| //===- MLRegAllocPriorityAdvisor.cpp - ML priority advisor-----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of the ML priority advisor and reward injection pass |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AllocationOrder.h" |
| #include "RegAllocGreedy.h" |
| #include "RegAllocPriorityAdvisor.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/InteractiveModelRunner.h" |
| #include "llvm/Analysis/MLModelRunner.h" |
| #include "llvm/Analysis/ReleaseModeModelRunner.h" |
| #include "llvm/Analysis/TensorSpec.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveRegMatrix.h" |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/VirtRegMap.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/PassRegistry.h" |
| #include "llvm/Support/CommandLine.h" |
| |
| #if defined(LLVM_HAVE_TFLITE) |
| #include "llvm/Analysis/ModelUnderTrainingRunner.h" |
| #include "llvm/Analysis/NoInferenceModelRunner.h" |
| #include "llvm/Analysis/Utils/TrainingLogger.h" |
| #endif |
| |
| using namespace llvm; |
| |
| static cl::opt<std::string> InteractiveChannelBaseName( |
| "regalloc-priority-interactive-channel-base", cl::Hidden, |
| cl::desc( |
| "Base file path for the interactive mode. The incoming filename should " |
| "have the name <regalloc-priority-interactive-channel-base>.in, while " |
| "the outgoing name should be " |
| "<regalloc-priority-interactive-channel-base>.out")); |
| |
| using CompiledModelType = NoopSavedModelImpl; |
| |
| // Options that only make sense in development mode |
| #ifdef LLVM_HAVE_TFLITE |
| #include "RegAllocScore.h" |
| #include "llvm/Analysis/Utils/TFUtils.h" |
| |
| static cl::opt<std::string> TrainingLog( |
| "regalloc-priority-training-log", cl::Hidden, |
| cl::desc("Training log for the register allocator priority model")); |
| |
| static cl::opt<std::string> ModelUnderTraining( |
| "regalloc-priority-model", cl::Hidden, |
| cl::desc("The model being trained for register allocation priority")); |
| |
| #endif // #ifdef LLVM_HAVE_TFLITE |
| |
| namespace llvm { |
| |
| static const std::vector<int64_t> PerLiveRangeShape{1}; |
| |
| #define RA_PRIORITY_FEATURES_LIST(M) \ |
| M(int64_t, li_size, PerLiveRangeShape, "size") \ |
| M(int64_t, stage, PerLiveRangeShape, "stage") \ |
| M(float, weight, PerLiveRangeShape, "weight") |
| |
| #define DecisionName "priority" |
| static const TensorSpec DecisionSpec = |
| TensorSpec::createSpec<float>(DecisionName, {1}); |
| |
| |
| // Named features index. |
| enum FeatureIDs { |
| #define _FEATURE_IDX(_, name, __, ___) name, |
| RA_PRIORITY_FEATURES_LIST(_FEATURE_IDX) |
| #undef _FEATURE_IDX |
| FeatureCount |
| }; |
| |
| class MLPriorityAdvisor : public RegAllocPriorityAdvisor { |
| public: |
| MLPriorityAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
| SlotIndexes *const Indexes, MLModelRunner *Runner); |
| |
| protected: |
| const RegAllocPriorityAdvisor &getDefaultAdvisor() const { |
| return static_cast<const RegAllocPriorityAdvisor &>(DefaultAdvisor); |
| } |
| |
| // The assumption is that if the Runner could not be constructed, we emit-ed |
| // error, and we shouldn't be asking for it here. |
| const MLModelRunner &getRunner() const { return *Runner; } |
| float getPriorityImpl(const LiveInterval &LI) const; |
| unsigned getPriority(const LiveInterval &LI) const override; |
| |
| private: |
| const DefaultPriorityAdvisor DefaultAdvisor; |
| MLModelRunner *const Runner; |
| }; |
| |
| #define _DECL_FEATURES(type, name, shape, _) \ |
| TensorSpec::createSpec<type>(#name, shape), |
| |
| static const std::vector<TensorSpec> InputFeatures{ |
| {RA_PRIORITY_FEATURES_LIST(_DECL_FEATURES)}, |
| }; |
| #undef _DECL_FEATURES |
| |
| // =================================== |
| // Release (AOT) - specifics |
| // =================================== |
| class ReleaseModePriorityAdvisorAnalysis final |
| : public RegAllocPriorityAdvisorAnalysis { |
| public: |
| ReleaseModePriorityAdvisorAnalysis() |
| : RegAllocPriorityAdvisorAnalysis(AdvisorMode::Release) {} |
| // support for isa<> and dyn_cast. |
