());
Record.append(AsmStr.begin(), AsmStr.end());
// Add the constraint string.
const std::string &ConstraintStr = IA->getConstraintString();
Record.push_back(ConstraintStr.size());
Record.append(ConstraintStr.begin(), ConstraintStr.end());
Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
Record.clear();
continue;
}
const Constant *C = cast<Constant>(V);
unsigned Code = -1U;
unsigned AbbrevToUse = 0;
if (C->isNullValue()) {
Code = bitc::CST_CODE_NULL;
} else if (isa<UndefValue>(C)) {
Code = bitc::CST_CODE_UNDEF;
} else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
if (IV->getBitWidth() <= 64) {
uint64_t V = IV->getSExtValue();
emitSignedInt64(Record, V);
Code = bitc::CST_CODE_INTEGER;
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
} else { // Wide integers, > 64 bits in size.
// We have an arbitrary precision integer value to write whose
// bit width is > 64. However, in canonical unsigned integer
// format it is likely that the high bits are going to be zero.
// So, we only write the number of active words.
unsigned NWords = IV->getValue().getActiveWords();
const uint64_t *RawWords = IV->getValue().getRawData();
for (unsigned i = 0; i != NWords; ++i) {
emitSignedInt64(Record, RawWords[i]);
}
Code = bitc::CST_CODE_WIDE_INTEGER;
}
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Code = bitc::CST_CODE_FLOAT;
Type *Ty = CFP->getType();
if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
} else if (Ty->isX86_FP80Ty()) {
// api needed to prevent premature destruction
// bits are not in the same order as a normal i80 APInt, compensate.
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Record.push_back((p[1] << 48) | (p[0] >> 16));
Record.push_back(p[0] & 0xffffLL);
} else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Record.push_back(p[0]);
Record.push_back(p[1]);
} else {
assert(0 && "Unknown FP type!");
}
} else if (isa<ConstantDataSequential>(C) &&
cast<ConstantDataSequential>(C)->isString()) {
const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
// Emit constant strings specially.
unsigned NumElts = Str->getNumElements();
// If this is a null-terminated string, use the denser CSTRING encoding.
if (Str->isCString()) {
Code = bitc::CST_CODE_CSTRING;
--NumElts; // Don't encode the null, which isn't allowed by char6.
} else {
Code = bitc::CST_CODE_STRING;
AbbrevToUse = String8Abbrev;
}
bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
for (unsigned i = 0; i != NumElts; ++i) {
unsigned char V = Str->getElementAsInteger(i);
Record.push_back(V);
isCStr7 &= (V & 128) == 0;
if (isCStrChar6)
isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
}
if (isCStrChar6)
AbbrevToUse = CString6Abbrev;
else if (isCStr7)
AbbrevToUse = CString7Abbrev;
} else if (const ConstantDataSequential *CDS =
dyn_cast<ConstantDataSequential>(C)) {
Code = bitc::CST_CODE_DATA;
Type *EltTy = CDS->getType()->getArrayElementType();
if (isa<IntegerType>(EltTy)) {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
Record.push_back(CDS->getElementAsInteger(i));
} else if (EltTy->isFloatTy()) {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
union {
float F;
uint32_t I;
};
F = CDS->getElementAsFloat(i);
Record.push_back(I);
}
} else {
assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
union {
double F;
uint64_t I;
};
F = CDS->getElementAsDouble(i);
Record.push_back(I);
}
}
} else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
isa<ConstantVector>(C)) {
Code = bitc::CST_CODE_AGGREGATE;
for (const Value *Op : C->operands())
Record.push_back(VE.getValueID(Op));
AbbrevToUse = AggregateAbbrev;
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
default:
if (Instruction::isCast(CE->getOpcode())) {
Code = bitc::CST_CODE_CE_CAST;
Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
Record.push_back(getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
} else {
assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
Code = bitc::CST_CODE_CE_BINOP;
Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
uint64_t Flags = getOptimizationFlags(CE);
if (Flags != 0)
Record.push_back(Flags);
}
break;
case Instruction::GetElementPtr: {
Code = bitc::CST_CODE_CE_GEP;
const auto *GO = cast<GEPOperator>(C);
if (GO->isInBounds())
Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
Record.push_back(getTypeID(GO->getSourceElementType()));
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
Record.push_back(getTypeID(C->getOperand(i)->getType()));
Record.push_back(VE.getValueID(C->getOperand(i)));
}
break;
}
case Instruction::Select:
Code = bitc::CST_CODE_CE_SELECT;
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ExtractElement:
Code = bitc::CST_CODE_CE_EXTRACTELT;
Record.push_back(getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(getTypeID(C->getOperand(1)->getType()));
Record.push_back(VE.getValueID(C->getOperand(1)));
break;
case Instruction::InsertElement:
Code = bitc::CST_CODE_CE_INSERTELT;
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(getTypeID(C->getOperand(2)->getType()));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ShuffleVector:
// If the return type and argument types are the same, this is a
// standard shufflevector instruction. If the types are different,
// then the shuffle is widening or truncating the input vectors, and
// the argument type must also be encoded.
