blob: 2377ce3b78261e6436f4c11546e0b11d37767118 [file] [log] [blame]
//===- llvm/unittests/ADT/BitTest.cpp - <bit> tests ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/bit.h"
#include "gtest/gtest.h"
#include <cstdint>
#include <cstdlib>
using namespace llvm;
namespace {
TEST(BitTest, BitCast) {
static const uint8_t kValueU8 = 0x80;
EXPECT_TRUE(llvm::bit_cast<int8_t>(kValueU8) < 0);
static const uint16_t kValueU16 = 0x8000;
EXPECT_TRUE(llvm::bit_cast<int16_t>(kValueU16) < 0);
static const float kValueF32 = 5632.34f;
EXPECT_FLOAT_EQ(kValueF32,
llvm::bit_cast<float>(llvm::bit_cast<uint32_t>(kValueF32)));
static const double kValueF64 = 87987234.983498;
EXPECT_DOUBLE_EQ(kValueF64,
llvm::bit_cast<double>(llvm::bit_cast<uint64_t>(kValueF64)));
}
// In these first two tests all of the original_uintx values are truncated
// except for 64. We could avoid this, but there's really no point.
TEST(BitTest, ByteSwapUnsignedRoundTrip) {
// The point of the bit twiddling of magic is to test with and without bits
// in every byte.
uint64_t value = 1;
for (std::size_t i = 0; i <= sizeof(value); ++i) {
uint8_t original_uint8 = static_cast<uint8_t>(value);
EXPECT_EQ(original_uint8, llvm::byteswap(llvm::byteswap(original_uint8)));
uint16_t original_uint16 = static_cast<uint16_t>(value);
EXPECT_EQ(original_uint16, llvm::byteswap(llvm::byteswap(original_uint16)));
uint32_t original_uint32 = static_cast<uint32_t>(value);
EXPECT_EQ(original_uint32, llvm::byteswap(llvm::byteswap(original_uint32)));
uint64_t original_uint64 = static_cast<uint64_t>(value);
EXPECT_EQ(original_uint64, llvm::byteswap(llvm::byteswap(original_uint64)));
value = (value << 8) | 0x55; // binary 0101 0101.
}
}
TEST(BitTest, ByteSwapSignedRoundTrip) {
// The point of the bit twiddling of magic is to test with and without bits
// in every byte.
uint64_t value = 1;
for (std::size_t i = 0; i <= sizeof(value); ++i) {
int8_t original_int8 = static_cast<int8_t>(value);
EXPECT_EQ(original_int8, llvm::byteswap(llvm::byteswap(original_int8)));
int16_t original_int16 = static_cast<int16_t>(value);
EXPECT_EQ(original_int16, llvm::byteswap(llvm::byteswap(original_int16)));
int32_t original_int32 = static_cast<int32_t>(value);
EXPECT_EQ(original_int32, llvm::byteswap(llvm::byteswap(original_int32)));
int64_t original_int64 = static_cast<int64_t>(value);
EXPECT_EQ(original_int64, llvm::byteswap(llvm::byteswap(original_int64)));
// Test other sign.
value *= -1;
original_int8 = static_cast<int8_t>(value);
EXPECT_EQ(original_int8, llvm::byteswap(llvm::byteswap(original_int8)));
original_int16 = static_cast<int16_t>(value);
EXPECT_EQ(original_int16, llvm::byteswap(llvm::byteswap(original_int16)));
original_int32 = static_cast<int32_t>(value);
EXPECT_EQ(original_int32, llvm::byteswap(llvm::byteswap(original_int32)));
original_int64 = static_cast<int64_t>(value);
EXPECT_EQ(original_int64, llvm::byteswap(llvm::byteswap(original_int64)));
// Return to normal sign and twiddle.
value *= -1;
value = (value << 8) | 0x55; // binary 0101 0101.
}
}
TEST(BitTest, ByteSwap) {
// Unsigned types.
EXPECT_EQ(uint8_t(0x11), llvm::byteswap(uint8_t(0x11)));
EXPECT_EQ(uint16_t(0x1122), llvm::byteswap(uint16_t(0x2211)));
EXPECT_EQ(uint32_t(0x11223344), llvm::byteswap(uint32_t(0x44332211)));
EXPECT_EQ(uint64_t(0x1122334455667788ULL),
llvm::byteswap(uint64_t(0x8877665544332211ULL)));
// Signed types.
