blob: 2c1cf19b4e01570cff43cd231240c59fd7a81718 [file] [log] [blame]
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propagation, GCSE, LICM, PRE, etc.
//
// For example: 4 + (x + 5) -> x + (4 + 5)
//
// In the implementation of this algorithm, constants are assigned rank = 0,
// function arguments are rank = 1, and other values are assigned ranks
// corresponding to the reverse post order traversal of current function
// (starting at 2), which effectively gives values in deep loops higher rank
// than values not in loops.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/Reassociate.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <utility>
using namespace llvm;
using namespace reassociate;
using namespace PatternMatch;
#define DEBUG_TYPE "reassociate"
STATISTIC(NumChanged, "Number of insts reassociated");
STATISTIC(NumAnnihil, "Number of expr tree annihilated");
STATISTIC(NumFactor , "Number of multiplies factored");
#ifndef NDEBUG
/// Print out the expression identified in the Ops list.
static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Module *M = I->getModule();
dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
<< *Ops[0].Op->getType() << '\t';
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
dbgs() << "[ ";
Ops[i].Op->printAsOperand(dbgs(), false, M);
dbgs() << ", #" << Ops[i].Rank << "] ";
}
}
#endif
/// Utility class representing a non-constant Xor-operand. We classify
/// non-constant Xor-Operands into two categories:
/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
/// C2)
/// C2.1) The operand is in the form of "X | C", where C is a non-zero
/// constant.
/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
/// operand as "E | 0"
class llvm::reassociate::XorOpnd {
public:
XorOpnd(Value *V);
bool isInvalid() const { return SymbolicPart == nullptr; }
bool isOrExpr() const { return isOr; }
Value *getValue() const { return OrigVal; }
Value *getSymbolicPart() const { return SymbolicPart; }
unsigned getSymbolicRank() const { return SymbolicRank; }
const APInt &getConstPart() const { return ConstPart; }
void Invalidate() { SymbolicPart = OrigVal = nullptr; }
void setSymbolicRank(unsigned R) { SymbolicRank = R; }
private:
Value *OrigVal;
Value *SymbolicPart;
APInt ConstPart;
unsigned SymbolicRank;
bool isOr;
};
XorOpnd::XorOpnd(Value *V) {
assert(!isa<ConstantInt>(V) && "No ConstantInt");
OrigVal = V;
Instruction *I = dyn_cast<Instruction>(V);
SymbolicRank = 0;
if (I && (I->getOpcode() == Instruction::Or ||
I->getOpcode() == Instruction::And)) {
Value *V0 = I->getOperand(0);
Value *V1 = I->getOperand(1);
const APInt *C;
if (match(V0, m_APInt(C)))
std::swap(V0, V1);
if (match(V1, m_APInt(C))) {
ConstPart = *C;
SymbolicPart = V0;
isOr = (I->getOpcode() == Instruction::Or);
return;
}
}
// view the operand as "V | 0"
SymbolicPart = V;
ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
isOr = true;
}
/// Return true if V is an instruction of the specified opcode and if it
/// only has one use.
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
auto *I = dyn_cast<Instruction>(V);
if (I && I->hasOneUse() && I->getOpcode() == Opcode)
if (!isa<FPMathOperator>(I) || I->isFast())
return cast<BinaryOperator>(I);
return nullptr;
}
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
unsigned Opcode2) {
auto *I = dyn_cast<Instruction>(V);
if (I && I->hasOneUse() &&
(I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
if (!isa<FPMathOperator>(I) || I->isFast())
return cast<BinaryOperator>(I);
return nullptr;
}
void ReassociatePass::BuildRankMap(Function &F,
ReversePostOrderTraversal<Function*> &RPOT) {
unsigned Rank = 2;
// Assign distinct ranks to function arguments.
for (auto &Arg : F.args()) {
ValueRankMap[&Arg] = ++Rank;
LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
<< "\n");
}
// Traverse basic blocks in ReversePostOrder.
for (BasicBlock *BB : RPOT) {
unsigned BBRank = RankMap[BB] = ++Rank << 16;
// Walk the basic block, adding precomputed ranks for any instructions that
// we cannot move. This ensures that the ranks for these instructions are
// all different in the block.
for (Instruction &I : *BB)
if (mayBeMemoryDependent(I))
ValueRankMap[&I] = ++BBRank;
}
}
unsigned ReassociatePass::getRank(Value *V) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I) {
if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
return 0; // Otherwise it's a global or constant, rank 0.
}
if (unsigned Rank = ValueRankMap[I])
return Rank; // Rank already known?
// If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
// we can reassociate expressions for code motion! Since we do not recurse
// for PHI nodes, we cannot have infinite recursion here, because there
// cannot be loops in the value graph that do not go through PHI nodes.
unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
Rank = std::max(Rank, getRank(I->getOperand(i)));
// If this is a 'not' or 'neg' instruction, do not count it for rank. This
// assures us that X and ~X will have the same rank.
if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
!match(I, m_FNeg(m_Value())))
++Rank;
LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
<< "\n");
return ValueRankMap[I] = Rank;
}
// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
void ReassociatePass::canonicalizeOperands(Instruction *I) {
assert(isa<BinaryOperator>(I) && "Expected binary operator.");
assert(I->isCommutative() && "Expected commutative operator.");
Value *LHS = I->getOperand(0);
Value *RHS = I->getOperand(1);
if (LHS == RHS || isa<Constant>(RHS))
return;
if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
cast<BinaryOperator>(I)->swapOperands();
}
static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
Instruction *InsertBefore, Value *FlagsOp) {
if (S1->getType()->isIntOrIntVectorTy())
return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
else {
BinaryOperator *Res =
BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
return Res;
}
}
static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
Instruction *InsertBefore, Value *FlagsOp) {
if (S1->getType()->isIntOrIntVectorTy())
return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
else {
BinaryOperator *Res =
BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
return Res;
}
}
static Instruction *CreateNeg(Value *S1, const Twine &Name,
Instruction *InsertBefore, Value *FlagsOp) {
if (S1->getType()->isIntOrIntVectorTy())
return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp))
return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore);
return UnaryOperator::CreateFNeg(S1, Name, InsertBefore);
}
/// Replace 0-X with X*-1.
static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
"Expected a Negate!");
// FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
Type *Ty = Neg->getType();
Constant *NegOne = Ty->isIntOrIntVectorTy() ?
ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
Res->takeName(Neg);
Neg->replaceAllUsesWith(Res);
Res->setDebugLoc(Neg->getDebugLoc());
return Res;
}
/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
/// even x in Bitwidth-bit arithmetic.
static unsigned CarmichaelShift(unsigned Bitwidth) {
if (Bitwidth < 3)
return Bitwidth - 1;
return Bitwidth - 2;
}
/// Add the extra weight 'RHS' to the existing weight 'LHS',
/// reducing the combined weight using any special properties of the operation.
/// The existing weight LHS represents the computation X op X op ... op X where
/// X occurs LHS times. The combined weight represents X op X op ... op X with
/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
// If we were working with infinite precision arithmetic then the combined
// weight would be LHS + RHS. But we are using finite precision arithmetic,
// and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
// for nilpotent operations and addition, but not for idempotent operations
// and multiplication), so it is important to correctly reduce the combined
// weight back into range if wrapping would be wrong.
// If RHS is zero then the weight didn't change.
if (RHS.isMinValue())
return;
// If LHS is zero then the combined weight is RHS.
if (LHS.isMinValue()) {
LHS = RHS;
return;
}
// From this point on we know that neither LHS nor RHS is zero.
if (Instruction::isIdempotent(Opcode)) {
// Idempotent means X op X === X, so any non-zero weight is equivalent to a
// weight of 1. Keeping weights at zero or one also means that wrapping is
// not a problem.
assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
return; // Return a weight of 1.
}
if (Instruction::isNilpotent(Opcode)) {
// Nilpotent means X op X === 0, so reduce weights modulo 2.
assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
LHS = 0; // 1 + 1 === 0 modulo 2.
return;
}
if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
// TODO: Reduce the weight by exploiting nsw/nuw?
LHS += RHS;
return;
}
assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
"Unknown associative operation!");
unsigned Bitwidth = LHS.getBitWidth();
// If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
// can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
// bit number x, since either x is odd in which case x^CM = 1, or x is even in
// which case both x^W and x^(W - CM) are zero. By subtracting off multiples
// of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
// which by a happy accident means that they can always be represented using
// Bitwidth bits.
// TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
// the Carmichael number).
if (Bitwidth > 3) {
/// CM - The value of Carmichael's lambda function.
APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
// Any weight W >= Threshold can be replaced with W - CM.
