| //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements induction variable simplification. It does |
| // not define any actual pass or policy, but provides a single function to |
| // simplify a loop's induction variables based on ScalarEvolution. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "indvars" |
| |
| STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); |
| STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); |
| STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); |
| STATISTIC( |
| NumSimplifiedSDiv, |
| "Number of IV signed division operations converted to unsigned division"); |
| STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); |
| |
| namespace { |
| /// This is a utility for simplifying induction variables |
| /// based on ScalarEvolution. It is the primary instrument of the |
| /// IndvarSimplify pass, but it may also be directly invoked to cleanup after |
| /// other loop passes that preserve SCEV. |
| class SimplifyIndvar { |
| Loop *L; |
| LoopInfo *LI; |
| ScalarEvolution *SE; |
| DominatorTree *DT; |
| |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts; |
| |
| bool Changed; |
| |
| public: |
| SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, |
| LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) |
| : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) { |
| assert(LI && "IV simplification requires LoopInfo"); |
| } |
| |
| bool hasChanged() const { return Changed; } |
| |
| /// Iteratively perform simplification on a worklist of users of the |
| /// specified induction variable. This is the top-level driver that applies |
| /// all simplifications to users of an IV. |
| void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); |
| |
| Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); |
| |
| bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); |
| |
| bool eliminateOverflowIntrinsic(CallInst *CI); |
| bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); |
| void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); |
| void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, |
| bool IsSigned); |
| bool eliminateSDiv(BinaryOperator *SDiv); |
| bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); |
| bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); |
| }; |
| } |
| |
| /// Fold an IV operand into its use. This removes increments of an |
| /// aligned IV when used by a instruction that ignores the low bits. |
| /// |
| /// IVOperand is guaranteed SCEVable, but UseInst may not be. |
| /// |
| /// Return the operand of IVOperand for this induction variable if IVOperand can |
| /// be folded (in case more folding opportunities have been exposed). |
| /// Otherwise return null. |
| Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { |
| Value *IVSrc = nullptr; |
| unsigned OperIdx = 0; |
| const SCEV *FoldedExpr = nullptr; |
| switch (UseInst->getOpcode()) { |
| default: |
| return nullptr; |
| case Instruction::UDiv: |
| case Instruction::LShr: |
| // We're only interested in the case where we know something about |
| // the numerator and have a constant denominator. |
| if (IVOperand != UseInst->getOperand(OperIdx) || |
| !isa<ConstantInt>(UseInst->getOperand(1))) |
| return nullptr; |
| |
| // Attempt to fold a binary operator with constant operand. |
| // e.g. ((I + 1) >> 2) => I >> 2 |
| if (!isa<BinaryOperator>(IVOperand) |
| || !isa<ConstantInt>(IVOperand->getOperand(1))) |
| return nullptr; |
| |
| IVSrc = IVOperand->getOperand(0); |
| // IVSrc must be the (SCEVable) IV, since the other operand is const. |
| assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); |
| |
| ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); |
| if (UseInst->getOpcode() == Instruction::LShr) { |
| // Get a constant for the divisor. See createSCEV. |
| uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); |
| if (D->getValue().uge(BitWidth)) |
| return nullptr; |
| |
| D = ConstantInt::get(UseInst->getContext(), |
| APInt::getOneBitSet(BitWidth, D->getZExtValue())); |
| } |
| FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); |
| } |
| // We have something that might fold it's operand. Compare SCEVs. |