EXPECT_EQ(int8_t(0x11), llvm::byteswap(int8_t(0x11)));
EXPECT_EQ(int16_t(0x1122), llvm::byteswap(int16_t(0x2211)));
EXPECT_EQ(int32_t(0x11223344), llvm::byteswap(int32_t(0x44332211)));
EXPECT_EQ(int64_t(0x1122334455667788LL),
llvm::byteswap(int64_t(0x8877665544332211LL)));
}
TEST(BitTest, HasSingleBit) {
EXPECT_FALSE(llvm::has_single_bit(0U));
EXPECT_FALSE(llvm::has_single_bit(0ULL));
EXPECT_FALSE(llvm::has_single_bit(~0U));
EXPECT_FALSE(llvm::has_single_bit(~0ULL));
EXPECT_TRUE(llvm::has_single_bit(1U));
EXPECT_TRUE(llvm::has_single_bit(1ULL));
static const int8_t kValueS8 = -128;
EXPECT_TRUE(llvm::has_single_bit(static_cast<uint8_t>(kValueS8)));
static const int16_t kValueS16 = -32768;
EXPECT_TRUE(llvm::has_single_bit(static_cast<uint16_t>(kValueS16)));
}
TEST(BitTest, BitFloor) {
EXPECT_EQ(0u, llvm::bit_floor(uint8_t(0)));
EXPECT_EQ(0u, llvm::bit_floor(uint16_t(0)));
EXPECT_EQ(0u, llvm::bit_floor(uint32_t(0)));
EXPECT_EQ(0u, llvm::bit_floor(uint64_t(0)));
EXPECT_EQ(1u, llvm::bit_floor(uint8_t(1)));
EXPECT_EQ(1u, llvm::bit_floor(uint16_t(1)));
EXPECT_EQ(1u, llvm::bit_floor(uint32_t(1)));
EXPECT_EQ(1u, llvm::bit_floor(uint64_t(1)));
EXPECT_EQ(2u, llvm::bit_floor(uint8_t(2)));
EXPECT_EQ(2u, llvm::bit_floor(uint16_t(2)));
EXPECT_EQ(2u, llvm::bit_floor(uint32_t(2)));
EXPECT_EQ(2u, llvm::bit_floor(uint64_t(2)));
EXPECT_EQ(2u, llvm::bit_floor(uint8_t(3)));
EXPECT_EQ(2u, llvm::bit_floor(uint16_t(3)));
EXPECT_EQ(2u, llvm::bit_floor(uint32_t(3)));
EXPECT_EQ(2u, llvm::bit_floor(uint64_t(3)));
EXPECT_EQ(4u, llvm::bit_floor(uint8_t(4)));
EXPECT_EQ(4u, llvm::bit_floor(uint16_t(4)));
EXPECT_EQ(4u, llvm::bit_floor(uint32_t(4)));
EXPECT_EQ(4u, llvm::bit_floor(uint64_t(4)));
EXPECT_EQ(0x40u, llvm::bit_floor(uint8_t(0x7f)));
EXPECT_EQ(0x4000u, llvm::bit_floor(uint16_t(0x7fff)));
EXPECT_EQ(0x40000000u, llvm::bit_floor(uint32_t(0x7fffffffu)));
EXPECT_EQ(0x4000000000000000ull,
llvm::bit_floor(uint64_t(0x7fffffffffffffffull)));
EXPECT_EQ(0x80u, llvm::bit_floor(uint8_t(0x80)));
EXPECT_EQ(0x8000u, llvm::bit_floor(uint16_t(0x8000)));
EXPECT_EQ(0x80000000u, llvm::bit_floor(uint32_t(0x80000000u)));
EXPECT_EQ(0x8000000000000000ull,
llvm::bit_floor(uint64_t(0x8000000000000000ull)));
EXPECT_EQ(0x80u, llvm::bit_floor(uint8_t(0xff)));
EXPECT_EQ(0x8000u, llvm::bit_floor(uint16_t(0xffff)));