if (C->getType() == C->getOperand(0)->getType()) {
Code = bitc::CST_CODE_CE_SHUFFLEVEC;
} else {
Code = bitc::CST_CODE_CE_SHUFVEC_EX;
Record.push_back(getTypeID(C->getOperand(0)->getType()));
}
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ICmp:
case Instruction::FCmp:
Code = bitc::CST_CODE_CE_CMP;
Record.push_back(getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(CE->getPredicate());
break;
}
} else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
Code = bitc::CST_CODE_BLOCKADDRESS;
Record.push_back(getTypeID(BA->getFunction()->getType()));
Record.push_back(VE.getValueID(BA->getFunction()));
Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
} else {
#ifndef NDEBUG
C->dump();
#endif
llvm_unreachable("Unknown constant!");
}
Stream.EmitRecord(Code, Record, AbbrevToUse);
Record.clear();
}
Stream.ExitBlock();
}
void DXILBitcodeWriter::writeModuleConstants() {
const ValueEnumerator::ValueList &Vals = VE.getValues();
// Find the first constant to emit, which is the first non-globalvalue value.
// We know globalvalues have been emitted by WriteModuleInfo.
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
if (!isa<GlobalValue>(Vals[i].first)) {
writeConstants(i, Vals.size(), true);
return;
}
}
}
/// pushValueAndType - The file has to encode both the value and type id for
/// many values, because we need to know what type to create for forward
/// references. However, most operands are not forward references, so this type
/// field is not needed.
///
/// This function adds V's value ID to Vals. If the value ID is higher than the
/// instruction ID, then it is a forward reference, and it also includes the
/// type ID. The value ID that is written is encoded relative to the InstID.
bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals) {
unsigned ValID = VE.getValueID(V);
// Make encoding relative to the InstID.
Vals.push_back(InstID - ValID);
if (ValID >= InstID) {
Vals.push_back(getTypeID(V->getType(), V));
return true;
}
return false;
}
/// pushValue - Like pushValueAndType, but where the type of the value is
/// omitted (perhaps it was already encoded in an earlier operand).
