| //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This file contains the declarations of the Vectorization Plan base classes: |
| /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual |
| /// VPBlockBase, together implementing a Hierarchical CFG; |
| /// 2. Pure virtual VPRecipeBase serving as the base class for recipes contained |
| /// within VPBasicBlocks; |
| /// 3. VPInstruction, a concrete Recipe and VPUser modeling a single planned |
| /// instruction; |
| /// 4. The VPlan class holding a candidate for vectorization; |
| /// 5. The VPlanPrinter class providing a way to print a plan in dot format; |
| /// These are documented in docs/VectorizationPlan.rst. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| |
| #include "VPlanValue.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/ADT/ilist.h" |
| #include "llvm/ADT/ilist_node.h" |
| #include "llvm/Analysis/IVDescriptors.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/FMF.h" |
| #include "llvm/IR/Operator.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <string> |
| |
| namespace llvm { |
| |
| class BasicBlock; |
| class DominatorTree; |
| class InnerLoopVectorizer; |
| class IRBuilderBase; |
| class LoopInfo; |
| class PredicateScalarEvolution; |
| class raw_ostream; |
| class RecurrenceDescriptor; |
| class SCEV; |
| class Type; |
| class VPBasicBlock; |
| class VPRegionBlock; |
| class VPlan; |
| class VPReplicateRecipe; |
| class VPlanSlp; |
| class Value; |
| class LoopVersioning; |
| |
| namespace Intrinsic { |
| typedef unsigned ID; |
| } |
| |
| /// Returns a calculation for the total number of elements for a given \p VF. |
| /// For fixed width vectors this value is a constant, whereas for scalable |
| /// vectors it is an expression determined at runtime. |
| Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF); |
| |
| /// Return a value for Step multiplied by VF. |
| Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, |
| int64_t Step); |
| |
| const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE, |
| Loop *CurLoop = nullptr); |
| |
| /// A range of powers-of-2 vectorization factors with fixed start and |
| /// adjustable end. The range includes start and excludes end, e.g.,: |
| /// [1, 16) = {1, 2, 4, 8} |
| struct VFRange { |
| // A power of 2. |
| const ElementCount Start; |
| |
| // A power of 2. If End <= Start range is empty. |
| ElementCount End; |
| |
| bool isEmpty() const { |
| return End.getKnownMinValue() <= Start.getKnownMinValue(); |
| } |
| |
| VFRange(const ElementCount &Start, const ElementCount &End) |
| : Start(Start), End(End) { |
| assert(Start.isScalable() == End.isScalable() && |
| "Both Start and End should have the same scalable flag"); |
| assert(isPowerOf2_32(Start.getKnownMinValue()) && |
| "Expected Start to be a power of 2"); |
| assert(isPowerOf2_32(End.getKnownMinValue()) && |
| "Expected End to be a power of 2"); |
| } |
| |
| /// Iterator to iterate over vectorization factors in a VFRange. |
| class iterator |
| : public iterator_facade_base<iterator, std::forward_iterator_tag, |
| ElementCount> { |
| ElementCount VF; |
| |
| public: |
| iterator(ElementCount VF) : VF(VF) {} |
| |
| bool operator==(const iterator &Other) const { return VF == Other.VF; } |
| |
| ElementCount operator*() const { return VF; } |
| |
| iterator &operator++() { |
| VF *= 2; |
| return *this; |
| } |
| }; |
| |
| iterator begin() { return iterator(Start); } |
| iterator end() { |
| assert(isPowerOf2_32(End.getKnownMinValue())); |
| return iterator(End); |
| } |
| }; |
| |
| using VPlanPtr = std::unique_ptr<VPlan>; |
| |
| /// In what follows, the term "input IR" refers to code that is fed into the |
| /// vectorizer whereas the term "output IR" refers to code that is generated by |
| /// the vectorizer. |
| |
| /// VPLane provides a way to access lanes in both fixed width and scalable |
| /// vectors, where for the latter the lane index sometimes needs calculating |
| /// as a runtime expression. |
| class VPLane { |
| public: |
| /// Kind describes how to interpret Lane. |
| enum class Kind : uint8_t { |
| /// For First, Lane is the index into the first N elements of a |