| static bool classof(const RegAllocPriorityAdvisorAnalysis *R) { |
| return R->getAdvisorMode() == AdvisorMode::Release; |
| } |
| |
| private: |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| AU.addRequired<SlotIndexes>(); |
| RegAllocPriorityAdvisorAnalysis::getAnalysisUsage(AU); |
| } |
| |
| std::unique_ptr<RegAllocPriorityAdvisor> |
| getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override { |
| if (!Runner) { |
| if (InteractiveChannelBaseName.empty()) |
| Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>( |
| MF.getFunction().getContext(), InputFeatures, DecisionName); |
| else |
| Runner = std::make_unique<InteractiveModelRunner>( |
| MF.getFunction().getContext(), InputFeatures, DecisionSpec, |
| InteractiveChannelBaseName + ".out", |
| InteractiveChannelBaseName + ".in"); |
| } |
| return std::make_unique<MLPriorityAdvisor>( |
| MF, RA, &getAnalysis<SlotIndexes>(), Runner.get()); |
| } |
| std::unique_ptr<MLModelRunner> Runner; |
| }; |
| |
| // =================================== |
| // Development mode-specifics |
| // =================================== |
| // |
| // Features we log |
| #ifdef LLVM_HAVE_TFLITE |
| static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1}); |
| |
| #define _DECL_TRAIN_FEATURES(type, name, shape, _) \ |
| TensorSpec::createSpec<type>(std::string("action_") + #name, shape), |
| |
| static const std::vector<TensorSpec> TrainingInputFeatures{ |
| {RA_PRIORITY_FEATURES_LIST(_DECL_TRAIN_FEATURES) |
| TensorSpec::createSpec<float>("action_discount", {1}), |
| TensorSpec::createSpec<int32_t>("action_step_type", {1}), |
| TensorSpec::createSpec<float>("action_reward", {1})}}; |
| #undef _DECL_TRAIN_FEATURES |
| |
| class DevelopmentModePriorityAdvisor : public MLPriorityAdvisor { |
| public: |
| DevelopmentModePriorityAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
| SlotIndexes *const Indexes, |
| MLModelRunner *Runner, Logger *Log) |
| : MLPriorityAdvisor(MF, RA, Indexes, Runner), Log(Log) {} |
| |
| private: |
| unsigned getPriority(const LiveInterval &LI) const override; |
| Logger *const Log; |
| }; |
| |
| class DevelopmentModePriorityAdvisorAnalysis final |
| : public RegAllocPriorityAdvisorAnalysis { |
| public: |
| DevelopmentModePriorityAdvisorAnalysis() |
| : RegAllocPriorityAdvisorAnalysis(AdvisorMode::Development) {} |
| // support for isa<> and dyn_cast. |
| static bool classof(const RegAllocPriorityAdvisorAnalysis *R) { |
| return R->getAdvisorMode() == AdvisorMode::Development; |
| } |
| |
| void logRewardIfNeeded(const MachineFunction &MF, |
| llvm::function_ref<float()> GetReward) override { |
| if (!Log || !Log->hasAnyObservationForContext(MF.getName())) |
| return; |
| // The function pass manager would run all the function passes for a |
| // function, so we assume the last context belongs to this function. If |
| // this invariant ever changes, we can implement at that time switching |
| // contexts. At this point, it'd be an error |
| if (Log->currentContext() != MF.getName()) { |
| MF.getFunction().getContext().emitError( |
| "The training log context shouldn't have had changed."); |
| } |
| if (Log->hasObservationInProgress()) |
| Log->logReward<float>(GetReward()); |
| } |
| |
| private: |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| AU.addRequired<SlotIndexes>(); |
| RegAllocPriorityAdvisorAnalysis::getAnalysisUsage(AU); |
| } |
| |
| // Save all the logs (when requested). |
| bool doInitialization(Module &M) override { |
| LLVMContext &Ctx = M.getContext(); |
| if (ModelUnderTraining.empty() && TrainingLog.empty()) { |
| Ctx.emitError("Regalloc development mode should be requested with at " |
| "least logging enabled and/or a training model"); |
| return false; |
| } |
| if (ModelUnderTraining.empty()) |
| Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures); |
| else |
| Runner = ModelUnderTrainingRunner::createAndEnsureValid( |
| Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures); |
| if (!Runner) { |
| Ctx.emitError("Regalloc: could not set up the model runner"); |