void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals) {
unsigned ValID = VE.getValueID(V);
Vals.push_back(InstID - ValID);
}
void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
SmallVectorImpl<uint64_t> &Vals) {
unsigned ValID = VE.getValueID(V);
int64_t diff = ((int32_t)InstID - (int32_t)ValID);
emitSignedInt64(Vals, diff);
}
/// WriteInstruction - Emit an instruction
void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
SmallVectorImpl<unsigned> &Vals) {
unsigned Code = 0;
unsigned AbbrevToUse = 0;
VE.setInstructionID(&I);
switch (I.getOpcode()) {
default:
if (Instruction::isCast(I.getOpcode())) {
Code = bitc::FUNC_CODE_INST_CAST;
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
Vals.push_back(getTypeID(I.getType(), &I));
Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
} else {
assert(isa<BinaryOperator>(I) && "Unknown instruction!");
Code = bitc::FUNC_CODE_INST_BINOP;
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
pushValue(I.getOperand(1), InstID, Vals);
Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
uint64_t Flags = getOptimizationFlags(&I);
if (Flags != 0) {
if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
Vals.push_back(Flags);
}
}
break;
case Instruction::GetElementPtr: {
Code = bitc::FUNC_CODE_INST_GEP;
AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
auto &GEPInst = cast<GetElementPtrInst>(I);
Vals.push_back(GEPInst.isInBounds());
Vals.push_back(getTypeID(GEPInst.getSourceElementType()));
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
pushValueAndType(I.getOperand(i), InstID, Vals);
break;
}
case Instruction::ExtractValue: {
Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
pushValueAndType(I.getOperand(0), InstID, Vals);
const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
Vals.append(EVI->idx_begin(), EVI->idx_end());
break;
}
case Instruction::InsertValue: {
Code = bitc::FUNC_CODE_INST_INSERTVAL;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValueAndType(I.getOperand(1), InstID, Vals);
const InsertValueInst *IVI = cast<InsertValueInst>(&I);
Vals.append(IVI->idx_begin(), IVI->idx_end());
break;
}
case Instruction::Select:
Code = bitc::FUNC_CODE_INST_VSELECT;
pushValueAndType(I.getOperand(1), InstID, Vals);
pushValue(I.getOperand(2), InstID, Vals);
pushValueAndType(I.getOperand(0), InstID, Vals);
break;
case Instruction::ExtractElement:
Code = bitc::FUNC_CODE_INST_EXTRACTELT;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValueAndType(I.getOperand(1), InstID, Vals);
break;
case Instruction::InsertElement:
Code = bitc::FUNC_CODE_INST_INSERTELT;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValue(I.getOperand(1), InstID, Vals);
pushValueAndType(I.getOperand(2), InstID, Vals);
break;
case Instruction::ShuffleVector:
Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValue(I.getOperand(1), InstID, Vals);
pushValue(I.getOperand(2), InstID, Vals);
break;
case Instruction::ICmp:
case Instruction::FCmp: {
// compare returning Int1Ty or vector of Int1Ty
Code = bitc::FUNC_CODE_INST_CMP2;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValue(I.getOperand(1), InstID, Vals);
Vals.push_back(cast<CmpInst>(I).getPredicate());
uint64_t Flags = getOptimizationFlags(&I);
if (Flags != 0)
Vals.push_back(Flags);
break;
}
case Instruction::Ret: {
Code = bitc::FUNC_CODE_INST_RET;
unsigned NumOperands = I.getNumOperands();
if (NumOperands == 0)
AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
else if (NumOperands == 1) {
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
} else {
for (unsigned i = 0, e = NumOperands; i != e; ++i)
pushValueAndType(I.getOperand(i), InstID, Vals);
}
} break;
case Instruction::Br: {
Code = bitc::FUNC_CODE_INST_BR;
const BranchInst &II = cast<BranchInst>(I);
Vals.push_back(VE.getValueID(II.getSuccessor(0)));
if (II.isConditional()) {
Vals.push_back(VE.getValueID(II.getSuccessor(1)));
pushValue(II.getCondition(), InstID, Vals);
}
} break;
case Instruction::Switch: {
Code = bitc::FUNC_CODE_INST_SWITCH;
const SwitchInst &SI = cast<SwitchInst>(I);
Vals.push_back(getTypeID(SI.getCondition()->getType()));
pushValue(SI.getCondition(), InstID, Vals);
Vals.push_back(VE.getValueID(SI.getDefaultDest()));
for (auto Case : SI.cases()) {
Vals.push_back(VE.getValueID(Case.getCaseValue()));
Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
}
} break;
case Instruction::IndirectBr:
Code = bitc::FUNC_CODE_INST_INDIRECTBR;
Vals.push_back(getTypeID(I.getOperand(0)->getType()));
// Encode the address operand as relative, but not the basic blocks.
pushValue(I.getOperand(0), InstID, Vals);
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i)));
break;
case Instruction::Invoke: {
const InvokeInst *II = cast<InvokeInst>(&I);
const Value *Callee = II->getCalledOperand();
FunctionType *FTy = II->getFunctionType();
Code = bitc::FUNC_CODE_INST_INVOKE;
Vals.push_back(VE.getAttributeListID(II->getAttributes()));
Vals.push_back(II->getCallingConv() | 1 << 13);
Vals.push_back(VE.getValueID(II->getNormalDest()));
Vals.push_back(VE.getValueID(II->getUnwindDest()));
Vals.push_back(getTypeID(FTy));
pushValueAndType(Callee, InstID, Vals);
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
pushValue(I.getOperand(i), InstID, Vals); // fixed param.