| /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>. |
| First, |
| /// For ScalableLast, Lane is the offset from the start of the last |
| /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For |
| /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of |
| /// 1 corresponds to `((vscale - 1) * N) + 1`, etc. |
| ScalableLast |
| }; |
| |
| private: |
| /// in [0..VF) |
| unsigned Lane; |
| |
| /// Indicates how the Lane should be interpreted, as described above. |
| Kind LaneKind; |
| |
| public: |
| VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {} |
| |
| static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); } |
| |
| static VPLane getLastLaneForVF(const ElementCount &VF) { |
| unsigned LaneOffset = VF.getKnownMinValue() - 1; |
| Kind LaneKind; |
| if (VF.isScalable()) |
| // In this case 'LaneOffset' refers to the offset from the start of the |
| // last subvector with VF.getKnownMinValue() elements. |
| LaneKind = VPLane::Kind::ScalableLast; |
| else |
| LaneKind = VPLane::Kind::First; |
| return VPLane(LaneOffset, LaneKind); |
| } |
| |
| /// Returns a compile-time known value for the lane index and asserts if the |
| /// lane can only be calculated at runtime. |
| unsigned getKnownLane() const { |
| assert(LaneKind == Kind::First); |
| return Lane; |
| } |
| |
| /// Returns an expression describing the lane index that can be used at |
| /// runtime. |
| Value *getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const; |
| |
| /// Returns the Kind of lane offset. |
| Kind getKind() const { return LaneKind; } |
| |
| /// Returns true if this is the first lane of the whole vector. |
| bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; } |
| |
| /// Maps the lane to a cache index based on \p VF. |
| unsigned mapToCacheIndex(const ElementCount &VF) const { |
| switch (LaneKind) { |
| case VPLane::Kind::ScalableLast: |
| assert(VF.isScalable() && Lane < VF.getKnownMinValue()); |
| return VF.getKnownMinValue() + Lane; |
| default: |
| assert(Lane < VF.getKnownMinValue()); |
| return Lane; |
| } |
| } |
| |
| /// Returns the maxmimum number of lanes that we are able to consider |
| /// caching for \p VF. |
| static unsigned getNumCachedLanes(const ElementCount &VF) { |
| return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1); |
| } |
| }; |
| |
| /// VPIteration represents a single point in the iteration space of the output |
| /// (vectorized and/or unrolled) IR loop. |
| struct VPIteration { |
| /// in [0..UF) |
| unsigned Part; |
| |
| VPLane Lane; |
| |
| VPIteration(unsigned Part, unsigned Lane, |
| VPLane::Kind Kind = VPLane::Kind::First) |
| : Part(Part), Lane(Lane, Kind) {} |
| |
| VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {} |
| |
| bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); } |
| }; |
| |
| /// VPTransformState holds information passed down when "executing" a VPlan, |
| /// needed for generating the output IR. |
| struct VPTransformState { |
| VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, |
| DominatorTree *DT, IRBuilderBase &Builder, |
| InnerLoopVectorizer *ILV, VPlan *Plan) |
| : VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan), |
| LVer(nullptr) {} |
| |
| /// The chosen Vectorization and Unroll Factors of the loop being vectorized. |
| ElementCount VF; |
| unsigned UF; |
| |
| /// Hold the indices to generate specific scalar instructions. Null indicates |
| /// that all instances are to be generated, using either scalar or vector |
| /// instructions. |
| std::optional<VPIteration> Instance; |
| |
| struct DataState { |
| /// A type for vectorized values in the new loop. Each value from the |
| /// original loop, when vectorized, is represented by UF vector values in |
| /// the new unrolled loop, where UF is the unroll factor. |
| typedef SmallVector<Value *, 2> PerPartValuesTy; |
| |
| DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; |
| |
| using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>; |
| DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars; |
| } Data; |
| |
| /// Get the generated Value for a given VPValue and a given Part. Note that |