| if (!SE->isSCEVable(UseInst->getType())) |
| return nullptr; |
| |
| // Bypass the operand if SCEV can prove it has no effect. |
| if (SE->getSCEV(UseInst) != FoldedExpr) |
| return nullptr; |
| |
| DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand |
| << " -> " << *UseInst << '\n'); |
| |
| UseInst->setOperand(OperIdx, IVSrc); |
| assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); |
| |
| ++NumElimOperand; |
| Changed = true; |
| if (IVOperand->use_empty()) |
| DeadInsts.emplace_back(IVOperand); |
| return IVSrc; |
| } |
| |
| /// SimplifyIVUsers helper for eliminating useless |
| /// comparisons against an induction variable. |
| void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { |
| unsigned IVOperIdx = 0; |
| ICmpInst::Predicate Pred = ICmp->getPredicate(); |
| ICmpInst::Predicate OriginalPred = Pred; |
| if (IVOperand != ICmp->getOperand(0)) { |
| // Swapped |
| assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); |
| IVOperIdx = 1; |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| |
| // Get the SCEVs for the ICmp operands. |
| const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); |
| const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); |
| |
| // Simplify unnecessary loops away. |
| const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); |
| S = SE->getSCEVAtScope(S, ICmpLoop); |
| X = SE->getSCEVAtScope(X, ICmpLoop); |
| |
| ICmpInst::Predicate InvariantPredicate; |
| const SCEV *InvariantLHS, *InvariantRHS; |
| |
| // If the condition is always true or always false, replace it with |
| // a constant value. |
| if (SE->isKnownPredicate(Pred, S, X)) { |
| ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); |
| DeadInsts.emplace_back(ICmp); |
| DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); |
| } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { |
| ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); |
| DeadInsts.emplace_back(ICmp); |
| DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); |
| } else if (isa<PHINode>(IVOperand) && |
| SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, |
| InvariantLHS, InvariantRHS)) { |
| |
| // Rewrite the comparison to a loop invariant comparison if it can be done |
| // cheaply, where cheaply means "we don't need to emit any new |
| // instructions". |
| |
| Value *NewLHS = nullptr, *NewRHS = nullptr; |
| |
| if (S == InvariantLHS || X == InvariantLHS) |
| NewLHS = |
| ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx)); |
| |
| if (S == InvariantRHS || X == InvariantRHS) |
| NewRHS = |
| ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx)); |
| |
| auto *PN = cast<PHINode>(IVOperand); |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); |
| i != e && (!NewLHS || !NewRHS); |
| ++i) { |
| |
| // If this is a value incoming from the backedge, then it cannot be a loop |
| // invariant value (since we know that IVOperand is an induction variable). |
| if (L->contains(PN->getIncomingBlock(i))) |
| continue; |
| |
| // NB! This following assert does not fundamentally have to be true, but |
| // it is true today given how SCEV analyzes induction variables. |
| // Specifically, today SCEV will *not* recognize %iv as an induction |
| // variable in the following case: |
| // |
| // define void @f(i32 %k) { |
| // entry: |
| // br i1 undef, label %r, label %l |
| // |
| // l: |
| // %k.inc.l = add i32 %k, 1 |
| // br label %loop |
| // |
| // r: |
| // %k.inc.r = add i32 %k, 1 |
| // br label %loop |
| // |
| // loop: |
| // %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ] |
| // %iv.inc = add i32 %iv, 1 |
| // br label %loop |
| // } |
| // |
| // but if it starts to, at some point, then the assertion below will have |
| // to be changed to a runtime check. |
| |
| Value *Incoming = PN->getIncomingValue(i); |
| |
| #ifndef NDEBUG |
| if (auto *I = dyn_cast<Instruction>(Incoming)) |
| assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!"); |
| #endif |
| |
| const SCEV *IncomingS = SE->getSCEV(Incoming); |
| |
| if (!NewLHS && IncomingS == InvariantLHS) |
| NewLHS = Incoming; |
| if (!NewRHS && IncomingS == InvariantRHS) |
| NewRHS = Incoming; |