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
++i)
pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
}
break;
}
case Instruction::Resume:
Code = bitc::FUNC_CODE_INST_RESUME;
pushValueAndType(I.getOperand(0), InstID, Vals);
break;
case Instruction::Unreachable:
Code = bitc::FUNC_CODE_INST_UNREACHABLE;
AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
break;
case Instruction::PHI: {
const PHINode &PN = cast<PHINode>(I);
Code = bitc::FUNC_CODE_INST_PHI;
// With the newer instruction encoding, forward references could give
// negative valued IDs. This is most common for PHIs, so we use
// signed VBRs.
SmallVector<uint64_t, 128> Vals64;
Vals64.push_back(getTypeID(PN.getType()));
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
}
// Emit a Vals64 vector and exit.
Stream.EmitRecord(Code, Vals64, AbbrevToUse);
Vals64.clear();
return;
}
case Instruction::LandingPad: {
const LandingPadInst &LP = cast<LandingPadInst>(I);
Code = bitc::FUNC_CODE_INST_LANDINGPAD;
Vals.push_back(getTypeID(LP.getType()));
Vals.push_back(LP.isCleanup());
Vals.push_back(LP.getNumClauses());
for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
if (LP.isCatch(I))
Vals.push_back(LandingPadInst::Catch);
else
Vals.push_back(LandingPadInst::Filter);
pushValueAndType(LP.getClause(I), InstID, Vals);
}
break;
}
case Instruction::Alloca: {
Code = bitc::FUNC_CODE_INST_ALLOCA;
const AllocaInst &AI = cast<AllocaInst>(I);
Vals.push_back(getTypeID(AI.getAllocatedType()));
Vals.push_back(getTypeID(I.getOperand(0)->getType()));
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
using APV = AllocaPackedValues;
unsigned Record = 0;
unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
Bitfield::set<APV::AlignLower>(
Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
Bitfield::set<APV::AlignUpper>(Record,
EncodedAlign >> APV::AlignLower::Bits);
Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
Vals.push_back(Record);
break;
}
case Instruction::Load:
if (cast<LoadInst>(I).isAtomic()) {
Code = bitc::FUNC_CODE_INST_LOADATOMIC;
pushValueAndType(I.getOperand(0), InstID, Vals);
} else {
Code = bitc::FUNC_CODE_INST_LOAD;
if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
}
Vals.push_back(getTypeID(I.getType()));
Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1);
Vals.push_back(cast<LoadInst>(I).isVolatile());
if (cast<LoadInst>(I).isAtomic()) {
Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
}
break;
case Instruction::Store:
if (cast<StoreInst>(I).isAtomic())
Code = bitc::FUNC_CODE_INST_STOREATOMIC;
else
Code = bitc::FUNC_CODE_INST_STORE;
pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1);
Vals.push_back(cast<StoreInst>(I).isVolatile());
if (cast<StoreInst>(I).isAtomic()) {
Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
Vals.push_back(
getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
}
break;
case Instruction::AtomicCmpXchg:
Code = bitc::FUNC_CODE_INST_CMPXCHG;
pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
pushValue(I.getOperand(2), InstID, Vals); // newval.
Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
Vals.push_back(
getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
Vals.push_back(
getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
Vals.push_back(
getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
break;
case Instruction::AtomicRMW:
Code = bitc::FUNC_CODE_INST_ATOMICRMW;
pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
pushValue(I.getOperand(1), InstID, Vals); // val.