| /// as some Defs are still created by ILV and managed in its ValueMap, this |
| /// method will delegate the call to ILV in such cases in order to provide |
| /// callers a consistent API. |
| /// \see set. |
| Value *get(VPValue *Def, unsigned Part); |
| |
| /// Get the generated Value for a given VPValue and given Part and Lane. |
| Value *get(VPValue *Def, const VPIteration &Instance); |
| |
| bool hasVectorValue(VPValue *Def, unsigned Part) { |
| auto I = Data.PerPartOutput.find(Def); |
| return I != Data.PerPartOutput.end() && Part < I->second.size() && |
| I->second[Part]; |
| } |
| |
| bool hasAnyVectorValue(VPValue *Def) const { |
| return Data.PerPartOutput.contains(Def); |
| } |
| |
| bool hasScalarValue(VPValue *Def, VPIteration Instance) { |
| auto I = Data.PerPartScalars.find(Def); |
| if (I == Data.PerPartScalars.end()) |
| return false; |
| unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); |
| return Instance.Part < I->second.size() && |
| CacheIdx < I->second[Instance.Part].size() && |
| I->second[Instance.Part][CacheIdx]; |
| } |
| |
| /// Set the generated Value for a given VPValue and a given Part. |
| void set(VPValue *Def, Value *V, unsigned Part) { |
| if (!Data.PerPartOutput.count(Def)) { |
| DataState::PerPartValuesTy Entry(UF); |
| Data.PerPartOutput[Def] = Entry; |
| } |
| Data.PerPartOutput[Def][Part] = V; |
| } |
| /// Reset an existing vector value for \p Def and a given \p Part. |
| void reset(VPValue *Def, Value *V, unsigned Part) { |
| auto Iter = Data.PerPartOutput.find(Def); |
| assert(Iter != Data.PerPartOutput.end() && |
| "need to overwrite existing value"); |
| Iter->second[Part] = V; |
| } |
| |
| /// Set the generated scalar \p V for \p Def and the given \p Instance. |
| void set(VPValue *Def, Value *V, const VPIteration &Instance) { |
| auto Iter = Data.PerPartScalars.insert({Def, {}}); |
| auto &PerPartVec = Iter.first->second; |
| while (PerPartVec.size() <= Instance.Part) |
| PerPartVec.emplace_back(); |
| auto &Scalars = PerPartVec[Instance.Part]; |
| unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); |
| while (Scalars.size() <= CacheIdx) |
| Scalars.push_back(nullptr); |
| assert(!Scalars[CacheIdx] && "should overwrite existing value"); |
| Scalars[CacheIdx] = V; |
| } |
| |
| /// Reset an existing scalar value for \p Def and a given \p Instance. |
| void reset(VPValue *Def, Value *V, const VPIteration &Instance) { |
| auto Iter = Data.PerPartScalars.find(Def); |
| assert(Iter != Data.PerPartScalars.end() && |
| "need to overwrite existing value"); |
| assert(Instance.Part < Iter->second.size() && |
| "need to overwrite existing value"); |
| unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); |
| assert(CacheIdx < Iter->second[Instance.Part].size() && |
| "need to overwrite existing value"); |
| Iter->second[Instance.Part][CacheIdx] = V; |
| } |
| |
| /// Add additional metadata to \p To that was not present on \p Orig. |
| /// |
| /// Currently this is used to add the noalias annotations based on the |
| /// inserted memchecks. Use this for instructions that are *cloned* into the |
| /// vector loop. |
| void addNewMetadata(Instruction *To, const Instruction *Orig); |
| |
| /// Add metadata from one instruction to another. |
| /// |
| /// This includes both the original MDs from \p From and additional ones (\see |
| /// addNewMetadata). Use this for *newly created* instructions in the vector |
| /// loop. |
| void addMetadata(Instruction *To, Instruction *From); |
| |
| /// Similar to the previous function but it adds the metadata to a |
| /// vector of instructions. |
| void addMetadata(ArrayRef<Value *> To, Instruction *From); |
| |
| /// Set the debug location in the builder using the debug location in \p V. |
| void setDebugLocFromInst(const Value *V); |
| |
| /// Hold state information used when constructing the CFG of the output IR, |
| /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. |
| struct CFGState { |
| /// The previous VPBasicBlock visited. Initially set to null. |
| VPBasicBlock *PrevVPBB = nullptr; |
| |
| /// The previous IR BasicBlock created or used. Initially set to the new |
| /// header BasicBlock. |