APInt Threshold = CM + Bitwidth;
assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
// For Bitwidth 4 or more the following sum does not overflow.
LHS += RHS;
while (LHS.uge(Threshold))
LHS -= CM;
} else {
// To avoid problems with overflow do everything the same as above but using
// a larger type.
unsigned CM = 1U << CarmichaelShift(Bitwidth);
unsigned Threshold = CM + Bitwidth;
assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
"Weights not reduced!");
unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
while (Total >= Threshold)
Total -= CM;
LHS = Total;
}
}
using RepeatedValue = std::pair<Value*, APInt>;
/// Given an associative binary expression, return the leaf
/// nodes in Ops along with their weights (how many times the leaf occurs). The
/// original expression is the same as
/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
/// op
/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
/// op
/// ...
/// op
/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
///
/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
///
/// This routine may modify the function, in which case it returns 'true'. The
/// changes it makes may well be destructive, changing the value computed by 'I'
/// to something completely different. Thus if the routine returns 'true' then
/// you MUST either replace I with a new expression computed from the Ops array,
/// or use RewriteExprTree to put the values back in.
///
/// A leaf node is either not a binary operation of the same kind as the root
/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
/// opcode), or is the same kind of binary operator but has a use which either
/// does not belong to the expression, or does belong to the expression but is
/// a leaf node. Every leaf node has at least one use that is a non-leaf node
/// of the expression, while for non-leaf nodes (except for the root 'I') every
/// use is a non-leaf node of the expression.
///
/// For example:
/// expression graph node names
///
/// + | I
/// / \ |
/// + + | A, B
/// / \ / \ |
/// * + * | C, D, E
/// / \ / \ / \ |
/// + * | F, G
///
/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
///
/// The expression is maximal: if some instruction is a binary operator of the
/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
/// then the instruction also belongs to the expression, is not a leaf node of
/// it, and its operands also belong to the expression (but may be leaf nodes).
///
/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
/// order to ensure that every non-root node in the expression has *exactly one*
/// use by a non-leaf node of the expression. This destruction means that the
/// caller MUST either replace 'I' with a new expression or use something like
/// RewriteExprTree to put the values back in if the routine indicates that it
/// made a change by returning 'true'.
///
/// In the above example either the right operand of A or the left operand of B
/// will be replaced by undef. If it is B's operand then this gives:
///
/// + | I
/// / \ |
/// + + | A, B - operand of B replaced with undef
/// / \ \ |
/// * + * | C, D, E
/// / \ / \ / \ |
/// + * | F, G
///
/// Note that such undef operands can only be reached by passing through 'I'.
/// For example, if you visit operands recursively starting from a leaf node
/// then you will never see such an undef operand unless you get back to 'I',
/// which requires passing through a phi node.
///
/// Note that this routine may also mutate binary operators of the wrong type
/// that have all uses inside the expression (i.e. only used by non-leaf nodes
/// of the expression) if it can turn them into binary operators of the right
/// type and thus make the expression bigger.
static bool LinearizeExprTree(Instruction *I,
SmallVectorImpl<RepeatedValue> &Ops) {
assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
"Expected a UnaryOperator or BinaryOperator!");
LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
unsigned Opcode = I->getOpcode();
assert(I->isAssociative() && I->isCommutative() &&
"Expected an associative and commutative operation!");
// Visit all operands of the expression, keeping track of their weight (the
// number of paths from the expression root to the operand, or if you like
// the number of times that operand occurs in the linearized expression).
// For example, if I = X + A, where X = A + B, then I, X and B have weight 1
// while A has weight two.
// Worklist of non-leaf nodes (their operands are in the expression too) along
// with their weights, representing a certain number of paths to the operator.
// If an operator occurs in the worklist multiple times then we found multiple
// ways to get to it.
SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
bool Changed = false;
// Leaves of the expression are values that either aren't the right kind of
// operation (eg: a constant, or a multiply in an add tree), or are, but have
// some uses that are not inside the expression. For example, in I = X + X,
// X = A + B, the value X has two uses (by I) that are in the expression. If
// X has any other uses, for example in a return instruction, then we consider
// X to be a leaf, and won't analyze it further. When we first visit a value,
// if it has more than one use then at first we conservatively consider it to
// be a leaf. Later, as the expression is explored, we may discover some more
// uses of the value from inside the expression. If all uses turn out to be
// from within the expression (and the value is a binary operator of the right
// kind) then the value is no longer considered to be a leaf, and its operands
// are explored.
// Leaves - Keeps track of the set of putative leaves as well as the number of
// paths to each leaf seen so far.
using LeafMap = DenseMap<Value *, APInt>;
LeafMap Leaves; // Leaf -> Total weight so far.
SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
#ifndef NDEBUG
SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
#endif
while (!Worklist.empty()) {
std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
I = P.first; // We examine the operands of this binary operator.
for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
Value *Op = I->getOperand(OpIdx);
APInt Weight = P.second; // Number of paths to this operand.
LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
assert(!Op->use_empty() && "No uses, so how did we get to it?!");
// If this is a binary operation of the right kind with only one use then
// add its operands to the expression.
if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
assert(Visited.insert(Op).second && "Not first visit!");
LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
Worklist.push_back(std::make_pair(BO, Weight));
continue;
}
// Appears to be a leaf. Is the operand already in the set of leaves?
LeafMap::iterator It = Leaves.find(Op);
if (It == Leaves.end()) {
// Not in the leaf map. Must be the first time we saw this operand.
assert(Visited.insert(Op).second && "Not first visit!");
if (!Op->hasOneUse()) {
// This value has uses not accounted for by the expression, so it is
// not safe to modify. Mark it as being a leaf.
LLVM_DEBUG(dbgs()
<< "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
LeafOrder.push_back(Op);
Leaves[Op] = Weight;
continue;
}
// No uses outside the expression, try morphing it.
} else {
// Already in the leaf map.
assert(It != Leaves.end() && Visited.count(Op) &&
"In leaf map but not visited!");
// Update the number of paths to the leaf.
IncorporateWeight(It->second, Weight, Opcode);
#if 0 // TODO: Re-enable once PR13021 is fixed.
// The leaf already has one use from inside the expression. As we want
// exactly one such use, drop this new use of the leaf.
assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
I->setOperand(OpIdx, UndefValue::get(I->getType()));
Changed = true;
// If the leaf is a binary operation of the right kind and we now see
// that its multiple original uses were in fact all by nodes belonging
// to the expression, then no longer consider it to be a leaf and add
// its operands to the expression.
if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
Worklist.push_back(std::make_pair(BO, It->second));
Leaves.erase(It);
continue;
}
#endif
// If we still have uses that are not accounted for by the expression
// then it is not safe to modify the value.
if (!Op->hasOneUse())
continue;
// No uses outside the expression, try morphing it.
Weight = It->second;
Leaves.erase(It); // Since the value may be morphed below.
}
// At this point we have a value which, first of all, is not a binary
// expression of the right kind, and secondly, is only used inside the
// expression. This means that it can safely be modified. See if we
// can usefully morph it into an expression of the right kind.
assert((!isa<Instruction>(Op) ||
cast<Instruction>(Op)->getOpcode() != Opcode
|| (isa<FPMathOperator>(Op) &&
!cast<Instruction>(Op)->isFast())) &&
"Should have been handled above!");
assert(Op->hasOneUse() && "Has uses outside the expression tree!");
// If this is a multiply expression, turn any internal negations into
// multiplies by -1 so they can be reassociated.
if (Instruction *Tmp = dyn_cast<Instruction>(Op))
if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) ||
(Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) {
LLVM_DEBUG(dbgs()
<< "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
Tmp = LowerNegateToMultiply(Tmp);
LLVM_DEBUG(dbgs() << *Tmp << '\n');
Worklist.push_back(std::make_pair(Tmp, Weight));
Changed = true;
continue;
}
// Failed to morph into an expression of the right type. This really is
// a leaf.
LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
LeafOrder.push_back(Op);
Leaves[Op] = Weight;
}
}
// The leaves, repeated according to their weights, represent the linearized
// form of the expression.
for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
Value *V = LeafOrder[i];
LeafMap::iterator It = Leaves.find(V);
if (It == Leaves.end())
// Node initially thought to be a leaf wasn't.
continue;
assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
APInt Weight = It->second;
if (Weight.isMinValue())
// Leaf already output or weight reduction eliminated it.
continue;
// Ensure the leaf is only output once.