| } |
| |
| if (!NewLHS || !NewRHS) |
| // We could not find an existing value to replace either LHS or RHS. |
| // Generating new instructions has subtler tradeoffs, so avoid doing that |
| // for now. |
| return; |
| |
| DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); |
| ICmp->setPredicate(InvariantPredicate); |
| ICmp->setOperand(0, NewLHS); |
| ICmp->setOperand(1, NewRHS); |
| } else if (ICmpInst::isSigned(OriginalPred) && |
| SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { |
| // If we were unable to make anything above, all we can is to canonicalize |
| // the comparison hoping that it will open the doors for other |
| // optimizations. If we find out that we compare two non-negative values, |
| // we turn the instruction's predicate to its unsigned version. Note that |
| // we cannot rely on Pred here unless we check if we have swapped it. |
| assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); |
| DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp << '\n'); |
| ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); |
| } else |
| return; |
| |
| ++NumElimCmp; |
| Changed = true; |
| } |
| |
| bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { |
| // Get the SCEVs for the ICmp operands. |
| auto *N = SE->getSCEV(SDiv->getOperand(0)); |
| auto *D = SE->getSCEV(SDiv->getOperand(1)); |
| |
| // Simplify unnecessary loops away. |
| const Loop *L = LI->getLoopFor(SDiv->getParent()); |
| N = SE->getSCEVAtScope(N, L); |
| D = SE->getSCEVAtScope(D, L); |
| |
| // Replace sdiv by udiv if both of the operands are non-negative |
| if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { |
| auto *UDiv = BinaryOperator::Create( |
| BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), |
| SDiv->getName() + ".udiv", SDiv); |
| UDiv->setIsExact(SDiv->isExact()); |
| SDiv->replaceAllUsesWith(UDiv); |
| DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); |
| ++NumSimplifiedSDiv; |
| Changed = true; |
| DeadInsts.push_back(SDiv); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// SimplifyIVUsers helper for eliminating useless |
| /// remainder operations operating on an induction variable. |
| void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, |
| Value *IVOperand, |
| bool IsSigned) { |
| // We're only interested in the case where we know something about |
| // the numerator. |
| if (IVOperand != Rem->getOperand(0)) |
| return; |
| |
| // Get the SCEVs for the ICmp operands. |
| const SCEV *S = SE->getSCEV(Rem->getOperand(0)); |
| const SCEV *X = SE->getSCEV(Rem->getOperand(1)); |
| |
| // Simplify unnecessary loops away. |
| const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); |
| S = SE->getSCEVAtScope(S, ICmpLoop); |
| X = SE->getSCEVAtScope(X, ICmpLoop); |
| |
| // i % n --> i if i is in [0,n). |
| if ((!IsSigned || SE->isKnownNonNegative(S)) && |
| SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, |
| S, X)) |
| Rem->replaceAllUsesWith(Rem->getOperand(0)); |
| else { |
| // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). |
| const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType())); |
| if (IsSigned && !SE->isKnownNonNegative(LessOne)) |
| return; |
| |
| if (!SE->isKnownPredicate(IsSigned ? |
| ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, |
| LessOne, X)) |
| return; |
| |
| ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, |
| Rem->getOperand(0), Rem->getOperand(1)); |
| SelectInst *Sel = |
| SelectInst::Create(ICmp, |
| ConstantInt::get(Rem->getType(), 0), |
| Rem->getOperand(0), "tmp", Rem); |
| Rem->replaceAllUsesWith(Sel); |
| } |
| |
| DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); |
| ++NumElimRem; |
| Changed = true; |
| DeadInsts.emplace_back(Rem); |
| } |
| |
| bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) { |
| auto *F = CI->getCalledFunction(); |
| if (!F) |
| return false; |
| |
| typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)( |
| const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned); |
| typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)( |
| const SCEV *, Type *, unsigned); |
| |
| OperationFunctionTy Operation; |
| ExtensionFunctionTy Extension; |