| BasicBlock *PrevBB = nullptr; |
| |
| /// The last IR BasicBlock in the output IR. Set to the exit block of the |
| /// vector loop. |
| BasicBlock *ExitBB = nullptr; |
| |
| /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case |
| /// of replication, maps the BasicBlock of the last replica created. |
| SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; |
| |
| CFGState() = default; |
| |
| /// Returns the BasicBlock* mapped to the pre-header of the loop region |
| /// containing \p R. |
| BasicBlock *getPreheaderBBFor(VPRecipeBase *R); |
| } CFG; |
| |
| /// Hold a pointer to LoopInfo to register new basic blocks in the loop. |
| LoopInfo *LI; |
| |
| /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. |
| DominatorTree *DT; |
| |
| /// Hold a reference to the IRBuilder used to generate output IR code. |
| IRBuilderBase &Builder; |
| |
| VPValue2ValueTy VPValue2Value; |
| |
| /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF). |
| Value *CanonicalIV = nullptr; |
| |
| /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. |
| InnerLoopVectorizer *ILV; |
| |
| /// Pointer to the VPlan code is generated for. |
| VPlan *Plan; |
| |
| /// The loop object for the current parent region, or nullptr. |
| Loop *CurrentVectorLoop = nullptr; |
| |
| /// LoopVersioning. It's only set up (non-null) if memchecks were |
| /// used. |
| /// |
| /// This is currently only used to add no-alias metadata based on the |
| /// memchecks. The actually versioning is performed manually. |
| LoopVersioning *LVer = nullptr; |
| |
| /// Map SCEVs to their expanded values. Populated when executing |
| /// VPExpandSCEVRecipes. |
| DenseMap<const SCEV *, Value *> ExpandedSCEVs; |
| }; |
| |
| /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. |
| /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. |
| class VPBlockBase { |
| friend class VPBlockUtils; |
| |
| const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). |
| |
| /// An optional name for the block. |
| std::string Name; |
| |
| /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if |
| /// it is a topmost VPBlockBase. |
| VPRegionBlock *Parent = nullptr; |
| |
| /// List of predecessor blocks. |
| SmallVector<VPBlockBase *, 1> Predecessors; |
| |
| /// List of successor blocks. |
| SmallVector<VPBlockBase *, 1> Successors; |
| |
| /// VPlan containing the block. Can only be set on the entry block of the |
| /// plan. |
| VPlan *Plan = nullptr; |
| |
| /// Add \p Successor as the last successor to this block. |
| void appendSuccessor(VPBlockBase *Successor) { |
| assert(Successor && "Cannot add nullptr successor!"); |
| Successors.push_back(Successor); |
| } |
| |
| /// Add \p Predecessor as the last predecessor to this block. |
| void appendPredecessor(VPBlockBase *Predecessor) { |
| assert(Predecessor && "Cannot add nullptr predecessor!"); |
| Predecessors.push_back(Predecessor); |
| } |
| |
| /// Remove \p Predecessor from the predecessors of this block. |
| void removePredecessor(VPBlockBase *Predecessor) { |
| auto Pos = find(Predecessors, Predecessor); |
| assert(Pos && "Predecessor does not exist"); |
| Predecessors.erase(Pos); |
| } |
| |
| /// Remove \p Successor from the successors of this block. |
| void removeSuccessor(VPBlockBase *Successor) { |
| auto Pos = find(Successors, Successor); |
| assert(Pos && "Successor does not exist"); |
| Successors.erase(Pos); |
| } |
| |
| protected: |
| VPBlockBase(const unsigned char SC, const std::string &N) |
| : SubclassID(SC), Name(N) {} |
| |
| public: |
| /// An enumeration for keeping track of the concrete subclass of VPBlockBase |
| /// that are actually instantiated. Values of this enumeration are kept in the |
| /// SubclassID field of the VPBlockBase objects. They are used for concrete |
| /// type identification. |
| using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; |
| |
| using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; |
| |
| virtual ~VPBlockBase() = default; |
| |
| const std::string &getName() const { return Name; } |
| |
| void setName(const Twine &newName) { Name = newName.str(); } |
| |
| /// \return an ID for the concrete type of this object. |
