blob: 2827eb705ac58c7aa50624c6920fb7513658b102 [file] [log] [blame]
//===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help determine which pointers are captured.
// A pointer value is captured if the function makes a copy of any part of the
// pointer that outlives the call. Not being captured means, more or less, that
// the pointer is only dereferenced and not stored in a global. Returning part
// of the pointer as the function return value may or may not count as capturing
// the pointer, depending on the context.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
#define DEBUG_TYPE "capture-tracking"
STATISTIC(NumCaptured, "Number of pointers maybe captured");
STATISTIC(NumNotCaptured, "Number of pointers not captured");
STATISTIC(NumCapturedBefore, "Number of pointers maybe captured before");
STATISTIC(NumNotCapturedBefore, "Number of pointers not captured before");
/// The default value for MaxUsesToExplore argument. It's relatively small to
/// keep the cost of analysis reasonable for clients like BasicAliasAnalysis,
/// where the results can't be cached.
/// TODO: we should probably introduce a caching CaptureTracking analysis and
/// use it where possible. The caching version can use much higher limit or
/// don't have this cap at all.
static cl::opt<unsigned>
DefaultMaxUsesToExplore("capture-tracking-max-uses-to-explore", cl::Hidden,
cl::desc("Maximal number of uses to explore."),
cl::init(100));
unsigned llvm::getDefaultMaxUsesToExploreForCaptureTracking() {
return DefaultMaxUsesToExplore;
}
CaptureTracker::~CaptureTracker() = default;
bool CaptureTracker::shouldExplore(const Use *U) { return true; }
bool CaptureTracker::isDereferenceableOrNull(Value *O, const DataLayout &DL) {
// We want comparisons to null pointers to not be considered capturing,
// but need to guard against cases like gep(p, -ptrtoint(p2)) == null,
// which are equivalent to p == p2 and would capture the pointer.
//
// A dereferenceable pointer is a case where this is known to be safe,
// because the pointer resulting from such a construction would not be
// dereferenceable.
//
// It is not sufficient to check for inbounds GEP here, because GEP with
// zero offset is always inbounds.
bool CanBeNull, CanBeFreed;
return O->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
}
namespace {
struct SimpleCaptureTracker : public CaptureTracker {
explicit SimpleCaptureTracker(
const SmallPtrSetImpl<const Value *> &EphValues, bool ReturnCaptures)
: EphValues(EphValues), ReturnCaptures(ReturnCaptures) {}
void tooManyUses() override {
LLVM_DEBUG(dbgs() << "Captured due to too many uses\n");
Captured = true;
}
bool captured(const Use *U) override {
if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures)
return false;
if (EphValues.contains(U->getUser()))
return false;
LLVM_DEBUG(dbgs() << "Captured by: " << *U->getUser() << "\n");
Captured = true;
return true;
}
const SmallPtrSetImpl<const Value *> &EphValues;
bool ReturnCaptures;
bool Captured = false;
};
/// Only find pointer captures which happen before the given instruction. Uses
/// the dominator tree to determine whether one instruction is before another.
/// Only support the case where the Value is defined in the same basic block
/// as the given instruction and the use.
struct CapturesBefore : public CaptureTracker {
CapturesBefore(bool ReturnCaptures, const Instruction *I,
const DominatorTree *DT, bool IncludeI, const LoopInfo *LI)
: BeforeHere(I), DT(DT), ReturnCaptures(ReturnCaptures),
IncludeI(IncludeI), LI(LI) {}
void tooManyUses() override { Captured = true; }
bool isSafeToPrune(Instruction *I) {
if (BeforeHere == I)
return !IncludeI;
// We explore this usage only if the usage can reach "BeforeHere".
// If use is not reachable from entry, there is no need to explore.
if (!DT->isReachableFromEntry(I->getParent()))
return true;
// Check whether there is a path from I to BeforeHere.
return !isPotentiallyReachable(I, BeforeHere, nullptr, DT, LI);
}
bool captured(const Use *U) override {
Instruction *I = cast<Instruction>(U->getUser());
if (isa<ReturnInst>(I) && !ReturnCaptures)
return false;
// Check isSafeToPrune() here rather than in shouldExplore() to avoid
// an expensive reachability query for every instruction we look at.