It->second = 0;
Ops.push_back(std::make_pair(V, Weight));
}
// For nilpotent operations or addition there may be no operands, for example
// because the expression was "X xor X" or consisted of 2^Bitwidth additions:
// in both cases the weight reduces to 0 causing the value to be skipped.
if (Ops.empty()) {
Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
assert(Identity && "Associative operation without identity!");
Ops.emplace_back(Identity, APInt(Bitwidth, 1));
}
return Changed;
}
/// Now that the operands for this expression tree are
/// linearized and optimized, emit them in-order.
void ReassociatePass::RewriteExprTree(BinaryOperator *I,
SmallVectorImpl<ValueEntry> &Ops) {
assert(Ops.size() > 1 && "Single values should be used directly!");
// Since our optimizations should never increase the number of operations, the
// new expression can usually be written reusing the existing binary operators
// from the original expression tree, without creating any new instructions,
// though the rewritten expression may have a completely different topology.
// We take care to not change anything if the new expression will be the same
// as the original. If more than trivial changes (like commuting operands)
// were made then we are obliged to clear out any optional subclass data like
// nsw flags.
/// NodesToRewrite - Nodes from the original expression available for writing
/// the new expression into.
SmallVector<BinaryOperator*, 8> NodesToRewrite;
unsigned Opcode = I->getOpcode();
BinaryOperator *Op = I;
/// NotRewritable - The operands being written will be the leaves of the new
/// expression and must not be used as inner nodes (via NodesToRewrite) by
/// mistake. Inner nodes are always reassociable, and usually leaves are not
/// (if they were they would have been incorporated into the expression and so
/// would not be leaves), so most of the time there is no danger of this. But
/// in rare cases a leaf may become reassociable if an optimization kills uses
/// of it, or it may momentarily become reassociable during rewriting (below)
/// due it being removed as an operand of one of its uses. Ensure that misuse
/// of leaf nodes as inner nodes cannot occur by remembering all of the future
/// leaves and refusing to reuse any of them as inner nodes.
SmallPtrSet<Value*, 8> NotRewritable;
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
NotRewritable.insert(Ops[i].Op);
// ExpressionChanged - Non-null if the rewritten expression differs from the
// original in some non-trivial way, requiring the clearing of optional flags.
// Flags are cleared from the operator in ExpressionChanged up to I inclusive.
BinaryOperator *ExpressionChanged = nullptr;
for (unsigned i = 0; ; ++i) {
// The last operation (which comes earliest in the IR) is special as both
// operands will come from Ops, rather than just one with the other being
// a subexpression.
if (i+2 == Ops.size()) {
Value *NewLHS = Ops[i].Op;
Value *NewRHS = Ops[i+1].Op;
Value *OldLHS = Op->getOperand(0);
Value *OldRHS = Op->getOperand(1);
if (NewLHS == OldLHS && NewRHS == OldRHS)
// Nothing changed, leave it alone.
break;
if (NewLHS == OldRHS && NewRHS == OldLHS) {
// The order of the operands was reversed. Swap them.
LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Op->swapOperands();
LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
MadeChange = true;
++NumChanged;
break;
}
// The new operation differs non-trivially from the original. Overwrite
// the old operands with the new ones.
LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
if (NewLHS != OldLHS) {
BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
if (BO && !NotRewritable.count(BO))
NodesToRewrite.push_back(BO);
Op->setOperand(0, NewLHS);
}
if (NewRHS != OldRHS) {
BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
if (BO && !NotRewritable.count(BO))
NodesToRewrite.push_back(BO);
Op->setOperand(1, NewRHS);
}
LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
ExpressionChanged = Op;
MadeChange = true;
++NumChanged;
break;
}
// Not the last operation. The left-hand side will be a sub-expression
// while the right-hand side will be the current element of Ops.
Value *NewRHS = Ops[i].Op;
if (NewRHS != Op->getOperand(1)) {
LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
if (NewRHS == Op->getOperand(0)) {
// The new right-hand side was already present as the left operand. If
// we are lucky then swapping the operands will sort out both of them.
Op->swapOperands();
} else {
// Overwrite with the new right-hand side.
BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
if (BO && !NotRewritable.count(BO))
NodesToRewrite.push_back(BO);
Op->setOperand(1, NewRHS);
ExpressionChanged = Op;
}
LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
MadeChange = true;
++NumChanged;
}
// Now deal with the left-hand side. If this is already an operation node
// from the original expression then just rewrite the rest of the expression
// into it.
BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
if (BO && !NotRewritable.count(BO)) {
Op = BO;
continue;
}
// Otherwise, grab a spare node from the original expression and use that as
// the left-hand side. If there are no nodes left then the optimizers made
// an expression with more nodes than the original! This usually means that
// they did something stupid but it might mean that the problem was just too
// hard (finding the mimimal number of multiplications needed to realize a
// multiplication expression is NP-complete). Whatever the reason, smart or
// stupid, create a new node if there are none left.
BinaryOperator *NewOp;
if (NodesToRewrite.empty()) {
Constant *Undef = UndefValue::get(I->getType());
NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
Undef, Undef, "", I);
if (NewOp->getType()->isFPOrFPVectorTy())
NewOp->setFastMathFlags(I->getFastMathFlags());
} else {
NewOp = NodesToRewrite.pop_back_val();
}
LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Op->setOperand(0, NewOp);
LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
ExpressionChanged = Op;
MadeChange = true;
++NumChanged;
Op = NewOp;
}
// If the expression changed non-trivially then clear out all subclass data
// starting from the operator specified in ExpressionChanged, and compactify
// the operators to just before the expression root to guarantee that the
// expression tree is dominated by all of Ops.
if (ExpressionChanged)
do {
// Preserve FastMathFlags.
if (isa<FPMathOperator>(I)) {
FastMathFlags Flags = I->getFastMathFlags();
ExpressionChanged->clearSubclassOptionalData();
ExpressionChanged->setFastMathFlags(Flags);
} else
ExpressionChanged->clearSubclassOptionalData();
if (ExpressionChanged == I)
break;
// Discard any debug info related to the expressions that has changed (we
// can leave debug infor related to the root, since the result of the
// expression tree should be the same even after reassociation).
replaceDbgUsesWithUndef(ExpressionChanged);
ExpressionChanged->moveBefore(I);
ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
} while (true);
// Throw away any left over nodes from the original expression.
for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
RedoInsts.insert(NodesToRewrite[i]);
}
/// Insert instructions before the instruction pointed to by BI,
/// that computes the negative version of the value specified. The negative
/// version of the value is returned, and BI is left pointing at the instruction
/// that should be processed next by the reassociation pass.
/// Also add intermediate instructions to the redo list that are modified while
/// pushing the negates through adds. These will be revisited to see if
/// additional opportunities have been exposed.
static Value *NegateValue(Value *V, Instruction *BI,
ReassociatePass::OrderedSet &ToRedo) {
if (auto *C = dyn_cast<Constant>(V))
return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
ConstantExpr::getNeg(C);
// We are trying to expose opportunity for reassociation. One of the things
// that we want to do to achieve this is to push a negation as deep into an
// expression chain as possible, to expose the add instructions. In practice,
// this means that we turn this:
// X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
// so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
// the constants. We assume that instcombine will clean up the mess later if
// we introduce tons of unnecessary negation instructions.
//
if (BinaryOperator *I =
isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
// Push the negates through the add.
I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
if (I->getOpcode() == Instruction::Add) {
I->setHasNoUnsignedWrap(false);
I->setHasNoSignedWrap(false);
}
// We must move the add instruction here, because the neg instructions do
// not dominate the old add instruction in general. By moving it, we are
// assured that the neg instructions we just inserted dominate the
// instruction we are about to insert after them.
//
I->moveBefore(BI);
I->setName(I->getName()+".neg");
// Add the intermediate negates to the redo list as processing them later
// could expose more reassociating opportunities.
ToRedo.insert(I);
return I;
}
// Okay, we need to materialize a negated version of V with an instruction.
// Scan the use lists of V to see if we have one already.
for (User *U : V->users()) {
if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
continue;
// We found one! Now we have to make sure that the definition dominates
// this use. We do this by moving it to the entry block (if it is a
// non-instruction value) or right after the definition. These negates will
// be zapped by reassociate later, so we don't need much finesse here.
Instruction *TheNeg = cast<Instruction>(U);
// Verify that the negate is in this function, V might be a constant expr.
if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
continue;
bool FoundCatchSwitch = false;
BasicBlock::iterator InsertPt;
if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
InsertPt = II->getNormalDest()->begin();
} else {
InsertPt = ++InstInput->getIterator();
}
const BasicBlock *BB = InsertPt->getParent();
// Make sure we don't move anything before PHIs or exception
// handling pads.
while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
InsertPt->isEHPad())) {
if (isa<CatchSwitchInst>(InsertPt))
// A catchswitch cannot have anything in the block except
// itself and PHIs. We'll bail out below.