EXPECT_EQ(0x80000000u, llvm::bit_floor(uint32_t(0xffffffffu)));
EXPECT_EQ(0x8000000000000000ull,
llvm::bit_floor(uint64_t(0xffffffffffffffffull)));
}
TEST(BitTest, BitCeil) {
EXPECT_EQ(1u, llvm::bit_ceil(uint8_t(0)));
EXPECT_EQ(1u, llvm::bit_ceil(uint16_t(0)));
EXPECT_EQ(1u, llvm::bit_ceil(uint32_t(0)));
EXPECT_EQ(1u, llvm::bit_ceil(uint64_t(0)));
EXPECT_EQ(1u, llvm::bit_ceil(uint8_t(1)));
EXPECT_EQ(1u, llvm::bit_ceil(uint16_t(1)));
EXPECT_EQ(1u, llvm::bit_ceil(uint32_t(1)));
EXPECT_EQ(1u, llvm::bit_ceil(uint64_t(1)));
EXPECT_EQ(2u, llvm::bit_ceil(uint8_t(2)));
EXPECT_EQ(2u, llvm::bit_ceil(uint16_t(2)));
EXPECT_EQ(2u, llvm::bit_ceil(uint32_t(2)));
EXPECT_EQ(2u, llvm::bit_ceil(uint64_t(2)));
EXPECT_EQ(4u, llvm::bit_ceil(uint8_t(3)));
EXPECT_EQ(4u, llvm::bit_ceil(uint16_t(3)));
EXPECT_EQ(4u, llvm::bit_ceil(uint32_t(3)));
EXPECT_EQ(4u, llvm::bit_ceil(uint64_t(3)));
EXPECT_EQ(4u, llvm::bit_ceil(uint8_t(4)));
EXPECT_EQ(4u, llvm::bit_ceil(uint16_t(4)));
EXPECT_EQ(4u, llvm::bit_ceil(uint32_t(4)));
EXPECT_EQ(4u, llvm::bit_ceil(uint64_t(4)));
// The result is the largest representable value for each type.
EXPECT_EQ(0x80u, llvm::bit_ceil(uint8_t(0x7f)));
EXPECT_EQ(0x8000u, llvm::bit_ceil(uint16_t(0x7fff)));
EXPECT_EQ(0x80000000u, llvm::bit_ceil(uint32_t(0x7fffffffu)));
EXPECT_EQ(0x8000000000000000ull,
llvm::bit_ceil(uint64_t(0x7fffffffffffffffull)));
}
TEST(BitTest, BitWidth) {
EXPECT_EQ(0, llvm::bit_width(uint8_t(0)));
EXPECT_EQ(0, llvm::bit_width(uint16_t(0)));
EXPECT_EQ(0, llvm::bit_width(uint32_t(0)));
EXPECT_EQ(0, llvm::bit_width(uint64_t(0)));
EXPECT_EQ(1, llvm::bit_width(uint8_t(1)));
EXPECT_EQ(1, llvm::bit_width(uint16_t(1)));
EXPECT_EQ(1, llvm::bit_width(uint32_t(1)));
EXPECT_EQ(1, llvm::bit_width(uint64_t(1)));
EXPECT_EQ(2, llvm::bit_width(uint8_t(2)));
EXPECT_EQ(2, llvm::bit_width(uint16_t(2)));
EXPECT_EQ(2, llvm::bit_width(uint32_t(2)));
EXPECT_EQ(2, llvm::bit_width(uint64_t(2)));
EXPECT_EQ(2, llvm::bit_width(uint8_t(3)));
EXPECT_EQ(2, llvm::bit_width(uint16_t(3)));
EXPECT_EQ(2, llvm::bit_width(uint32_t(3)));
EXPECT_EQ(2, llvm::bit_width(uint64_t(3)));
EXPECT_EQ(3, llvm::bit_width(uint8_t(4)));
EXPECT_EQ(3, llvm::bit_width(uint16_t(4)));
EXPECT_EQ(3, llvm::bit_width(uint32_t(4)));
EXPECT_EQ(3, llvm::bit_width(uint64_t(4)));
EXPECT_EQ(7, llvm::bit_width(uint8_t(0x7f)));
EXPECT_EQ(15, llvm::bit_width(uint16_t(0x7fff)));