// Instead we only do one for actual capturing candidates.
if (isSafeToPrune(I))
return false;
Captured = true;
return true;
}
const Instruction *BeforeHere;
const DominatorTree *DT;
bool ReturnCaptures;
bool IncludeI;
bool Captured = false;
const LoopInfo *LI;
};
/// Find the 'earliest' instruction before which the pointer is known not to
/// be captured. Here an instruction A is considered earlier than instruction
/// B, if A dominates B. If 2 escapes do not dominate each other, the
/// terminator of the common dominator is chosen. If not all uses cannot be
/// analyzed, the earliest escape is set to the first instruction in the
/// function entry block.
// NOTE: Users have to make sure instructions compared against the earliest
// escape are not in a cycle.
struct EarliestCaptures : public CaptureTracker {
EarliestCaptures(bool ReturnCaptures, Function &F, const DominatorTree &DT,
const SmallPtrSetImpl<const Value *> &EphValues)
: EphValues(EphValues), DT(DT), ReturnCaptures(ReturnCaptures), F(F) {}
void tooManyUses() override {
Captured = true;
EarliestCapture = &*F.getEntryBlock().begin();
}
bool captured(const Use *U) override {
Instruction *I = cast<Instruction>(U->getUser());
if (isa<ReturnInst>(I) && !ReturnCaptures)
return false;
if (EphValues.contains(I))
return false;
if (!EarliestCapture)
EarliestCapture = I;
else
EarliestCapture = DT.findNearestCommonDominator(EarliestCapture, I);
Captured = true;
// Return false to continue analysis; we need to see all potential
// captures.
return false;
}
const SmallPtrSetImpl<const Value *> &EphValues;
Instruction *EarliestCapture = nullptr;
const DominatorTree &DT;
bool ReturnCaptures;
bool Captured = false;
Function &F;
};
}
/// PointerMayBeCaptured - Return true if this pointer value may be captured
/// by the enclosing function (which is required to exist). This routine can
/// be expensive, so consider caching the results. The boolean ReturnCaptures
/// specifies whether returning the value (or part of it) from the function
/// counts as capturing it or not. The boolean StoreCaptures specified whether
/// storing the value (or part of it) into memory anywhere automatically
/// counts as capturing it or not.
bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures,
bool StoreCaptures, unsigned MaxUsesToExplore) {
SmallPtrSet<const Value *, 1> Empty;
return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures, Empty,
MaxUsesToExplore);
}
/// Variant of the above function which accepts a set of Values that are
/// ephemeral and cannot cause pointers to escape.
bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures,
bool StoreCaptures,
const SmallPtrSetImpl<const Value *> &EphValues,
unsigned MaxUsesToExplore) {
assert(!isa<GlobalValue>(V) &&
"It doesn't make sense to ask whether a global is captured.");
// TODO: If StoreCaptures is not true, we could do Fancy analysis
// to determine whether this store is not actually an escape point.
// In that case, BasicAliasAnalysis should be updated as well to
// take advantage of this.
(void)StoreCaptures;
LLVM_DEBUG(dbgs() << "Captured?: " << *V << " = ");
SimpleCaptureTracker SCT(EphValues, ReturnCaptures);
PointerMayBeCaptured(V, &SCT, MaxUsesToExplore);
if (SCT.Captured)
++NumCaptured;
else {
++NumNotCaptured;
LLVM_DEBUG(dbgs() << "not captured\n");
}
return SCT.Captured;
}
/// PointerMayBeCapturedBefore - Return true if this pointer value may be
/// captured by the enclosing function (which is required to exist). If a
/// DominatorTree is provided, only captures which happen before the given
/// instruction are considered. This routine can be expensive, so consider
/// caching the results. The boolean ReturnCaptures specifies whether
/// returning the value (or part of it) from the function counts as capturing
/// it or not. The boolean StoreCaptures specified whether storing the value
/// (or part of it) into memory anywhere automatically counts as capturing it
/// or not.
bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures,
bool StoreCaptures, const Instruction *I,
const DominatorTree *DT, bool IncludeI,
unsigned MaxUsesToExplore,
const LoopInfo *LI) {
assert(!isa<GlobalValue>(V) &&
"It doesn't make sense to ask whether a global is captured.");
if (!DT)
return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures,
MaxUsesToExplore);
// TODO: See comment in PointerMayBeCaptured regarding what could be done
// with StoreCaptures.