| /// This is used to implement the classof checks. This should not be used |
| /// for any other purpose, as the values may change as LLVM evolves. |
| unsigned getVPBlockID() const { return SubclassID; } |
| |
| VPRegionBlock *getParent() { return Parent; } |
| const VPRegionBlock *getParent() const { return Parent; } |
| |
| /// \return A pointer to the plan containing the current block. |
| VPlan *getPlan(); |
| const VPlan *getPlan() const; |
| |
| /// Sets the pointer of the plan containing the block. The block must be the |
| /// entry block into the VPlan. |
| void setPlan(VPlan *ParentPlan); |
| |
| void setParent(VPRegionBlock *P) { Parent = P; } |
| |
| /// \return the VPBasicBlock that is the entry of this VPBlockBase, |
| /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| /// VPBlockBase is a VPBasicBlock, it is returned. |
| const VPBasicBlock *getEntryBasicBlock() const; |
| VPBasicBlock *getEntryBasicBlock(); |
| |
| /// \return the VPBasicBlock that is the exiting this VPBlockBase, |
| /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| /// VPBlockBase is a VPBasicBlock, it is returned. |
| const VPBasicBlock *getExitingBasicBlock() const; |
| VPBasicBlock *getExitingBasicBlock(); |
| |
| const VPBlocksTy &getSuccessors() const { return Successors; } |
| VPBlocksTy &getSuccessors() { return Successors; } |
| |
| iterator_range<VPBlockBase **> successors() { return Successors; } |
| |
| const VPBlocksTy &getPredecessors() const { return Predecessors; } |
| VPBlocksTy &getPredecessors() { return Predecessors; } |
| |
| /// \return the successor of this VPBlockBase if it has a single successor. |
| /// Otherwise return a null pointer. |
| VPBlockBase *getSingleSuccessor() const { |
| return (Successors.size() == 1 ? *Successors.begin() : nullptr); |
| } |
| |
| /// \return the predecessor of this VPBlockBase if it has a single |
| /// predecessor. Otherwise return a null pointer. |
| VPBlockBase *getSinglePredecessor() const { |
| return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); |
| } |
| |
| size_t getNumSuccessors() const { return Successors.size(); } |
| size_t getNumPredecessors() const { return Predecessors.size(); } |
| |
| /// An Enclosing Block of a block B is any block containing B, including B |
| /// itself. \return the closest enclosing block starting from "this", which |
| /// has successors. \return the root enclosing block if all enclosing blocks |
| /// have no successors. |
| VPBlockBase *getEnclosingBlockWithSuccessors(); |
| |
| /// \return the closest enclosing block starting from "this", which has |
| /// predecessors. \return the root enclosing block if all enclosing blocks |
| /// have no predecessors. |
| VPBlockBase *getEnclosingBlockWithPredecessors(); |
| |
| /// \return the successors either attached directly to this VPBlockBase or, if |
| /// this VPBlockBase is the exit block of a VPRegionBlock and has no |
| /// successors of its own, search recursively for the first enclosing |
| /// VPRegionBlock that has successors and return them. If no such |
| /// VPRegionBlock exists, return the (empty) successors of the topmost |
| /// VPBlockBase reached. |
| const VPBlocksTy &getHierarchicalSuccessors() { |
| return getEnclosingBlockWithSuccessors()->getSuccessors(); |
| } |
| |
| /// \return the hierarchical successor of this VPBlockBase if it has a single |
| /// hierarchical successor. Otherwise return a null pointer. |
| VPBlockBase *getSingleHierarchicalSuccessor() { |
| return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); |
| } |
| |
| /// \return the predecessors either attached directly to this VPBlockBase or, |
| /// if this VPBlockBase is the entry block of a VPRegionBlock and has no |
| /// predecessors of its own, search recursively for the first enclosing |
| /// VPRegionBlock that has predecessors and return them. If no such |
| /// VPRegionBlock exists, return the (empty) predecessors of the topmost |
| /// VPBlockBase reached. |
| const VPBlocksTy &getHierarchicalPredecessors() { |
| return getEnclosingBlockWithPredecessors()->getPredecessors(); |
| } |
| |