| |
| Instruction::BinaryOps RawOp; |
| |
| // We always have exactly one of nsw or nuw. If NoSignedOverflow is false, we |
| // have nuw. |
| bool NoSignedOverflow; |
| |
| switch (F->getIntrinsicID()) { |
| default: |
| return false; |
| |
| case Intrinsic::sadd_with_overflow: |
| Operation = &ScalarEvolution::getAddExpr; |
| Extension = &ScalarEvolution::getSignExtendExpr; |
| RawOp = Instruction::Add; |
| NoSignedOverflow = true; |
| break; |
| |
| case Intrinsic::uadd_with_overflow: |
| Operation = &ScalarEvolution::getAddExpr; |
| Extension = &ScalarEvolution::getZeroExtendExpr; |
| RawOp = Instruction::Add; |
| NoSignedOverflow = false; |
| break; |
| |
| case Intrinsic::ssub_with_overflow: |
| Operation = &ScalarEvolution::getMinusSCEV; |
| Extension = &ScalarEvolution::getSignExtendExpr; |
| RawOp = Instruction::Sub; |
| NoSignedOverflow = true; |
| break; |
| |
| case Intrinsic::usub_with_overflow: |
| Operation = &ScalarEvolution::getMinusSCEV; |
| Extension = &ScalarEvolution::getZeroExtendExpr; |
| RawOp = Instruction::Sub; |
| NoSignedOverflow = false; |
| break; |
| } |
| |
| const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0)); |
| const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1)); |
| |
| auto *NarrowTy = cast<IntegerType>(LHS->getType()); |
| auto *WideTy = |
| IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); |
| |
| const SCEV *A = |
| (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), |
| WideTy, 0); |
| const SCEV *B = |
| (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), |
| (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); |
| |
| if (A != B) |
| return false; |
| |
| // Proved no overflow, nuke the overflow check and, if possible, the overflow |
| // intrinsic as well. |
| |
| BinaryOperator *NewResult = BinaryOperator::Create( |
| RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI); |
| |
| if (NoSignedOverflow) |
| NewResult->setHasNoSignedWrap(true); |
| else |
| NewResult->setHasNoUnsignedWrap(true); |
| |
| SmallVector<ExtractValueInst *, 4> ToDelete; |
| |
| for (auto *U : CI->users()) { |
| if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { |
| if (EVI->getIndices()[0] == 1) |
| EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext())); |
| else { |
| assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); |
| EVI->replaceAllUsesWith(NewResult); |
| } |
| ToDelete.push_back(EVI); |
| } |
| } |
| |
| for (auto *EVI : ToDelete) |
| EVI->eraseFromParent(); |
| |
| if (CI->use_empty()) |
| CI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| /// Eliminate an operation that consumes a simple IV and has no observable |
| /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, |
| /// but UseInst may not be. |
| bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, |
| Instruction *IVOperand) { |
| if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { |
| eliminateIVComparison(ICmp, IVOperand); |
| return true; |
| } |
| if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { |
| bool IsSRem = Bin->getOpcode() == Instruction::SRem; |
| if (IsSRem || Bin->getOpcode() == Instruction::URem) { |
| eliminateIVRemainder(Bin, IVOperand, IsSRem); |
| return true; |
| } |
| |
| if (Bin->getOpcode() == Instruction::SDiv) |
| return eliminateSDiv(Bin); |
| } |
| |
| if (auto *CI = dyn_cast<CallInst>(UseInst)) |
| if (eliminateOverflowIntrinsic(CI)) |
| return true; |
| |
| if (eliminateIdentitySCEV(UseInst, IVOperand)) |
| return true; |
| |
| return false; |
| } |
| |
| /// Eliminate any operation that SCEV can prove is an identity function. |
| bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, |
| Instruction *IVOperand) { |
| if (!SE->isSCEVable(UseInst->getType()) || |
| (UseInst->getType() != IVOperand->getType()) || |
| (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) |
| return false; |
| |
| // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the |
| // dominator tree, even if X is an operand to Y. For instance, in |
| // |
| // %iv = phi i32 {0,+,1} |
| // br %cond, label %left, label %merge |
| // |
| // left: |
| // %X = add i32 %iv, 0 |
| // br label %merge |
| // |