FoundCatchSwitch = true;
++InsertPt;
}
} else {
InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
}
// We found a catchswitch in the block where we want to move the
// neg. We cannot move anything into that block. Bail and just
// create the neg before BI, as if we hadn't found an existing
// neg.
if (FoundCatchSwitch)
break;
TheNeg->moveBefore(&*InsertPt);
if (TheNeg->getOpcode() == Instruction::Sub) {
TheNeg->setHasNoUnsignedWrap(false);
TheNeg->setHasNoSignedWrap(false);
} else {
TheNeg->andIRFlags(BI);
}
ToRedo.insert(TheNeg);
return TheNeg;
}
// Insert a 'neg' instruction that subtracts the value from zero to get the
// negation.
Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
ToRedo.insert(NewNeg);
return NewNeg;
}
// See if this `or` looks like an load widening reduction, i.e. that it
// consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
// ensure that the pattern is *really* a load widening reduction,
// we do not ensure that it can really be replaced with a widened load,
// only that it mostly looks like one.
static bool isLoadCombineCandidate(Instruction *Or) {
SmallVector<Instruction *, 8> Worklist;
SmallSet<Instruction *, 8> Visited;
auto Enqueue = [&](Value *V) {
auto *I = dyn_cast<Instruction>(V);
// Each node of an `or` reduction must be an instruction,
if (!I)
return false; // Node is certainly not part of an `or` load reduction.
// Only process instructions we have never processed before.
if (Visited.insert(I).second)
Worklist.emplace_back(I);
return true; // Will need to look at parent nodes.
};
if (!Enqueue(Or))
return false; // Not an `or` reduction pattern.
while (!Worklist.empty()) {
auto *I = Worklist.pop_back_val();
// Okay, which instruction is this node?
switch (I->getOpcode()) {
case Instruction::Or:
// Got an `or` node. That's fine, just recurse into it's operands.
for (Value *Op : I->operands())
if (!Enqueue(Op))
return false; // Not an `or` reduction pattern.
continue;
case Instruction::Shl:
case Instruction::ZExt:
// `shl`/`zext` nodes are fine, just recurse into their base operand.
if (!Enqueue(I->getOperand(0)))
return false; // Not an `or` reduction pattern.
continue;
case Instruction::Load:
// Perfect, `load` node means we've reached an edge of the graph.
continue;
default: // Unknown node.
return false; // Not an `or` reduction pattern.
}
}
return true;
}
/// Return true if it may be profitable to convert this (X|Y) into (X+Y).
static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
// Don't bother to convert this up unless either the LHS is an associable add
// or subtract or mul or if this is only used by one of the above.
// This is only a compile-time improvement, it is not needed for correctness!
auto isInteresting = [](Value *V) {
for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul,
Instruction::Shl})
if (isReassociableOp(V, Op))
return true;
return false;
};
if (any_of(Or->operands(), isInteresting))
return true;
Value *VB = Or->user_back();
if (Or->hasOneUse() && isInteresting(VB))
return true;
return false;
}
/// If we have (X|Y), and iff X and Y have no common bits set,
/// transform this into (X+Y) to allow arithmetics reassociation.
static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) {
// Convert an or into an add.
BinaryOperator *New =
CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or);
New->setHasNoSignedWrap();
New->setHasNoUnsignedWrap();
New->takeName(Or);
// Everyone now refers to the add instruction.
Or->replaceAllUsesWith(New);
New->setDebugLoc(Or->getDebugLoc());
LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n');
return New;
}
/// Return true if we should break up this subtract of X-Y into (X + -Y).
static bool ShouldBreakUpSubtract(Instruction *Sub) {
// If this is a negation, we can't split it up!
if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
return false;
// Don't breakup X - undef.
if (isa<UndefValue>(Sub->getOperand(1)))
return false;
// Don't bother to break this up unless either the LHS is an associable add or
// subtract or if this is only used by one.
Value *V0 = Sub->getOperand(0);
if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
return true;
Value *V1 = Sub->getOperand(1);
if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
return true;
Value *VB = Sub->user_back();
if (Sub->hasOneUse() &&
(isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
return true;
return false;
}
/// If we have (X-Y), and if either X is an add, or if this is only used by an
/// add, transform this into (X+(0-Y)) to promote better reassociation.
static BinaryOperator *BreakUpSubtract(Instruction *Sub,
ReassociatePass::OrderedSet &ToRedo) {
// Convert a subtract into an add and a neg instruction. This allows sub
// instructions to be commuted with other add instructions.
//
// Calculate the negative value of Operand 1 of the sub instruction,
// and set it as the RHS of the add instruction we just made.
Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
New->takeName(Sub);
// Everyone now refers to the add instruction.
Sub->replaceAllUsesWith(New);
New->setDebugLoc(Sub->getDebugLoc());
LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
return New;
}
/// If this is a shift of a reassociable multiply or is used by one, change
/// this into a multiply by a constant to assist with further reassociation.
static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
auto *SA = cast<ConstantInt>(Shl->getOperand(1));
MulCst = ConstantExpr::getShl(MulCst, SA);
BinaryOperator *Mul =
BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
Mul->takeName(Shl);
// Everyone now refers to the mul instruction.
Shl->replaceAllUsesWith(Mul);
Mul->setDebugLoc(Shl->getDebugLoc());
// We can safely preserve the nuw flag in all cases. It's also safe to turn a
// nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
// handling. It can be preserved as long as we're not left shifting by
// bitwidth - 1.
bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
unsigned BitWidth = Shl->getType()->getIntegerBitWidth();
if (NSW && (NUW || SA->getValue().ult(BitWidth - 1)))
Mul->setHasNoSignedWrap(true);
Mul->setHasNoUnsignedWrap(NUW);
return Mul;
}
/// Scan backwards and forwards among values with the same rank as element i
/// to see if X exists. If X does not exist, return i. This is useful when
/// scanning for 'x' when we see '-x' because they both get the same rank.
static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
unsigned i, Value *X) {
unsigned XRank = Ops[i].Rank;
unsigned e = Ops.size();
for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
if (Ops[j].Op == X)
return j;
if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
if (Instruction *I2 = dyn_cast<Instruction>(X))
if (I1->isIdenticalTo(I2))
return j;
}
// Scan backwards.
for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
if (Ops[j].Op == X)
return j;
if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
if (Instruction *I2 = dyn_cast<Instruction>(X))
if (I1->isIdenticalTo(I2))
return j;
}
return i;
}
/// Emit a tree of add instructions, summing Ops together
/// and returning the result. Insert the tree before I.
static Value *EmitAddTreeOfValues(Instruction *I,
SmallVectorImpl<WeakTrackingVH> &Ops) {
if (Ops.size() == 1) return Ops.back();
Value *V1 = Ops.pop_back_val();
Value *V2 = EmitAddTreeOfValues(I, Ops);
return CreateAdd(V2, V1, "reass.add", I, I);
}
/// If V is an expression tree that is a multiplication sequence,
/// and if this sequence contains a multiply by Factor,
/// remove Factor from the tree and return the new tree.
Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
if (!BO)
return nullptr;
SmallVector<RepeatedValue, 8> Tree;
MadeChange |= LinearizeExprTree(BO, Tree);
SmallVector<ValueEntry, 8> Factors;
Factors.reserve(Tree.size());
for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
RepeatedValue E = Tree[i];
Factors.append(E.second.getZExtValue(),
ValueEntry(getRank(E.first), E.first));
}
bool FoundFactor = false;
bool NeedsNegate = false;
for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
if (Factors[i].Op == Factor) {
FoundFactor = true;
Factors.erase(Factors.begin()+i);
break;
}
// If this is a negative version of this factor, remove it.
if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
if (FC1->getValue() == -FC2->getValue()) {
FoundFactor = NeedsNegate = true;
Factors.erase(Factors.begin()+i);
break;
}
} else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
const APFloat &F1 = FC1->getValueAPF();
APFloat F2(FC2->getValueAPF());
F2.changeSign();
if (F1 == F2) {
FoundFactor = NeedsNegate = true;
Factors.erase(Factors.begin() + i);
break;
}
}
}
}
if (!FoundFactor) {
// Make sure to restore the operands to the expression tree.
RewriteExprTree(BO, Factors);
return nullptr;
}
BasicBlock::iterator InsertPt = ++BO->getIterator();
// If this was just a single multiply, remove the multiply and return the only
// remaining operand.
if (Factors.size() == 1) {
RedoInsts.insert(BO);
V = Factors[0].Op;
} else {
RewriteExprTree(BO, Factors);
V = BO;
}
if (NeedsNegate)
V = CreateNeg(V, "neg", &*InsertPt, BO);
return V;
}
/// If V is a single-use multiply, recursively add its operands as factors,
/// otherwise add V to the list of factors.