| /// \return the hierarchical predecessor of this VPBlockBase if it has a |
| /// single hierarchical predecessor. Otherwise return a null pointer. |
| VPBlockBase *getSingleHierarchicalPredecessor() { |
| return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); |
| } |
| |
| /// Set a given VPBlockBase \p Successor as the single successor of this |
| /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. |
| /// This VPBlockBase must have no successors. |
| void setOneSuccessor(VPBlockBase *Successor) { |
| assert(Successors.empty() && "Setting one successor when others exist."); |
| appendSuccessor(Successor); |
| } |
| |
| /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two |
| /// successors of this VPBlockBase. This VPBlockBase is not added as |
| /// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no |
| /// successors. |
| void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) { |
| assert(Successors.empty() && "Setting two successors when others exist."); |
| appendSuccessor(IfTrue); |
| appendSuccessor(IfFalse); |
| } |
| |
| /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. |
| /// This VPBlockBase must have no predecessors. This VPBlockBase is not added |
| /// as successor of any VPBasicBlock in \p NewPreds. |
| void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { |
| assert(Predecessors.empty() && "Block predecessors already set."); |
| for (auto *Pred : NewPreds) |
| appendPredecessor(Pred); |
| } |
| |
| /// Remove all the predecessor of this block. |
| void clearPredecessors() { Predecessors.clear(); } |
| |
| /// Remove all the successors of this block. |
| void clearSuccessors() { Successors.clear(); } |
| |
| /// The method which generates the output IR that correspond to this |
| /// VPBlockBase, thereby "executing" the VPlan. |
| virtual void execute(VPTransformState *State) = 0; |
| |
| /// Delete all blocks reachable from a given VPBlockBase, inclusive. |
| static void deleteCFG(VPBlockBase *Entry); |
| |
| /// Return true if it is legal to hoist instructions into this block. |
| bool isLegalToHoistInto() { |
| // There are currently no constraints that prevent an instruction to be |
| // hoisted into a VPBlockBase. |
| return true; |
| } |
| |
| /// Replace all operands of VPUsers in the block with \p NewValue and also |
| /// replaces all uses of VPValues defined in the block with NewValue. |
| virtual void dropAllReferences(VPValue *NewValue) = 0; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void printAsOperand(raw_ostream &OS, bool PrintType) const { |
| OS << getName(); |
| } |
| |
| /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines |
| /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using |
| /// consequtive numbers. |
| /// |
| /// Note that the numbering is applied to the whole VPlan, so printing |
| /// individual blocks is consistent with the whole VPlan printing. |
| virtual void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const = 0; |
| |
| /// Print plain-text dump of this VPlan to \p O. |
| void print(raw_ostream &O) const { |
| VPSlotTracker SlotTracker(getPlan()); |
| print(O, "", SlotTracker); |
| } |
| |
| /// Print the successors of this block to \p O, prefixing all lines with \p |
| /// Indent. |
| void printSuccessors(raw_ostream &O, const Twine &Indent) const; |
| |
| /// Dump this VPBlockBase to dbgs(). |
| LLVM_DUMP_METHOD void dump() const { print(dbgs()); } |
| #endif |
| }; |
| |
| /// A value that is used outside the VPlan. The operand of the user needs to be |
| /// added to the associated LCSSA phi node. |
| class VPLiveOut : public VPUser { |
| PHINode *Phi; |
| |
| public: |
| VPLiveOut(PHINode *Phi, VPValue *Op) |
| : VPUser({Op}, VPUser::VPUserID::LiveOut), Phi(Phi) {} |
| |
| static inline bool classof(const VPUser *U) { |
| return U->getVPUserID() == VPUser::VPUserID::LiveOut; |
| } |
| |
| /// Fixup the wrapped LCSSA phi node in the unique exit block. This simply |
| /// means we need to add the appropriate incoming value from the middle |
| /// block as exiting edges from the scalar epilogue loop (if present) are |
| /// already in place, and we exit the vector loop exclusively to the middle |