| // merge: |
| // %M = phi (%X, %iv) |
| // |
| // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and |
| // %M.replaceAllUsesWith(%X) would be incorrect. |
| |
| if (isa<PHINode>(UseInst)) |
| // If UseInst is not a PHI node then we know that IVOperand dominates |
| // UseInst directly from the legality of SSA. |
| if (!DT || !DT->dominates(IVOperand, UseInst)) |
| return false; |
| |
| if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) |
| return false; |
| |
| DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); |
| |
| UseInst->replaceAllUsesWith(IVOperand); |
| ++NumElimIdentity; |
| Changed = true; |
| DeadInsts.emplace_back(UseInst); |
| return true; |
| } |
| |
| /// Annotate BO with nsw / nuw if it provably does not signed-overflow / |
| /// unsigned-overflow. Returns true if anything changed, false otherwise. |
| bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, |
| Value *IVOperand) { |
| |
| // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. |
| if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) |
| return false; |
| |
| const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, |
| SCEV::NoWrapFlags, unsigned); |
| switch (BO->getOpcode()) { |
| default: |
| return false; |
| |
| case Instruction::Add: |
| GetExprForBO = &ScalarEvolution::getAddExpr; |
| break; |
| |
| case Instruction::Sub: |
| GetExprForBO = &ScalarEvolution::getMinusSCEV; |
| break; |
| |
| case Instruction::Mul: |
| GetExprForBO = &ScalarEvolution::getMulExpr; |
| break; |
| } |
| |
| unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); |
| Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); |
| const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); |
| const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); |
| |
| bool Changed = false; |
| |
| if (!BO->hasNoUnsignedWrap()) { |
| const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); |
| const SCEV *OpAfterExtend = (SE->*GetExprForBO)( |
| SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), |
| SCEV::FlagAnyWrap, 0u); |
| if (ExtendAfterOp == OpAfterExtend) { |
| BO->setHasNoUnsignedWrap(); |
| SE->forgetValue(BO); |
| Changed = true; |
| } |
| } |
| |
| if (!BO->hasNoSignedWrap()) { |
| const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); |
| const SCEV *OpAfterExtend = (SE->*GetExprForBO)( |
| SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), |
| SCEV::FlagAnyWrap, 0u); |
| if (ExtendAfterOp == OpAfterExtend) { |
| BO->setHasNoSignedWrap(); |
| SE->forgetValue(BO); |
| Changed = true; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// Annotate the Shr in (X << IVOperand) >> C as exact using the |
| /// information from the IV's range. Returns true if anything changed, false |
| /// otherwise. |
| bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, |
| Value *IVOperand) { |
| using namespace llvm::PatternMatch; |
| |
| if (BO->getOpcode() == Instruction::Shl) { |
| bool Changed = false; |
| ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); |
| for (auto *U : BO->users()) { |
| const APInt *C; |
| if (match(U, |
| m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || |
| match(U, |
| m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { |
| BinaryOperator *Shr = cast<BinaryOperator>(U); |
| if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { |
| Shr->setIsExact(true); |
| Changed = true; |
| } |
| } |
| } |
| return Changed; |
| } |
| |
| return false; |
| } |
| |
| /// Add all uses of Def to the current IV's worklist. |
| static void pushIVUsers( |
| Instruction *Def, |
| SmallPtrSet<Instruction*,16> &Simplified, |
| SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { |
| |
| for (User *U : Def->users()) { |
| Instruction *UI = cast<Instruction>(U); |
| |
| // Avoid infinite or exponential worklist processing. |
| // Also ensure unique worklist users. |
| // If Def is a LoopPhi, it may not be in the Simplified set, so check for |
| // self edges first. |
| if (UI != Def && Simplified.insert(UI).second) |
| SimpleIVUsers.push_back(std::make_pair(UI, Def)); |
| } |
| } |
| |
| /// Return true if this instruction generates a simple SCEV |
| /// expression in terms of that IV. |