CapturesBefore CB(ReturnCaptures, I, DT, IncludeI, LI);
PointerMayBeCaptured(V, &CB, MaxUsesToExplore);
if (CB.Captured)
++NumCapturedBefore;
else
++NumNotCapturedBefore;
return CB.Captured;
}
Instruction *
llvm::FindEarliestCapture(const Value *V, Function &F, bool ReturnCaptures,
bool StoreCaptures, const DominatorTree &DT,
const SmallPtrSetImpl<const Value *> &EphValues,
unsigned MaxUsesToExplore) {
assert(!isa<GlobalValue>(V) &&
"It doesn't make sense to ask whether a global is captured.");
EarliestCaptures CB(ReturnCaptures, F, DT, EphValues);
PointerMayBeCaptured(V, &CB, MaxUsesToExplore);
if (CB.Captured)
++NumCapturedBefore;
else
++NumNotCapturedBefore;
return CB.EarliestCapture;
}
UseCaptureKind llvm::DetermineUseCaptureKind(
const Use &U,
function_ref<bool(Value *, const DataLayout &)> IsDereferenceableOrNull) {
Instruction *I = dyn_cast<Instruction>(U.getUser());
// TODO: Investigate non-instruction uses.
if (!I)
return UseCaptureKind::MAY_CAPTURE;
switch (I->getOpcode()) {
case Instruction::Call:
case Instruction::Invoke: {
auto *Call = cast<CallBase>(I);
// Not captured if the callee is readonly, doesn't return a copy through
// its return value and doesn't unwind (a readonly function can leak bits
// by throwing an exception or not depending on the input value).
if (Call->onlyReadsMemory() && Call->doesNotThrow() &&
Call->getType()->isVoidTy())
return UseCaptureKind::NO_CAPTURE;
// The pointer is not captured if returned pointer is not captured.
// NOTE: CaptureTracking users should not assume that only functions
// marked with nocapture do not capture. This means that places like
// getUnderlyingObject in ValueTracking or DecomposeGEPExpression
// in BasicAA also need to know about this property.
if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call, true))
return UseCaptureKind::PASSTHROUGH;
// Volatile operations effectively capture the memory location that they
// load and store to.
if (auto *MI = dyn_cast<MemIntrinsic>(Call))
if (MI->isVolatile())
return UseCaptureKind::MAY_CAPTURE;
// Calling a function pointer does not in itself cause the pointer to
// be captured. This is a subtle point considering that (for example)
// the callee might return its own address. It is analogous to saying
// that loading a value from a pointer does not cause the pointer to be
// captured, even though the loaded value might be the pointer itself
// (think of self-referential objects).
if (Call->isCallee(&U))
return UseCaptureKind::NO_CAPTURE;
// Not captured if only passed via 'nocapture' arguments.
if (Call->isDataOperand(&U) &&
!Call->doesNotCapture(Call->getDataOperandNo(&U))) {
// The parameter is not marked 'nocapture' - captured.
return UseCaptureKind::MAY_CAPTURE;
}
return UseCaptureKind::NO_CAPTURE;
}
case Instruction::Load:
// Volatile loads make the address observable.
if (cast<LoadInst>(I)->isVolatile())
return UseCaptureKind::MAY_CAPTURE;
return UseCaptureKind::NO_CAPTURE;
case Instruction::VAArg:
// "va-arg" from a pointer does not cause it to be captured.
return UseCaptureKind::NO_CAPTURE;
case Instruction::Store:
// Stored the pointer - conservatively assume it may be captured.
// Volatile stores make the address observable.
if (U.getOperandNo() == 0 || cast<StoreInst>(I)->isVolatile())
return UseCaptureKind::MAY_CAPTURE;
return UseCaptureKind::NO_CAPTURE;
case Instruction::AtomicRMW: {
// atomicrmw conceptually includes both a load and store from
// the same location.
// As with a store, the location being accessed is not captured,
// but the value being stored is.
// Volatile stores make the address observable.
auto *ARMWI = cast<AtomicRMWInst>(I);
if (U.getOperandNo() == 1 || ARMWI->isVolatile())
return UseCaptureKind::MAY_CAPTURE;
return UseCaptureKind::NO_CAPTURE;
}
case Instruction::AtomicCmpXchg: {
// cmpxchg conceptually includes both a load and store from
// the same location.