Vals.push_back(
getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
Vals.push_back(
getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
break;
case Instruction::Fence:
Code = bitc::FUNC_CODE_INST_FENCE;
Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
break;
case Instruction::Call: {
const CallInst &CI = cast<CallInst>(I);
FunctionType *FTy = CI.getFunctionType();
Code = bitc::FUNC_CODE_INST_CALL;
Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
Vals.push_back(getTypeID(FTy, CI.getCalledFunction()));
pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
// Check for labels (can happen with asm labels).
if (FTy->getParamType(i)->isLabelTy())
Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
else
pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
}
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
}
break;
}
case Instruction::VAArg:
Code = bitc::FUNC_CODE_INST_VAARG;
Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty
pushValue(I.getOperand(0), InstID, Vals); // valist.
Vals.push_back(getTypeID(I.getType())); // restype.
break;
}
Stream.EmitRecord(Code, Vals, AbbrevToUse);
Vals.clear();
}
// Emit names for globals/functions etc.
void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
const ValueSymbolTable &VST) {
if (VST.empty())
return;
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
SmallVector<unsigned, 64> NameVals;
// HLSL Change
// Read the named values from a sorted list instead of the original list
// to ensure the binary is the same no matter what values ever existed.
SmallVector<const ValueName *, 16> SortedTable;
for (auto &VI : VST) {
SortedTable.push_back(VI.second->getValueName());
}
// The keys are unique, so there shouldn't be stability issues.
llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) {
return A->first() < B->first();
});
for (const ValueName *SI : SortedTable) {
auto &Name = *SI;
// Figure out the encoding to use for the name.
bool is7Bit = true;
bool isChar6 = true;
for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
C != E; ++C) {
if (isChar6)
isChar6 = BitCodeAbbrevOp::isChar6(*C);
if ((unsigned char)*C & 128) {
is7Bit = false;
break; // don't bother scanning the rest.
}
}
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
// VST_ENTRY: [valueid, namechar x N]
// VST_BBENTRY: [bbid, namechar x N]
unsigned Code;
if (isa<BasicBlock>(SI->getValue())) {
Code = bitc::VST_CODE_BBENTRY;
if (isChar6)
AbbrevToUse = VST_BBENTRY_6_ABBREV;
} else {
Code = bitc::VST_CODE_ENTRY;
if (isChar6)
AbbrevToUse = VST_ENTRY_6_ABBREV;
else if (is7Bit)
AbbrevToUse = VST_ENTRY_7_ABBREV;
}
NameVals.push_back(VE.getValueID(SI->getValue()));
for (const char *P = Name.getKeyData(),
*E = Name.getKeyData() + Name.getKeyLength();
P != E; ++P)
NameVals.push_back((unsigned char)*P);
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
NameVals.clear();
}
Stream.ExitBlock();
}
void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) {
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
unsigned Code;
if (isa<BasicBlock>(Order.V))
Code = bitc::USELIST_CODE_BB;
else
Code = bitc::USELIST_CODE_DEFAULT;
SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
Record.push_back(VE.getValueID(Order.V));
Stream.EmitRecord(Code, Record);
}
void DXILBitcodeWriter::writeUseListBlock(const Function *F) {
auto hasMore = [&]() {
return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
};
if (!hasMore())
// Nothing to do.
return;
Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
while (hasMore()) {
writeUseList(std::move(VE.UseListOrders.back()));
VE.UseListOrders.pop_back();
}
Stream.ExitBlock();
}
/// Emit a function body to the module stream.
void DXILBitcodeWriter::writeFunction(const Function &F) {
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
VE.incorporateFunction(F);
SmallVector<unsigned, 64> Vals;
// Emit the number of basic blocks, so the reader can create them ahead of
// time.
Vals.push_back(VE.getBasicBlocks().size());
Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
Vals.clear();
// If there are function-local constants, emit them now.
unsigned CstStart, CstEnd;
VE.getFunctionConstantRange(CstStart, CstEnd);
writeConstants(CstStart, CstEnd, false);
// If there is function-local metadata, emit it now.
writeFunctionMetadata(F);
// Keep a running idea of what the instruction ID is.
unsigned InstID = CstEnd;
bool NeedsMetadataAttachment = F.hasMetadata();
DILocation *LastDL = nullptr;
// Finally, emit all the instructions, in order.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
++I) {
writeInstruction(*I, InstID, Vals);
if (!I->getType()->isVoidTy())
++InstID;
// If the instruction has metadata, write a metadata attachment later.
NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
// If the instruction has a debug location, emit it.
DILocation *DL = I->getDebugLoc();
if (!DL)
continue;
if (DL == LastDL) {
// Just repeat the same debug loc as last time.
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
continue;
}
Vals.push_back(DL->getLine());
Vals.push_back(DL->getColumn());
Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
Vals.clear();
LastDL = DL;
}
// Emit names for all the instructions etc.
if (auto *Symtab = F.getValueSymbolTable())
writeFunctionLevelValueSymbolTable(*Symtab);
if (NeedsMetadataAttachment)
writeFunctionMetadataAttachment(F);
writeUseListBlock(&F);
VE.purgeFunction();
Stream.ExitBlock();
}
// Emit blockinfo, which defines the standard abbreviations etc.
void DXILBitcodeWriter::writeBlockInfo() {
// We only want to emit block info records for blocks that have multiple
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
// Other blocks can define their abbrevs inline.
Stream.EnterBlockInfoBlock();
{ // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
std::move(Abbv)) != VST_ENTRY_8_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{ // 7-bit fixed width VST_ENTRY strings.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
std::move(Abbv)) != VST_ENTRY_7_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_ENTRY strings.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
std::move(Abbv)) != VST_ENTRY_6_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_BBENTRY strings.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
VE.computeBitsRequiredForTypeIndicies()));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
CONSTANTS_SETTYPE_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{ // INTEGER abbrev for CONSTANTS_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
CONSTANTS_INTEGER_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
VE.computeBitsRequiredForTypeIndicies()));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
CONSTANTS_CE_CAST_Abbrev)
assert(false && "Unexpected abbrev ordering!");
}
{ // NULL abbrev for CONSTANTS_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
CONSTANTS_NULL_Abbrev)
assert(false && "Unexpected abbrev ordering!");
}
// FIXME: This should only use space for first class types!
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
VE.computeBitsRequiredForTypeIndicies()));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
(unsigned)FUNCTION_INST_LOAD_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{ // INST_BINOP abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
(unsigned)FUNCTION_INST_BINOP_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{ // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
(unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{ // INST_CAST abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
VE.computeBitsRequiredForTypeIndicies()));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
(unsigned)FUNCTION_INST_CAST_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
(unsigned)FUNCTION_INST_RET_VOID_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
(unsigned)FUNCTION_INST_RET_VAL_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{ // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
(unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
{
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
Log2_32_Ceil(VE.getTypes().size() + 1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
(unsigned)FUNCTION_INST_GEP_ABBREV)
assert(false && "Unexpected abbrev ordering!");
}
Stream.ExitBlock();
}
void DXILBitcodeWriter::writeModuleVersion() {
// VERSION: [version#]
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
}
/// WriteModule - Emit the specified module to the bitstream.
void DXILBitcodeWriter::write() {
// The identification block is new since llvm-3.7, but the old bitcode reader
// will skip it.
// writeIdentificationBlock(Stream);
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
// It is redundant to fully-specify this here, but nice to make it explicit
// so that it is clear the DXIL module version is different.
DXILBitcodeWriter::writeModuleVersion();
// Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo();
// Emit information about attribute groups.
writeAttributeGroupTable();
// Emit information about parameter attributes.
writeAttributeTable();
// Emit information describing all of the types in the module.
writeTypeTable();
writeComdats();
// Emit top-level description of module, including target triple, inline asm,
// descriptors for global variables, and function prototype info.
writeModuleInfo();
// Emit constants.
writeModuleConstants();
// Emit metadata.
writeModuleMetadataKinds();
// Emit metadata.
writeModuleMetadata();
// Emit names for globals/functions etc.
// DXIL uses the same format for module-level value symbol table as for the
// function level table.
writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
// Emit module-level use-lists.
writeUseListBlock(nullptr);
// Emit function bodies.
for (const Function &F : M)
if (!F.isDeclaration())
writeFunction(F);
Stream.ExitBlock();
}