| /// |
| /// This is similar to IVUsers' isInteresting() but processes each instruction |
| /// non-recursively when the operand is already known to be a simpleIVUser. |
| /// |
| static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { |
| if (!SE->isSCEVable(I->getType())) |
| return false; |
| |
| // Get the symbolic expression for this instruction. |
| const SCEV *S = SE->getSCEV(I); |
| |
| // Only consider affine recurrences. |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); |
| if (AR && AR->getLoop() == L) |
| return true; |
| |
| return false; |
| } |
| |
| /// Iteratively perform simplification on a worklist of users |
| /// of the specified induction variable. Each successive simplification may push |
| /// more users which may themselves be candidates for simplification. |
| /// |
| /// This algorithm does not require IVUsers analysis. Instead, it simplifies |
| /// instructions in-place during analysis. Rather than rewriting induction |
| /// variables bottom-up from their users, it transforms a chain of IVUsers |
| /// top-down, updating the IR only when it encounters a clear optimization |
| /// opportunity. |
| /// |
| /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. |
| /// |
| void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { |
| if (!SE->isSCEVable(CurrIV->getType())) |
| return; |
| |
| // Instructions processed by SimplifyIndvar for CurrIV. |
| SmallPtrSet<Instruction*,16> Simplified; |
| |
| // Use-def pairs if IV users waiting to be processed for CurrIV. |
| SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; |
| |
| // Push users of the current LoopPhi. In rare cases, pushIVUsers may be |
| // called multiple times for the same LoopPhi. This is the proper thing to |
| // do for loop header phis that use each other. |
| pushIVUsers(CurrIV, Simplified, SimpleIVUsers); |
| |
| while (!SimpleIVUsers.empty()) { |
| std::pair<Instruction*, Instruction*> UseOper = |
| SimpleIVUsers.pop_back_val(); |
| Instruction *UseInst = UseOper.first; |
| |
| // Bypass back edges to avoid extra work. |
| if (UseInst == CurrIV) continue; |
| |
| Instruction *IVOperand = UseOper.second; |
| for (unsigned N = 0; IVOperand; ++N) { |
| assert(N <= Simplified.size() && "runaway iteration"); |
| |
| Value *NewOper = foldIVUser(UseOper.first, IVOperand); |
| if (!NewOper) |
| break; // done folding |
| IVOperand = dyn_cast<Instruction>(NewOper); |
| } |
| if (!IVOperand) |
| continue; |
| |
| if (eliminateIVUser(UseOper.first, IVOperand)) { |
| pushIVUsers(IVOperand, Simplified, SimpleIVUsers); |
| continue; |
| } |
| |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) { |
| if ((isa<OverflowingBinaryOperator>(BO) && |
| strengthenOverflowingOperation(BO, IVOperand)) || |
| (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { |
| // re-queue uses of the now modified binary operator and fall |
| // through to the checks that remain. |
| pushIVUsers(IVOperand, Simplified, SimpleIVUsers); |
| } |
| } |
| |
| CastInst *Cast = dyn_cast<CastInst>(UseOper.first); |
| if (V && Cast) { |
| V->visitCast(Cast); |
| continue; |
| } |
| if (isSimpleIVUser(UseOper.first, L, SE)) { |
| pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); |
| } |
| } |
| } |
| |
| namespace llvm { |
| |
| void IVVisitor::anchor() { } |
| |
| /// Simplify instructions that use this induction variable |
| /// by using ScalarEvolution to analyze the IV's recurrence. |
| bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, |
| LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead, |
| IVVisitor *V) { |
| SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead); |
| SIV.simplifyUsers(CurrIV, V); |
| return SIV.hasChanged(); |
| } |
| |
| /// Simplify users of induction variables within this |
| /// loop. This does not actually change or add IVs. |
| bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, |
| LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) { |
| bool Changed = false; |
| for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { |
| Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead); |
| } |
| return Changed; |
| } |
| |
| } // namespace llvm |