///
/// Ops is the top-level list of add operands we're trying to factor.
static void FindSingleUseMultiplyFactors(Value *V,
SmallVectorImpl<Value*> &Factors) {
BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
if (!BO) {
Factors.push_back(V);
return;
}
// Otherwise, add the LHS and RHS to the list of factors.
FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
}
/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
/// This optimizes based on identities. If it can be reduced to a single Value,
/// it is returned, otherwise the Ops list is mutated as necessary.
static Value *OptimizeAndOrXor(unsigned Opcode,
SmallVectorImpl<ValueEntry> &Ops) {
// Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
// If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
// First, check for X and ~X in the operand list.
assert(i < Ops.size());
Value *X;
if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^.
unsigned FoundX = FindInOperandList(Ops, i, X);
if (FoundX != i) {
if (Opcode == Instruction::And) // ...&X&~X = 0
return Constant::getNullValue(X->getType());
if (Opcode == Instruction::Or) // ...|X|~X = -1
return Constant::getAllOnesValue(X->getType());
}
}
// Next, check for duplicate pairs of values, which we assume are next to
// each other, due to our sorting criteria.
assert(i < Ops.size());
if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
if (Opcode == Instruction::And || Opcode == Instruction::Or) {
// Drop duplicate values for And and Or.
Ops.erase(Ops.begin()+i);
--i; --e;
++NumAnnihil;
continue;
}
// Drop pairs of values for Xor.
assert(Opcode == Instruction::Xor);
if (e == 2)
return Constant::getNullValue(Ops[0].Op->getType());
// Y ^ X^X -> Y
Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
i -= 1; e -= 2;
++NumAnnihil;
}
}
return nullptr;
}
/// Helper function of CombineXorOpnd(). It creates a bitwise-and
/// instruction with the given two operands, and return the resulting
/// instruction. There are two special cases: 1) if the constant operand is 0,
/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
/// be returned.
static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
const APInt &ConstOpnd) {
if (ConstOpnd.isNullValue())
return nullptr;
if (ConstOpnd.isAllOnesValue())
return Opnd;
Instruction *I = BinaryOperator::CreateAnd(
Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
InsertBefore);
I->setDebugLoc(InsertBefore->getDebugLoc());
return I;
}
// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
// into "R ^ C", where C would be 0, and R is a symbolic value.
//
// If it was successful, true is returned, and the "R" and "C" is returned
// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
// and both "Res" and "ConstOpnd" remain unchanged.
bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
APInt &ConstOpnd, Value *&Res) {
// Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
// = ((x | c1) ^ c1) ^ (c1 ^ c2)
// = (x & ~c1) ^ (c1 ^ c2)
// It is useful only when c1 == c2.
if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
return false;
if (!Opnd1->getValue()->hasOneUse())
return false;
const APInt &C1 = Opnd1->getConstPart();
if (C1 != ConstOpnd)
return false;
Value *X = Opnd1->getSymbolicPart();
Res = createAndInstr(I, X, ~C1);
// ConstOpnd was C2, now C1 ^ C2.
ConstOpnd ^= C1;
if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
RedoInsts.insert(T);
return true;
}
// Helper function of OptimizeXor(). It tries to simplify
// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
// symbolic value.
//
// If it was successful, true is returned, and the "R" and "C" is returned
// via "Res" and "ConstOpnd", respectively (If the entire expression is
// evaluated to a constant, the Res is set to NULL); otherwise, false is
// returned, and both "Res" and "ConstOpnd" remain unchanged.
bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
XorOpnd *Opnd2, APInt &ConstOpnd,
Value *&Res) {
Value *X = Opnd1->getSymbolicPart();
if (X != Opnd2->getSymbolicPart())
return false;
// This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
int DeadInstNum = 1;
if (Opnd1->getValue()->hasOneUse())
DeadInstNum++;
if (Opnd2->getValue()->hasOneUse())
DeadInstNum++;
// Xor-Rule 2:
// (x | c1) ^ (x & c2)
// = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
// = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
// = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
//
if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
if (Opnd2->isOrExpr())
std::swap(Opnd1, Opnd2);
const APInt &C1 = Opnd1->getConstPart();
const APInt &C2 = Opnd2->getConstPart();
APInt C3((~C1) ^ C2);
// Do not increase code size!
if (!C3.isNullValue() && !C3.isAllOnesValue()) {
int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
if (NewInstNum > DeadInstNum)
return false;
}
Res = createAndInstr(I, X, C3);
ConstOpnd ^= C1;
} else if (Opnd1->isOrExpr()) {
// Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
//
const APInt &C1 = Opnd1->getConstPart();
const APInt &C2 = Opnd2->getConstPart();
APInt C3 = C1 ^ C2;
// Do not increase code size
if (!C3.isNullValue() && !C3.isAllOnesValue()) {
int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
if (NewInstNum > DeadInstNum)
return false;
}
Res = createAndInstr(I, X, C3);
ConstOpnd ^= C3;
} else {
// Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
//
const APInt &C1 = Opnd1->getConstPart();
const APInt &C2 = Opnd2->getConstPart();
APInt C3 = C1 ^ C2;
Res = createAndInstr(I, X, C3);
}
// Put the original operands in the Redo list; hope they will be deleted
// as dead code.
if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
RedoInsts.insert(T);
if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
RedoInsts.insert(T);
return true;
}
/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
/// to a single Value, it is returned, otherwise the Ops list is mutated as
/// necessary.
Value *ReassociatePass::OptimizeXor(Instruction *I,
SmallVectorImpl<ValueEntry> &Ops) {
if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
return V;
if (Ops.size() == 1)
return nullptr;
SmallVector<XorOpnd, 8> Opnds;
SmallVector<XorOpnd*, 8> OpndPtrs;
Type *Ty = Ops[0].Op->getType();
APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
// Step 1: Convert ValueEntry to XorOpnd
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Value *V = Ops[i].Op;
const APInt *C;
// TODO: Support non-splat vectors.
if (match(V, m_APInt(C))) {
ConstOpnd ^= *C;
} else {
XorOpnd O(V);
O.setSymbolicRank(getRank(O.getSymbolicPart()));
Opnds.push_back(O);
}
}
// NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
// It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
// the "OpndPtrs" as well. For the similar reason, do not fuse this loop
// with the previous loop --- the iterator of the "Opnds" may be invalidated
// when new elements are added to the vector.
for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
OpndPtrs.push_back(&Opnds[i]);
// Step 2: Sort the Xor-Operands in a way such that the operands containing
// the same symbolic value cluster together. For instance, the input operand
// sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
// ("x | 123", "x & 789", "y & 456").
//
// The purpose is twofold:
// 1) Cluster together the operands sharing the same symbolic-value.
// 2) Operand having smaller symbolic-value-rank is permuted earlier, which
// could potentially shorten crital path, and expose more loop-invariants.
// Note that values' rank are basically defined in RPO order (FIXME).
// So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
// than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
// "z" in the order of X-Y-Z is better than any other orders.
llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
return LHS->getSymbolicRank() < RHS->getSymbolicRank();
});
// Step 3: Combine adjacent operands
XorOpnd *PrevOpnd = nullptr;
bool Changed = false;
for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
XorOpnd *CurrOpnd = OpndPtrs[i];
// The combined value
Value *CV;
// Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
if (!ConstOpnd.isNullValue() &&
CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
Changed = true;
if (CV)
*CurrOpnd = XorOpnd(CV);
else {
CurrOpnd->Invalidate();
continue;
}
}
if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
PrevOpnd = CurrOpnd;
continue;
}
// step 3.2: When previous and current operands share the same symbolic
// value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
// Remove previous operand
PrevOpnd->Invalidate();
if (CV) {
*CurrOpnd = XorOpnd(CV);
PrevOpnd = CurrOpnd;
} else {
CurrOpnd->Invalidate();
PrevOpnd = nullptr;
}
Changed = true;
}
}
// Step 4: Reassemble the Ops
if (Changed) {
Ops.clear();
for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
XorOpnd &O = Opnds[i];
if (O.isInvalid())
continue;
ValueEntry VE(getRank(O.getValue()), O.getValue());
Ops.push_back(VE);
}
if (!ConstOpnd.isNullValue()) {
Value *C = ConstantInt::get(Ty, ConstOpnd);
ValueEntry VE(getRank(C), C);
Ops.push_back(VE);
}
unsigned Sz = Ops.size();
if (Sz == 1)
return Ops.back().Op;
if (Sz == 0) {
assert(ConstOpnd.isNullValue());
return ConstantInt::get(Ty, ConstOpnd);
}
}
return nullptr;
}
/// Optimize a series of operands to an 'add' instruction. This
/// optimizes based on identities. If it can be reduced to a single Value, it
/// is returned, otherwise the Ops list is mutated as necessary.
