blob: 0b718ed6136ea2dd07a90a5d544a3698a947bf60 [file] [log] [blame]
//===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// For each natural loop with multiple exit blocks, this pass creates a new
// block N such that all exiting blocks now branch to N, and then control flow
// is redistributed to all the original exit blocks.
//
// Limitation: This assumes that all terminators in the CFG are direct branches
// (the "br" instruction). The presence of any other control flow
// such as indirectbr, switch or callbr will cause an assert.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/UnifyLoopExits.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/InitializePasses.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#define DEBUG_TYPE "unify-loop-exits"
using namespace llvm;
namespace {
struct UnifyLoopExitsLegacyPass : public FunctionPass {
static char ID;
UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredID(LowerSwitchID);
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreservedID(LowerSwitchID);
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
bool runOnFunction(Function &F) override;
};
} // namespace
char UnifyLoopExitsLegacyPass::ID = 0;
FunctionPass *llvm::createUnifyLoopExitsPass() {
return new UnifyLoopExitsLegacyPass();
}
INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
"Fixup each natural loop to have a single exit block",
false /* Only looks at CFG */, false /* Analysis Pass */)
INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
"Fixup each natural loop to have a single exit block",
false /* Only looks at CFG */, false /* Analysis Pass */)
// The current transform introduces new control flow paths which may break the
// SSA requirement that every def must dominate all its uses. For example,
// consider a value D defined inside the loop that is used by some instruction
// U outside the loop. It follows that D dominates U, since the original
// program has valid SSA form. After merging the exits, all paths from D to U
// now flow through the unified exit block. In addition, there may be other
// paths that do not pass through D, but now reach the unified exit
// block. Thus, D no longer dominates U.
//
// Restore the dominance by creating a phi for each such D at the new unified
// loop exit. But when doing this, ignore any uses U that are in the new unified
// loop exit, since those were introduced specially when the block was created.
//
// The use of SSAUpdater seems like overkill for this operation. The location
// for creating the new PHI is well-known, and also the set of incoming blocks
// to the new PHI.
static void restoreSSA(const DominatorTree &DT, const Loop *L,
const SetVector<BasicBlock *> &Incoming,
BasicBlock *LoopExitBlock) {
using InstVector = SmallVector<Instruction *, 8>;
using IIMap = MapVector<Instruction *, InstVector>;
IIMap ExternalUsers;
for (auto BB : L->blocks()) {
for (auto &I : *BB) {
for (auto &U : I.uses()) {
auto UserInst = cast<Instruction>(U.getUser());
auto UserBlock = UserInst->getParent();
if (UserBlock == LoopExitBlock)
continue;
if (L->contains(UserBlock))
continue;
LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
<< BB->getName() << ")"
<< ": " << UserInst->getName() << "("
<< UserBlock->getName() << ")"
<< "\n");
ExternalUsers[&I].push_back(UserInst);
}
}
}
for (auto II : ExternalUsers) {
// For each Def used outside the loop, create NewPhi in
// LoopExitBlock. NewPhi receives Def only along exiting blocks that
// dominate it, while the remaining values are undefined since those paths
// didn't exist in the original CFG.
auto Def = II.first;
LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
auto NewPhi = PHINode::Create(Def->getType(), Incoming.size(),
Def->getName() + ".moved",
LoopExitBlock->getTerminator());
for (auto In : Incoming) {
LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
if (Def->getParent() == In || DT.dominates(Def, In)) {
LLVM_DEBUG(dbgs() << "dominated\n");
NewPhi->addIncoming(Def, In);
} else {
LLVM_DEBUG(dbgs() << "not dominated\n");
NewPhi->addIncoming(UndefValue::get(Def->getType()), In);
}
}
LLVM_DEBUG(dbgs() << "external users:");
for (auto U : II.second) {
LLVM_DEBUG(dbgs() << " " << U->getName());
U->replaceUsesOfWith(Def, NewPhi);
}
LLVM_DEBUG(dbgs() << "\n");
}
}
static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
// To unify the loop exits, we need a list of the exiting blocks as
// well as exit blocks. The functions for locating these lists both
// traverse the entire loop body. It is more efficient to first
// locate the exiting blocks and then examine their successors to
// locate the exit blocks.
SetVector<BasicBlock *> ExitingBlocks;
SetVector<BasicBlock *> Exits;
// We need SetVectors, but the Loop API takes a vector, so we use a temporary.
SmallVector<BasicBlock *, 8> Temp;
L->getExitingBlocks(Temp);
for (auto BB : Temp) {
ExitingBlocks.insert(BB);
for (auto S : successors(BB)) {
auto SL = LI.getLoopFor(S);
// A successor is not an exit if it is directly or indirectly in the
// current loop.
if (SL == L || L->contains(SL))
continue;
Exits.insert(S);
}
}
LLVM_DEBUG(
dbgs() << "Found exit blocks:";
for (auto Exit : Exits) {
dbgs() << " " << Exit->getName();
}
dbgs() << "\n";
dbgs() << "Found exiting blocks:";
for (auto EB : ExitingBlocks) {
dbgs() << " " << EB->getName();
}
dbgs() << "\n";);
if (Exits.size() <= 1) {
LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n");
return false;
}
SmallVector<BasicBlock *, 8> GuardBlocks;
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
auto LoopExitBlock = CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks,
Exits, "loop.exit");
restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
#if defined(EXPENSIVE_CHECKS)
assert(DT.verify(DominatorTree::VerificationLevel::Full));
#else
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif // EXPENSIVE_CHECKS
L->verifyLoop();
// The guard blocks were created outside the loop, so they need to become
// members of the parent loop.
if (auto ParentLoop = L->getParentLoop()) {
for (auto G : GuardBlocks) {
ParentLoop->addBasicBlockToLoop(G, LI);
}
ParentLoop->verifyLoop();
}
#if defined(EXPENSIVE_CHECKS)
LI.verify(DT);
#endif // EXPENSIVE_CHECKS
return true;
}
static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
bool Changed = false;
auto Loops = LI.getLoopsInPreorder();
for (auto L : Loops) {
LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: "
<< LI.getLoopDepth(L->getHeader()) << ")\n");
Changed |= unifyLoopExits(DT, LI, L);
}
return Changed;
}
bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
<< "\n");
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return runImpl(LI, DT);
}
namespace llvm {
PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &LI = AM.getResult<LoopAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
if (!runImpl(LI, DT))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<LoopAnalysis>();
PA.preserve<DominatorTreeAnalysis>();
return PA;
}
} // namespace llvm