| return false; |
| } |
| if (TrainingLog.empty()) |
| return false; |
| std::error_code EC; |
| auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC); |
| if (EC) { |
| M.getContext().emitError(EC.message() + ":" + TrainingLog); |
| return false; |
| } |
| std::vector<TensorSpec> LFS = InputFeatures; |
| if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get())) |
| append_range(LFS, MUTR->extraOutputsForLoggingSpecs()); |
| // We always log the output; in particular, if we're not evaluating, we |
| // don't have an output spec json file. That's why we handle the |
| // 'normal' output separately. |
| LFS.push_back(DecisionSpec); |
| |
| Log = std::make_unique<Logger>(std::move(OS), LFS, Reward, |
| /*IncludeReward*/ true); |
| return false; |
| } |
| |
| std::unique_ptr<RegAllocPriorityAdvisor> |
| getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override { |
| if (!Runner) |
| return nullptr; |
| if (Log) { |
| Log->switchContext(MF.getName()); |
| } |
| |
| return std::make_unique<DevelopmentModePriorityAdvisor>( |
| MF, RA, &getAnalysis<SlotIndexes>(), Runner.get(), Log.get()); |
| } |
| |
| std::unique_ptr<MLModelRunner> Runner; |
| std::unique_ptr<Logger> Log; |
| }; |
| #endif //#ifdef LLVM_HAVE_TFLITE |
| |
| } // namespace llvm |
| |
| RegAllocPriorityAdvisorAnalysis *llvm::createReleaseModePriorityAdvisor() { |
| return llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() || |
| !InteractiveChannelBaseName.empty() |
| ? new ReleaseModePriorityAdvisorAnalysis() |
| : nullptr; |
| } |
| |
| MLPriorityAdvisor::MLPriorityAdvisor(const MachineFunction &MF, |
| const RAGreedy &RA, |
| SlotIndexes *const Indexes, |
| MLModelRunner *Runner) |
| : RegAllocPriorityAdvisor(MF, RA, Indexes), DefaultAdvisor(MF, RA, Indexes), |
| Runner(std::move(Runner)) { |
| assert(this->Runner); |
| Runner->switchContext(MF.getName()); |
| } |
| |
| float MLPriorityAdvisor::getPriorityImpl(const LiveInterval &LI) const { |
| const unsigned Size = LI.getSize(); |
| LiveRangeStage Stage = RA.getExtraInfo().getStage(LI); |
| |
| *Runner->getTensor<int64_t>(0) = static_cast<int64_t>(Size); |
| *Runner->getTensor<int64_t>(1) = static_cast<int64_t>(Stage); |
| *Runner->getTensor<float>(2) = static_cast<float>(LI.weight()); |
| |
| return Runner->evaluate<float>(); |
| } |
| |
| unsigned MLPriorityAdvisor::getPriority(const LiveInterval &LI) const { |
| return static_cast<unsigned>(getPriorityImpl(LI)); |
| } |
| |
| #ifdef LLVM_HAVE_TFLITE |
| RegAllocPriorityAdvisorAnalysis *llvm::createDevelopmentModePriorityAdvisor() { |
| return new DevelopmentModePriorityAdvisorAnalysis(); |
| } |
| |
| unsigned |
| DevelopmentModePriorityAdvisor::getPriority(const LiveInterval &LI) const { |
| double Prio = 0; |
| |
| if (isa<ModelUnderTrainingRunner>(getRunner())) { |
| Prio = MLPriorityAdvisor::getPriorityImpl(LI); |
| } else { |
| Prio = getDefaultAdvisor().getPriority(LI); |
| } |
| |
| if (TrainingLog.empty()) |
| return Prio; |
| |
| // TODO(mtrofin): when we support optional rewards, this can go away. In the |
| // meantime, we log the "pretend" reward (0) for the previous observation |
| // before starting a new one. |
| if (Log->hasObservationInProgress()) |
| Log->logReward<float>(0.0); |
| |
| Log->startObservation(); |
| size_t CurrentFeature = 0; |
| for (; CurrentFeature < InputFeatures.size(); ++CurrentFeature) { |
| Log->logTensorValue(CurrentFeature, |
| reinterpret_cast<const char *>( |
| getRunner().getTensorUntyped(CurrentFeature))); |
| } |
| |
| if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) { |
| for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size(); |
| ++I, ++CurrentFeature) |
| Log->logTensorValue( |
| CurrentFeature, |
| reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I))); |
| } |
| |
| float Ret = static_cast<float>(Prio); |
| Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret)); |
| Log->endObservation(); |
| |
| return static_cast<unsigned>(Prio); |
| } |
| |
| #endif // #ifdef LLVM_HAVE_TFLITE |