blob: 53ef9fa25e826660961ed2e498e9639bc23d2bc9 [file] [log] [blame]
//===- llvm/unittest/Support/ParallelTest.cpp -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Parallel.h unit tests.
///
//===----------------------------------------------------------------------===//
#include "llvm/Support/Parallel.h"
#include "llvm/Support/ThreadPool.h"
#include "gtest/gtest.h"
#include <array>
#include <random>
uint32_t array[1024 * 1024];
using namespace llvm;
// Tests below are hanging up on mingw. Investigating.
#if !defined(__MINGW32__)
TEST(Parallel, sort) {
std::mt19937 randEngine;
std::uniform_int_distribution<uint32_t> dist;
for (auto &i : array)
i = dist(randEngine);
parallelSort(std::begin(array), std::end(array));
ASSERT_TRUE(llvm::is_sorted(array));
}
TEST(Parallel, parallel_for) {
// We need to test the case with a TaskSize > 1. We are white-box testing
// here. The TaskSize is calculated as (End - Begin) / 1024 at the time of
// writing.
uint32_t range[2050];
std::fill(range, range + 2050, 1);
parallelFor(0, 2049, [&range](size_t I) { ++range[I]; });
uint32_t expected[2049];
std::fill(expected, expected + 2049, 2);
ASSERT_TRUE(std::equal(range, range + 2049, expected));
// Check that we don't write past the end of the requested range.
ASSERT_EQ(range[2049], 1u);
}
TEST(Parallel, TransformReduce) {
// Sum an empty list, check that it works.
auto identity = [](uint32_t v) { return v; };
uint32_t sum = parallelTransformReduce(ArrayRef<uint32_t>(), 0U,
std::plus<uint32_t>(), identity);
EXPECT_EQ(sum, 0U);
// Sum the lengths of these strings in parallel.
const char *strs[] = {"a", "ab", "abc", "abcd", "abcde", "abcdef"};
size_t lenSum =
parallelTransformReduce(strs, static_cast<size_t>(0), std::plus<size_t>(),
[](const char *s) { return strlen(s); });
EXPECT_EQ(lenSum, static_cast<size_t>(21));
// Check that we handle non-divisible task sizes as above.
uint32_t range[2050];
std::fill(std::begin(range), std::end(range), 1);
sum = parallelTransformReduce(range, 0U, std::plus<uint32_t>(), identity);
EXPECT_EQ(sum, 2050U);
std::fill(std::begin(range), std::end(range), 2);
sum = parallelTransformReduce(range, 0U, std::plus<uint32_t>(), identity);
EXPECT_EQ(sum, 4100U);
// Avoid one large task.
uint32_t range2[3060];
std::fill(std::begin(range2), std::end(range2), 1);
sum = parallelTransformReduce(range2, 0U, std::plus<uint32_t>(), identity);
EXPECT_EQ(sum, 3060U);
}
TEST(Parallel, ForEachError) {
int nums[] = {1, 2, 3, 4, 5, 6};
Error e = parallelForEachError(nums, [](int v) -> Error {
if ((v & 1) == 0)
return createStringError(std::errc::invalid_argument, "asdf");
return Error::success();
});
EXPECT_TRUE(e.isA<ErrorList>());
std::string errText = toString(std::move(e));
EXPECT_EQ(errText, std::string("asdf\nasdf\nasdf"));
}
TEST(Parallel, TaskGroupSequentialFor) {
size_t Count = 0;
{
parallel::TaskGroup tg;
for (size_t Idx = 0; Idx < 500; Idx++)
tg.spawn([&Count, Idx]() { EXPECT_EQ(Count++, Idx); }, true);
}
EXPECT_EQ(Count, 500ul);
}
#if LLVM_ENABLE_THREADS
TEST(Parallel, NestedTaskGroup) {
// This test checks:
// 1. Root TaskGroup is in Parallel mode.
// 2. Nested TaskGroup is not in Parallel mode.
parallel::TaskGroup tg;
tg.spawn([&]() {
EXPECT_TRUE(tg.isParallel() || (parallel::strategy.ThreadsRequested == 1));
});
tg.spawn([&]() {
parallel::TaskGroup nestedTG;
EXPECT_FALSE(nestedTG.isParallel());
nestedTG.spawn([&]() {
// Check that root TaskGroup is in Parallel mode.
EXPECT_TRUE(tg.isParallel() ||
(parallel::strategy.ThreadsRequested == 1));
// Check that nested TaskGroup is not in Parallel mode.
EXPECT_FALSE(nestedTG.isParallel());
});
});
}
TEST(Parallel, ParallelNestedTaskGroup) {
// This test checks that it is possible to have several TaskGroups
// run from different threads in Parallel mode.
std::atomic<size_t> Count{0};
{
std::function<void()> Fn = [&]() {
parallel::TaskGroup tg;
tg.spawn([&]() {
// Check that root TaskGroup is in Parallel mode.
EXPECT_TRUE(tg.isParallel() ||
(parallel::strategy.ThreadsRequested == 1));
// Check that nested TaskGroup is not in Parallel mode.
parallel::TaskGroup nestedTG;
EXPECT_FALSE(nestedTG.isParallel());
++Count;
nestedTG.spawn([&]() {
// Check that root TaskGroup is in Parallel mode.
EXPECT_TRUE(tg.isParallel() ||
(parallel::strategy.ThreadsRequested == 1));
// Check that nested TaskGroup is not in Parallel mode.
EXPECT_FALSE(nestedTG.isParallel());
++Count;
});
});
};
ThreadPool Pool;
Pool.async(Fn);
Pool.async(Fn);
Pool.async(Fn);
Pool.async(Fn);
Pool.async(Fn);
Pool.async(Fn);
Pool.wait();
}
EXPECT_EQ(Count, 12ul);
}
#endif
#endif