// As with a store, the location being accessed is not captured,
// but the value being stored is.
// Volatile stores make the address observable.
auto *ACXI = cast<AtomicCmpXchgInst>(I);
if (U.getOperandNo() == 1 || U.getOperandNo() == 2 || ACXI->isVolatile())
return UseCaptureKind::MAY_CAPTURE;
return UseCaptureKind::NO_CAPTURE;
}
case Instruction::BitCast:
case Instruction::GetElementPtr:
case Instruction::PHI:
case Instruction::Select:
case Instruction::AddrSpaceCast:
// The original value is not captured via this if the new value isn't.
return UseCaptureKind::PASSTHROUGH;
case Instruction::ICmp: {
unsigned Idx = U.getOperandNo();
unsigned OtherIdx = 1 - Idx;
if (auto *CPN = dyn_cast<ConstantPointerNull>(I->getOperand(OtherIdx))) {
// Don't count comparisons of a no-alias return value against null as
// captures. This allows us to ignore comparisons of malloc results
// with null, for example.
if (CPN->getType()->getAddressSpace() == 0)
if (isNoAliasCall(U.get()->stripPointerCasts()))
return UseCaptureKind::NO_CAPTURE;
if (!I->getFunction()->nullPointerIsDefined()) {
auto *O = I->getOperand(Idx)->stripPointerCastsSameRepresentation();
// Comparing a dereferenceable_or_null pointer against null cannot
// lead to pointer escapes, because if it is not null it must be a
// valid (in-bounds) pointer.
const DataLayout &DL = I->getModule()->getDataLayout();
if (IsDereferenceableOrNull && IsDereferenceableOrNull(O, DL))
return UseCaptureKind::NO_CAPTURE;
}
}
// Otherwise, be conservative. There are crazy ways to capture pointers
// using comparisons.
return UseCaptureKind::MAY_CAPTURE;
}
default:
// Something else - be conservative and say it is captured.
return UseCaptureKind::MAY_CAPTURE;
}
}
void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker,
unsigned MaxUsesToExplore) {
assert(V->getType()->isPointerTy() && "Capture is for pointers only!");
if (MaxUsesToExplore == 0)
MaxUsesToExplore = DefaultMaxUsesToExplore;
SmallVector<const Use *, 20> Worklist;
Worklist.reserve(getDefaultMaxUsesToExploreForCaptureTracking());
SmallSet<const Use *, 20> Visited;
auto AddUses = [&](const Value *V) {
for (const Use &U : V->uses()) {
// If there are lots of uses, conservatively say that the value
// is captured to avoid taking too much compile time.
if (Visited.size() >= MaxUsesToExplore) {
Tracker->tooManyUses();
return false;
}
if (!Visited.insert(&U).second)
continue;
if (!Tracker->shouldExplore(&U))
continue;
Worklist.push_back(&U);
}
return true;
};
if (!AddUses(V))
return;
auto IsDereferenceableOrNull = [Tracker](Value *V, const DataLayout &DL) {
return Tracker->isDereferenceableOrNull(V, DL);
};
while (!Worklist.empty()) {
const Use *U = Worklist.pop_back_val();
switch (DetermineUseCaptureKind(*U, IsDereferenceableOrNull)) {
case UseCaptureKind::NO_CAPTURE:
continue;
case UseCaptureKind::MAY_CAPTURE:
if (Tracker->captured(U))
return;
continue;
case UseCaptureKind::PASSTHROUGH:
if (!AddUses(U->getUser()))
return;
continue;
}
}
// All uses examined.
}
bool llvm::isNonEscapingLocalObject(
const Value *V, SmallDenseMap<const Value *, bool, 8> *IsCapturedCache) {
SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
if (IsCapturedCache) {
bool Inserted;
std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
if (!Inserted)
// Found cached result, return it!
return CacheIt->second;
}
// If this is an identified function-local object, check to see if it escapes.
if (isIdentifiedFunctionLocal(V)) {
// Set StoreCaptures to True so that we can assume in our callers that the
// pointer is not the result of a load instruction. Currently
// PointerMayBeCaptured doesn't have any special analysis for the
// StoreCaptures=false case; if it did, our callers could be refined to be
// more precise.
auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
if (IsCapturedCache)
CacheIt->second = Ret;
return Ret;
}
return false;
}