EXPECT_EQ(31, llvm::bit_width(uint32_t(0x7fffffffu)));
EXPECT_EQ(63, llvm::bit_width(uint64_t(0x7fffffffffffffffull)));
EXPECT_EQ(8, llvm::bit_width(uint8_t(0x80)));
EXPECT_EQ(16, llvm::bit_width(uint16_t(0x8000)));
EXPECT_EQ(32, llvm::bit_width(uint32_t(0x80000000u)));
EXPECT_EQ(64, llvm::bit_width(uint64_t(0x8000000000000000ull)));
EXPECT_EQ(8, llvm::bit_width(uint8_t(0xff)));
EXPECT_EQ(16, llvm::bit_width(uint16_t(0xffff)));
EXPECT_EQ(32, llvm::bit_width(uint32_t(0xffffffffu)));
EXPECT_EQ(64, llvm::bit_width(uint64_t(0xffffffffffffffffull)));
}
TEST(BitTest, CountlZero) {
uint8_t Z8 = 0;
uint16_t Z16 = 0;
uint32_t Z32 = 0;
uint64_t Z64 = 0;
EXPECT_EQ(8, llvm::countl_zero(Z8));
EXPECT_EQ(16, llvm::countl_zero(Z16));
EXPECT_EQ(32, llvm::countl_zero(Z32));
EXPECT_EQ(64, llvm::countl_zero(Z64));
uint8_t NZ8 = 42;
uint16_t NZ16 = 42;
uint32_t NZ32 = 42;
uint64_t NZ64 = 42;
EXPECT_EQ(2, llvm::countl_zero(NZ8));
EXPECT_EQ(10, llvm::countl_zero(NZ16));
EXPECT_EQ(26, llvm::countl_zero(NZ32));
EXPECT_EQ(58, llvm::countl_zero(NZ64));
EXPECT_EQ(8, llvm::countl_zero(0x00F000FFu));
EXPECT_EQ(8, llvm::countl_zero(0x00F12345u));
for (unsigned i = 0; i <= 30; ++i) {
EXPECT_EQ(int(31 - i), llvm::countl_zero(1u << i));
}
EXPECT_EQ(8, llvm::countl_zero(0x00F1234500F12345ULL));
EXPECT_EQ(1, llvm::countl_zero(1ULL << 62));
for (unsigned i = 0; i <= 62; ++i) {
EXPECT_EQ(int(63 - i), llvm::countl_zero(1ULL << i));
}
}
TEST(BitTest, CountrZero) {
uint8_t Z8 = 0;
uint16_t Z16 = 0;
uint32_t Z32 = 0;
uint64_t Z64 = 0;
EXPECT_EQ(8, llvm::countr_zero(Z8));
EXPECT_EQ(16, llvm::countr_zero(Z16));
EXPECT_EQ(32, llvm::countr_zero(Z32));
EXPECT_EQ(64, llvm::countr_zero(Z64));
uint8_t NZ8 = 42;
uint16_t NZ16 = 42;
uint32_t NZ32 = 42;
uint64_t NZ64 = 42;
EXPECT_EQ(1, llvm::countr_zero(NZ8));
EXPECT_EQ(1, llvm::countr_zero(NZ16));
EXPECT_EQ(1, llvm::countr_zero(NZ32));
EXPECT_EQ(1, llvm::countr_zero(NZ64));
}
TEST(BitTest, CountlOne) {
for (int i = 30; i >= 0; --i) {
// Start with all ones and unset some bit.
EXPECT_EQ(31 - i, llvm::countl_one(0xFFFFFFFF ^ (1 << i)));
}
for (int i = 62; i >= 0; --i) {
// Start with all ones and unset some bit.
EXPECT_EQ(63 - i, llvm::countl_one(0xFFFFFFFFFFFFFFFFULL ^ (1LL << i)));
}
for (int i = 30; i >= 0; --i) {
// Start with all ones and unset some bit.