Value *ReassociatePass::OptimizeAdd(Instruction *I,
SmallVectorImpl<ValueEntry> &Ops) {
// Scan the operand lists looking for X and -X pairs. If we find any, we
// can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
// scan for any
// duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Value *TheOp = Ops[i].Op;
// Check to see if we've seen this operand before. If so, we factor all
// instances of the operand together. Due to our sorting criteria, we know
// that these need to be next to each other in the vector.
if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
// Rescan the list, remove all instances of this operand from the expr.
unsigned NumFound = 0;
do {
Ops.erase(Ops.begin()+i);
++NumFound;
} while (i != Ops.size() && Ops[i].Op == TheOp);
LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
<< '\n');
++NumFactor;
// Insert a new multiply.
Type *Ty = TheOp->getType();
Constant *C = Ty->isIntOrIntVectorTy() ?
ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
// Now that we have inserted a multiply, optimize it. This allows us to
// handle cases that require multiple factoring steps, such as this:
// (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
RedoInsts.insert(Mul);
// If every add operand was a duplicate, return the multiply.
if (Ops.empty())
return Mul;
// Otherwise, we had some input that didn't have the dupe, such as
// "A + A + B" -> "A*2 + B". Add the new multiply to the list of
// things being added by this operation.
Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
--i;
e = Ops.size();
continue;
}
// Check for X and -X or X and ~X in the operand list.
Value *X;
if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
!match(TheOp, m_FNeg(m_Value(X))))
continue;
unsigned FoundX = FindInOperandList(Ops, i, X);
if (FoundX == i)
continue;
// Remove X and -X from the operand list.
if (Ops.size() == 2 &&
(match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
return Constant::getNullValue(X->getType());
// Remove X and ~X from the operand list.
if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
return Constant::getAllOnesValue(X->getType());
Ops.erase(Ops.begin()+i);
if (i < FoundX)
--FoundX;
else
--i; // Need to back up an extra one.
Ops.erase(Ops.begin()+FoundX);
++NumAnnihil;
--i; // Revisit element.
e -= 2; // Removed two elements.
// if X and ~X we append -1 to the operand list.
if (match(TheOp, m_Not(m_Value()))) {
Value *V = Constant::getAllOnesValue(X->getType());
Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
e += 1;
}
}
// Scan the operand list, checking to see if there are any common factors
// between operands. Consider something like A*A+A*B*C+D. We would like to
// reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
// To efficiently find this, we count the number of times a factor occurs
// for any ADD operands that are MULs.
DenseMap<Value*, unsigned> FactorOccurrences;
// Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
// where they are actually the same multiply.
unsigned MaxOcc = 0;
Value *MaxOccVal = nullptr;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
BinaryOperator *BOp =
isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
if (!BOp)
continue;
// Compute all of the factors of this added value.
SmallVector<Value*, 8> Factors;
FindSingleUseMultiplyFactors(BOp, Factors);
assert(Factors.size() > 1 && "Bad linearize!");
// Add one to FactorOccurrences for each unique factor in this op.
SmallPtrSet<Value*, 8> Duplicates;
for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Value *Factor = Factors[i];
if (!Duplicates.insert(Factor).second)
continue;
unsigned Occ = ++FactorOccurrences[Factor];
if (Occ > MaxOcc) {
MaxOcc = Occ;
MaxOccVal = Factor;
}
// If Factor is a negative constant, add the negated value as a factor
// because we can percolate the negate out. Watch for minint, which
// cannot be positivified.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
if (CI->isNegative() && !CI->isMinValue(true)) {
Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
if (!Duplicates.insert(Factor).second)
continue;
unsigned Occ = ++FactorOccurrences[Factor];
if (Occ > MaxOcc) {
MaxOcc = Occ;
MaxOccVal = Factor;
}
}
} else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
if (CF->isNegative()) {
APFloat F(CF->getValueAPF());
F.changeSign();
Factor = ConstantFP::get(CF->getContext(), F);
if (!Duplicates.insert(Factor).second)
continue;
unsigned Occ = ++FactorOccurrences[Factor];
if (Occ > MaxOcc) {
MaxOcc = Occ;
MaxOccVal = Factor;
}
}
}
}
}
// If any factor occurred more than one time, we can pull it out.
if (MaxOcc > 1) {
LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
<< '\n');
++NumFactor;
// Create a new instruction that uses the MaxOccVal twice. If we don't do
// this, we could otherwise run into situations where removing a factor
// from an expression will drop a use of maxocc, and this can cause
// RemoveFactorFromExpression on successive values to behave differently.
Instruction *DummyInst =
I->getType()->isIntOrIntVectorTy()
? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
: BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
SmallVector<WeakTrackingVH, 4> NewMulOps;
for (unsigned i = 0; i != Ops.size(); ++i) {
// Only try to remove factors from expressions we're allowed to.
BinaryOperator *BOp =
isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
if (!BOp)
continue;
if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
// The factorized operand may occur several times. Convert them all in
// one fell swoop.
for (unsigned j = Ops.size(); j != i;) {
--j;
if (Ops[j].Op == Ops[i].Op) {
NewMulOps.push_back(V);
Ops.erase(Ops.begin()+j);
}
}
--i;
}
}
// No need for extra uses anymore.
DummyInst->deleteValue();
unsigned NumAddedValues = NewMulOps.size();
Value *V = EmitAddTreeOfValues(I, NewMulOps);
// Now that we have inserted the add tree, optimize it. This allows us to
// handle cases that require multiple factoring steps, such as this:
// A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
(void)NumAddedValues;
if (Instruction *VI = dyn_cast<Instruction>(V))
RedoInsts.insert(VI);
// Create the multiply.
Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
// Rerun associate on the multiply in case the inner expression turned into
// a multiply. We want to make sure that we keep things in canonical form.
RedoInsts.insert(V2);
// If every add operand included the factor (e.g. "A*B + A*C"), then the
// entire result expression is just the multiply "A*(B+C)".
if (Ops.empty())
return V2;
// Otherwise, we had some input that didn't have the factor, such as
// "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
// things being added by this operation.
Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
}
return nullptr;
}
/// Build up a vector of value/power pairs factoring a product.
///
/// Given a series of multiplication operands, build a vector of factors and
/// the powers each is raised to when forming the final product. Sort them in
/// the order of descending power.
///
/// (x*x) -> [(x, 2)]
/// ((x*x)*x) -> [(x, 3)]
/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
///
/// \returns Whether any factors have a power greater than one.
static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
SmallVectorImpl<Factor> &Factors) {
// FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
// Compute the sum of powers of simplifiable factors.
unsigned FactorPowerSum = 0;
for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
Value *Op = Ops[Idx-1].Op;
// Count the number of occurrences of this value.
unsigned Count = 1;
for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
++Count;
// Track for simplification all factors which occur 2 or more times.
if (Count > 1)
FactorPowerSum += Count;
}
// We can only simplify factors if the sum of the powers of our simplifiable
// factors is 4 or higher. When that is the case, we will *always* have
// a simplification. This is an important invariant to prevent cyclicly
// trying to simplify already minimal formations.
if (FactorPowerSum < 4)
return false;
// Now gather the simplifiable factors, removing them from Ops.
FactorPowerSum = 0;
for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
Value *Op = Ops[Idx-1].Op;
// Count the number of occurrences of this value.
unsigned Count = 1;
for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
++Count;
if (Count == 1)
continue;
// Move an even number of occurrences to Factors.
Count &= ~1U;
Idx -= Count;
FactorPowerSum += Count;
Factors.push_back(Factor(Op, Count));
Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
}
// None of the adjustments above should have reduced the sum of factor powers
// below our mininum of '4'.
assert(FactorPowerSum >= 4);
llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
return LHS.Power > RHS.Power;
});
return true;
}
/// Build a tree of multiplies, computing the product of Ops.
static Value *buildMultiplyTree(IRBuilderBase &Builder,
SmallVectorImpl<Value*> &Ops) {
if (Ops.size() == 1)
return Ops.back();
Value *LHS = Ops.pop_back_val();
do {
if (LHS->getType()->isIntOrIntVectorTy())
LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
else
LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
} while (!Ops.empty());
return LHS;
}
/// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
///
/// Given a vector of values raised to various powers, where no two values are
/// equal and the powers are sorted in decreasing order, compute the minimal
/// DAG of multiplies to compute the final product, and return that product
/// value.