EXPECT_EQ(31 - i, llvm::countl_one(0xFFFFFFFF ^ (1 << i)));
}
}
TEST(BitTest, CountrOne) {
uint8_t AllOnes8 = ~(uint8_t)0;
uint16_t AllOnes16 = ~(uint16_t)0;
uint32_t AllOnes32 = ~(uint32_t)0;
uint64_t AllOnes64 = ~(uint64_t)0;
EXPECT_EQ(8, llvm::countr_one(AllOnes8));
EXPECT_EQ(16, llvm::countr_one(AllOnes16));
EXPECT_EQ(32, llvm::countr_one(AllOnes32));
EXPECT_EQ(64, llvm::countr_one(AllOnes64));
uint8_t X8 = 6;
uint16_t X16 = 6;
uint32_t X32 = 6;
uint64_t X64 = 6;
EXPECT_EQ(0, llvm::countr_one(X8));
EXPECT_EQ(0, llvm::countr_one(X16));
EXPECT_EQ(0, llvm::countr_one(X32));
EXPECT_EQ(0, llvm::countr_one(X64));
uint8_t Y8 = 23;
uint16_t Y16 = 23;
uint32_t Y32 = 23;
uint64_t Y64 = 23;
EXPECT_EQ(3, llvm::countr_one(Y8));
EXPECT_EQ(3, llvm::countr_one(Y16));
EXPECT_EQ(3, llvm::countr_one(Y32));
EXPECT_EQ(3, llvm::countr_one(Y64));
}
TEST(BitTest, PopCount) {
EXPECT_EQ(0, llvm::popcount(0U));
EXPECT_EQ(0, llvm::popcount(0ULL));
EXPECT_EQ(32, llvm::popcount(~0U));
EXPECT_EQ(64, llvm::popcount(~0ULL));
for (int I = 0; I != 32; ++I)
EXPECT_EQ(1, llvm::popcount(1U << I));
}
TEST(BitTest, Rotl) {
EXPECT_EQ(0x53U, llvm::rotl<uint8_t>(0x53, 0));
EXPECT_EQ(0x4dU, llvm::rotl<uint8_t>(0x53, 2));
EXPECT_EQ(0xa6U, llvm::rotl<uint8_t>(0x53, 9));
EXPECT_EQ(0x9aU, llvm::rotl<uint8_t>(0x53, -5));
EXPECT_EQ(0xabcdU, llvm::rotl<uint16_t>(0xabcd, 0));
EXPECT_EQ(0xf36aU, llvm::rotl<uint16_t>(0xabcd, 6));
EXPECT_EQ(0xaf36U, llvm::rotl<uint16_t>(0xabcd, 18));
EXPECT_EQ(0xf36aU, llvm::rotl<uint16_t>(0xabcd, -10));
EXPECT_EQ(0xdeadbeefU, llvm::rotl<uint32_t>(0xdeadbeef, 0));
EXPECT_EQ(0x7ddfbd5bU, llvm::rotl<uint32_t>(0xdeadbeef, 17));
EXPECT_EQ(0x5b7ddfbdU, llvm::rotl<uint32_t>(0xdeadbeef, 41));
EXPECT_EQ(0xb6fbbf7aU, llvm::rotl<uint32_t>(0xdeadbeef, -22));
EXPECT_EQ(0x12345678deadbeefULL, llvm::rotl<uint64_t>(0x12345678deadbeefULL, 0));
EXPECT_EQ(0xf56df77891a2b3c6ULL, llvm::rotl<uint64_t>(0x12345678deadbeefULL, 35));
EXPECT_EQ(0x8d159e37ab6fbbc4ULL, llvm::rotl<uint64_t>(0x12345678deadbeefULL, 70));
EXPECT_EQ(0xb7dde2468acf1bd5ULL, llvm::rotl<uint64_t>(0x12345678deadbeefULL, -19));
}
TEST(BitTest, Rotr) {
EXPECT_EQ(0x53U, llvm::rotr<uint8_t>(0x53, 0));
EXPECT_EQ(0xd4U, llvm::rotr<uint8_t>(0x53, 2));
EXPECT_EQ(0xa9U, llvm::rotr<uint8_t>(0x53, 9));
EXPECT_EQ(0x6aU, llvm::rotr<uint8_t>(0x53, -5));
EXPECT_EQ(0xabcdU, llvm::rotr<uint16_t>(0xabcd, 0));
EXPECT_EQ(0x36afU, llvm::rotr<uint16_t>(0xabcd, 6));
EXPECT_EQ(0x6af3U, llvm::rotr<uint16_t>(0xabcd, 18));
EXPECT_EQ(0x36afU, llvm::rotr<uint16_t>(0xabcd, -10));
EXPECT_EQ(0xdeadbeefU, llvm::rotr<uint32_t>(0xdeadbeef, 0));
EXPECT_EQ(0xdf77ef56U, llvm::rotr<uint32_t>(0xdeadbeef, 17));
EXPECT_EQ(0x77ef56dfU, llvm::rotr<uint32_t>(0xdeadbeef, 41));
EXPECT_EQ(0xbbf7ab6fU, llvm::rotr<uint32_t>(0xdeadbeef, -22));
EXPECT_EQ(0x12345678deadbeefULL, llvm::rotr<uint64_t>(0x12345678deadbeefULL, 0));
EXPECT_EQ(0x1bd5b7dde2468acfULL, llvm::rotr<uint64_t>(0x12345678deadbeefULL, 35));
EXPECT_EQ(0xbc48d159e37ab6fbULL, llvm::rotr<uint64_t>(0x12345678deadbeefULL, 70));
EXPECT_EQ(0xb3c6f56df77891a2ULL, llvm::rotr<uint64_t>(0x12345678deadbeefULL, -19));
}
} // anonymous namespace