Value *
ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder,
SmallVectorImpl<Factor> &Factors) {
assert(Factors[0].Power);
SmallVector<Value *, 4> OuterProduct;
for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
Idx < Size && Factors[Idx].Power > 0; ++Idx) {
if (Factors[Idx].Power != Factors[LastIdx].Power) {
LastIdx = Idx;
continue;
}
// We want to multiply across all the factors with the same power so that
// we can raise them to that power as a single entity. Build a mini tree
// for that.
SmallVector<Value *, 4> InnerProduct;
InnerProduct.push_back(Factors[LastIdx].Base);
do {
InnerProduct.push_back(Factors[Idx].Base);
++Idx;
} while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
// Reset the base value of the first factor to the new expression tree.
// We'll remove all the factors with the same power in a second pass.
Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
if (Instruction *MI = dyn_cast<Instruction>(M))
RedoInsts.insert(MI);
LastIdx = Idx;
}
// Unique factors with equal powers -- we've folded them into the first one's
// base.
Factors.erase(std::unique(Factors.begin(), Factors.end(),
[](const Factor &LHS, const Factor &RHS) {
return LHS.Power == RHS.Power;
}),
Factors.end());
// Iteratively collect the base of each factor with an add power into the
// outer product, and halve each power in preparation for squaring the
// expression.
for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
if (Factors[Idx].Power & 1)
OuterProduct.push_back(Factors[Idx].Base);
Factors[Idx].Power >>= 1;
}
if (Factors[0].Power) {
Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
OuterProduct.push_back(SquareRoot);
OuterProduct.push_back(SquareRoot);
}
if (OuterProduct.size() == 1)
return OuterProduct.front();
Value *V = buildMultiplyTree(Builder, OuterProduct);
return V;
}
Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
SmallVectorImpl<ValueEntry> &Ops) {
// We can only optimize the multiplies when there is a chain of more than
// three, such that a balanced tree might require fewer total multiplies.
if (Ops.size() < 4)
return nullptr;
// Try to turn linear trees of multiplies without other uses of the
// intermediate stages into minimal multiply DAGs with perfect sub-expression
// re-use.
SmallVector<Factor, 4> Factors;
if (!collectMultiplyFactors(Ops, Factors))
return nullptr; // All distinct factors, so nothing left for us to do.
IRBuilder<> Builder(I);
// The reassociate transformation for FP operations is performed only
// if unsafe algebra is permitted by FastMathFlags. Propagate those flags
// to the newly generated operations.
if (auto FPI = dyn_cast<FPMathOperator>(I))
Builder.setFastMathFlags(FPI->getFastMathFlags());
Value *V = buildMinimalMultiplyDAG(Builder, Factors);
if (Ops.empty())
return V;
ValueEntry NewEntry = ValueEntry(getRank(V), V);
Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
return nullptr;
}
Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
SmallVectorImpl<ValueEntry> &Ops) {
// Now that we have the linearized expression tree, try to optimize it.
// Start by folding any constants that we found.
Constant *Cst = nullptr;
unsigned Opcode = I->getOpcode();
while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
Constant *C = cast<Constant>(Ops.pop_back_val().Op);
Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
}
// If there was nothing but constants then we are done.
if (Ops.empty())
return Cst;
// Put the combined constant back at the end of the operand list, except if
// there is no point. For example, an add of 0 gets dropped here, while a
// multiplication by zero turns the whole expression into zero.
if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
return Cst;
Ops.push_back(ValueEntry(0, Cst));
}
if (Ops.size() == 1) return Ops[0].Op;
// Handle destructive annihilation due to identities between elements in the
// argument list here.
unsigned NumOps = Ops.size();
switch (Opcode) {
default: break;
case Instruction::And:
case Instruction::Or:
if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
return Result;
break;
case Instruction::Xor:
if (Value *Result = OptimizeXor(I, Ops))
return Result;
break;
case Instruction::Add:
case Instruction::FAdd:
if (Value *Result = OptimizeAdd(I, Ops))
return Result;
break;
case Instruction::Mul:
case Instruction::FMul:
if (Value *Result = OptimizeMul(I, Ops))
return Result;
break;
}
if (Ops.size() != NumOps)
return OptimizeExpression(I, Ops);
return nullptr;
}
// Remove dead instructions and if any operands are trivially dead add them to
// Insts so they will be removed as well.
void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
OrderedSet &Insts) {
assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
SmallVector<Value *, 4> Ops(I->operands());
ValueRankMap.erase(I);
Insts.remove(I);
RedoInsts.remove(I);
llvm::salvageDebugInfo(*I);
I->eraseFromParent();
for (auto Op : Ops)
if (Instruction *OpInst = dyn_cast<Instruction>(Op))
if (OpInst->use_empty())
Insts.insert(OpInst);
}
/// Zap the given instruction, adding interesting operands to the work list.
void ReassociatePass::EraseInst(Instruction *I) {
assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
SmallVector<Value *, 8> Ops(I->operands());
// Erase the dead instruction.
ValueRankMap.erase(I);
RedoInsts.remove(I);
llvm::salvageDebugInfo(*I);
I->eraseFromParent();
// Optimize its operands.
SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
// If this is a node in an expression tree, climb to the expression root
// and add that since that's where optimization actually happens.
unsigned Opcode = Op->getOpcode();
while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
Visited.insert(Op).second)
Op = Op->user_back();
// The instruction we're going to push may be coming from a
// dead block, and Reassociate skips the processing of unreachable
// blocks because it's a waste of time and also because it can
// lead to infinite loop due to LLVM's non-standard definition
// of dominance.
if (ValueRankMap.find(Op) != ValueRankMap.end())
RedoInsts.insert(Op);
}
MadeChange = true;
}
/// Recursively analyze an expression to build a list of instructions that have
/// negative floating-point constant operands. The caller can then transform
/// the list to create positive constants for better reassociation and CSE.
static void getNegatibleInsts(Value *V,
SmallVectorImpl<Instruction *> &Candidates) {
// Handle only one-use instructions. Combining negations does not justify
// replicating instructions.
Instruction *I;
if (!match(V, m_OneUse(m_Instruction(I))))
return;
// Handle expressions of multiplications and divisions.
// TODO: This could look through floating-point casts.
const APFloat *C;
switch (I->getOpcode()) {
case Instruction::FMul:
// Not expecting non-canonical code here. Bail out and wait.
if (match(I->getOperand(0), m_Constant()))
break;
if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
Candidates.push_back(I);
LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
}
getNegatibleInsts(I->getOperand(0), Candidates);
getNegatibleInsts(I->getOperand(1), Candidates);
break;
case Instruction::FDiv:
// Not expecting non-canonical code here. Bail out and wait.
if (match(I->getOperand(0), m_Constant()) &&
match(I->getOperand(1), m_Constant()))
break;
if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
(match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
Candidates.push_back(I);
LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
}
getNegatibleInsts(I->getOperand(0), Candidates);
getNegatibleInsts(I->getOperand(1), Candidates);
break;
default:
break;
}
}
/// Given an fadd/fsub with an operand that is a one-use instruction
/// (the fadd/fsub), try to change negative floating-point constants into
/// positive constants to increase potential for reassociation and CSE.
Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
Instruction *Op,
Value *OtherOp) {
assert((I->getOpcode() == Instruction::FAdd ||
I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
// Collect instructions with negative FP constants from the subtree that ends
// in Op.
SmallVector<Instruction *, 4> Candidates;
getNegatibleInsts(Op, Candidates);
if (Candidates.empty())
return nullptr;
// Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
// resulting subtract will be broken up later. This can get us into an
// infinite loop during reassociation.
bool IsFSub = I->getOpcode() == Instruction::FSub;
bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
if (NeedsSubtract && ShouldBreakUpSubtract(I))
return nullptr;
for (Instruction *Negatible : Candidates) {
const APFloat *C;
if (match(Negatible->getOperand(0), m_APFloat(C))) {
assert(!match(Negatible->getOperand(1), m_Constant()) &&
"Expecting only 1 constant operand");
assert(C->isNegative() && "Expected negative FP constant");
Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
MadeChange = true;
}
if (match(Negatible->getOperand(1), m_APFloat(C))) {
assert(!match(Negatible->getOperand(0), m_Constant()) &&
"Expecting only 1 constant operand");
assert(C->isNegative() && "Expected negative FP constant");
Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
MadeChange = true;
}
}
assert(MadeChange == true && "Negative constant candidate was not changed");
// Negations cancelled out.
if (Candidates.size() % 2 == 0)
return I;
// Negate the final operand in the expression by flipping the opcode of this
// fadd/fsub.
assert(Candidates.size() % 2 == 1 && "Expected odd number");
IRBuilder<> Builder(I);
Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
: Builder.CreateFSubFMF(OtherOp, Op, I);
I->replaceAllUsesWith(NewInst);
RedoInsts.insert(I);
return dyn_cast<Instruction>(NewInst);
}
/// Canonicalize expressions that contain a negative floating-point constant
/// of the following form:
/// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
/// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
/// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
///
/// The fadd/fsub opcode may be switched to allow folding a negation into the
/// input instruction.
Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
Value *X;
Instruction *Op;
if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
I = R;
if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
I = R;
if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
I = R;
return I;
}
/// Inspect and optimize the given instruction. Note that erasing
/// instructions is not allowed.
void ReassociatePass::OptimizeInst(Instruction *I) {
// Only consider operations that we understand.
if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
return;
if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
// If an operand of this shift is a reassociable multiply, or if the shift
// is used by a reassociable multiply or add, turn into a multiply.
if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
(I->hasOneUse() &&
(isReassociableOp(I->user_back(), Instruction::Mul) ||
isReassociableOp(I->user_back(), Instruction::Add)))) {
Instruction *NI = ConvertShiftToMul(I);
RedoInsts.insert(I);
MadeChange = true;
I = NI;
}
// Commute binary operators, to canonicalize the order of their operands.
// This can potentially expose more CSE opportunities, and makes writing other
// transformations simpler.
if (I->isCommutative())
canonicalizeOperands(I);
// Canonicalize negative constants out of expressions.
if (Instruction *Res = canonicalizeNegFPConstants(I))
I = Res;
// Don't optimize floating-point instructions unless they are 'fast'.
if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
return;
// Do not reassociate boolean (i1) expressions. We want to preserve the
// original order of evaluation for short-circuited comparisons that
// SimplifyCFG has folded to AND/OR expressions. If the expression
// is not further optimized, it is likely to be transformed back to a
// short-circuited form for code gen, and the source order may have been
// optimized for the most likely conditions.
if (I->getType()->isIntegerTy(1))
return;
// If this is a bitwise or instruction of operands
// with no common bits set, convert it to X+Y.
if (I->getOpcode() == Instruction::Or &&
shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) &&
haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
I->getModule()->getDataLayout(), /*AC=*/nullptr, I,
/*DT=*/nullptr)) {
Instruction *NI = convertOrWithNoCommonBitsToAdd(I);
RedoInsts.insert(I);
MadeChange = true;
I = NI;
}
// If this is a subtract instruction which is not already in negate form,
// see if we can convert it to X+-Y.
if (I->getOpcode() == Instruction::Sub) {
if (ShouldBreakUpSubtract(I)) {
Instruction *NI = BreakUpSubtract(I, RedoInsts);
RedoInsts.insert(I);
MadeChange = true;
I = NI;
} else if (match(I, m_Neg(m_Value()))) {
// Otherwise, this is a negation. See if the operand is a multiply tree
// and if this is not an inner node of a multiply tree.
if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
(!I->hasOneUse() ||
!isReassociableOp(I->user_back(), Instruction::Mul))) {
Instruction *NI = LowerNegateToMultiply(I);
// If the negate was simplified, revisit the users to see if we can
// reassociate further.
for (User *U : NI->users()) {
if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
RedoInsts.insert(Tmp);
}
RedoInsts.insert(I);
MadeChange = true;
I = NI;
}
}
} else if (I->getOpcode() == Instruction::FNeg ||
I->getOpcode() == Instruction::FSub) {
if (ShouldBreakUpSubtract(I)) {
Instruction *NI = BreakUpSubtract(I, RedoInsts);
RedoInsts.insert(I);
MadeChange = true;
I = NI;
} else if (match(I, m_FNeg(m_Value()))) {
// Otherwise, this is a negation. See if the operand is a multiply tree
// and if this is not an inner node of a multiply tree.
Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
I->getOperand(0);
if (isReassociableOp(Op, Instruction::FMul) &&
(!I->hasOneUse() ||
!isReassociableOp(I->user_back(), Instruction::FMul))) {
// If the negate was simplified, revisit the users to see if we can
// reassociate further.
Instruction *NI = LowerNegateToMultiply(I);
for (User *U : NI->users()) {
if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
RedoInsts.insert(Tmp);
}
RedoInsts.insert(I);
MadeChange = true;
I = NI;
}
}
}
// If this instruction is an associative binary operator, process it.
if (!I->isAssociative()) return;
BinaryOperator *BO = cast<BinaryOperator>(I);
// If this is an interior node of a reassociable tree, ignore it until we
// get to the root of the tree, to avoid N^2 analysis.
unsigned Opcode = BO->getOpcode();
if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
// During the initial run we will get to the root of the tree.
// But if we get here while we are redoing instructions, there is no
// guarantee that the root will be visited. So Redo later
if (BO->user_back() != BO &&
BO->getParent() == BO->user_back()->getParent())
RedoInsts.insert(BO->user_back());
return;
}
// If this is an add tree that is used by a sub instruction, ignore it
// until we process the subtract.
if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
return;
if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
return;
ReassociateExpression(BO);
}
void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
// First, walk the expression tree, linearizing the tree, collecting the
// operand information.
SmallVector<RepeatedValue, 8> Tree;
MadeChange |= LinearizeExprTree(I, Tree);
SmallVector<ValueEntry, 8> Ops;
Ops.reserve(Tree.size());
for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
RepeatedValue E = Tree[i];
Ops.append(E.second.getZExtValue(),
ValueEntry(getRank(E.first), E.first));
}
LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
// Now that we have linearized the tree to a list and have gathered all of
// the operands and their ranks, sort the operands by their rank. Use a
// stable_sort so that values with equal ranks will have their relative
// positions maintained (and so the compiler is deterministic). Note that
// this sorts so that the highest ranking values end up at the beginning of
// the vector.
llvm::stable_sort(Ops);
// Now that we have the expression tree in a convenient
// sorted form, optimize it globally if possible.
if (Value *V = OptimizeExpression(I, Ops)) {
if (V == I)
// Self-referential expression in unreachable code.
return;
// This expression tree simplified to something that isn't a tree,
// eliminate it.
LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
I->replaceAllUsesWith(V);
if (Instruction *VI = dyn_cast<Instruction>(V))
if (I->getDebugLoc())
VI->setDebugLoc(I->getDebugLoc());
RedoInsts.insert(I);
++NumAnnihil;
return;
}
// We want to sink immediates as deeply as possible except in the case where
// this is a multiply tree used only by an add, and the immediate is a -1.
// In this case we reassociate to put the negation on the outside so that we
// can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
if (I->hasOneUse()) {
if (I->getOpcode() == Instruction::Mul &&
cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
isa<ConstantInt>(Ops.back().Op) &&
cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
ValueEntry Tmp = Ops.pop_back_val();
Ops.insert(Ops.begin(), Tmp);
} else if (I->getOpcode() == Instruction::FMul &&
cast<Instruction>(I->user_back())->getOpcode() ==
Instruction::FAdd &&
isa<ConstantFP>(Ops.back().Op) &&
cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
ValueEntry Tmp = Ops.pop_back_val();
Ops.insert(Ops.begin(), Tmp);
}
}
LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
if (Ops.size() == 1) {
if (Ops[0].Op == I)
// Self-referential expression in unreachable code.
return;
// This expression tree simplified to something that isn't a tree,
// eliminate it.
I->replaceAllUsesWith(Ops[0].Op);
if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
OI->setDebugLoc(I->getDebugLoc());
RedoInsts.insert(I);
return;
}
if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
// Find the pair with the highest count in the pairmap and move it to the
// back of the list so that it can later be CSE'd.
// example:
// a*b*c*d*e
// if c*e is the most "popular" pair, we can express this as
// (((c*e)*d)*b)*a
unsigned Max = 1;
unsigned BestRank = 0;
std::pair<unsigned, unsigned> BestPair;
unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
for (unsigned i = 0; i < Ops.size() - 1; ++i)
for (unsigned j = i + 1; j < Ops.size(); ++j) {
unsigned Score = 0;
Value *Op0 = Ops[i].Op;
Value *Op1 = Ops[j].Op;
if (std::less<Value *>()(Op1, Op0))
std::swap(Op0, Op1);
auto it = PairMap[Idx].find({Op0, Op1});
if (it != PairMap[Idx].end()) {
// Functions like BreakUpSubtract() can erase the Values we're using
// as keys and create new Values after we built the PairMap. There's a
// small chance that the new nodes can have the same address as
// something already in the table. We shouldn't accumulate the stored
// score in that case as it refers to the wrong Value.
if (it->second.isValid())
Score += it->second.Score;
}
unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
if (Score > Max || (Score == Max && MaxRank < BestRank)) {
BestPair = {i, j};
Max = Score;
BestRank = MaxRank;
}
}