| /// block. |
| void fixPhi(VPlan &Plan, VPTransformState &State); |
| |
| /// Returns true if the VPLiveOut uses scalars of operand \p Op. |
| bool usesScalars(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| |
| PHINode *getPhi() const { return Phi; } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the VPLiveOut to \p O. |
| void print(raw_ostream &O, VPSlotTracker &SlotTracker) const; |
| #endif |
| }; |
| |
| /// VPRecipeBase is a base class modeling a sequence of one or more output IR |
| /// instructions. VPRecipeBase owns the the VPValues it defines through VPDef |
| /// and is responsible for deleting its defined values. Single-value |
| /// VPRecipeBases that also inherit from VPValue must make sure to inherit from |
| /// VPRecipeBase before VPValue. |
| class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>, |
| public VPDef, |
| public VPUser { |
| friend VPBasicBlock; |
| friend class VPBlockUtils; |
| |
| /// Each VPRecipe belongs to a single VPBasicBlock. |
| VPBasicBlock *Parent = nullptr; |
| |
| public: |
| VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands) |
| : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {} |
| |
| template <typename IterT> |
| VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands) |
| : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {} |
| virtual ~VPRecipeBase() = default; |
| |
| /// \return the VPBasicBlock which this VPRecipe belongs to. |
| VPBasicBlock *getParent() { return Parent; } |
| const VPBasicBlock *getParent() const { return Parent; } |
| |
| /// The method which generates the output IR instructions that correspond to |
| /// this VPRecipe, thereby "executing" the VPlan. |
| virtual void execute(VPTransformState &State) = 0; |
| |
| /// Insert an unlinked recipe into a basic block immediately before |
| /// the specified recipe. |
| void insertBefore(VPRecipeBase *InsertPos); |
| /// Insert an unlinked recipe into \p BB immediately before the insertion |
| /// point \p IP; |
| void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP); |
| |
| /// Insert an unlinked Recipe into a basic block immediately after |
| /// the specified Recipe. |
| void insertAfter(VPRecipeBase *InsertPos); |
| |
| /// Unlink this recipe from its current VPBasicBlock and insert it into |
| /// the VPBasicBlock that MovePos lives in, right after MovePos. |
| void moveAfter(VPRecipeBase *MovePos); |
| |
| /// Unlink this recipe and insert into BB before I. |
| /// |
| /// \pre I is a valid iterator into BB. |
| void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I); |
| |
| /// This method unlinks 'this' from the containing basic block, but does not |
| /// delete it. |
| void removeFromParent(); |
| |
| /// This method unlinks 'this' from the containing basic block and deletes it. |
| /// |
| /// \returns an iterator pointing to the element after the erased one |
| iplist<VPRecipeBase>::iterator eraseFromParent(); |
| |
| /// Returns the underlying instruction, if the recipe is a VPValue or nullptr |
| /// otherwise. |
| Instruction *getUnderlyingInstr() { |
| return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); |
| } |
| const Instruction *getUnderlyingInstr() const { |
| return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); |
| } |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPDef *D) { |
| // All VPDefs are also VPRecipeBases. |
| return true; |
| } |
| |
| static inline bool classof(const VPUser *U) { |
| return U->getVPUserID() == VPUser::VPUserID::Recipe; |
| } |
| |
| /// Returns true if the recipe may have side-effects. |
| bool mayHaveSideEffects() const; |
| |
| /// Returns true for PHI-like recipes. |
| bool isPhi() const { |
| return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC; |
| } |
| |
| /// Returns true if the recipe may read from memory. |
| bool mayReadFromMemory() const; |
| |
| /// Returns true if the recipe may write to memory. |
| bool mayWriteToMemory() const; |
| |
| /// Returns true if the recipe may read from or write to memory. |
| bool mayReadOrWriteMemory() const { |
| return mayReadFromMemory() || mayWriteToMemory(); |
| } |
| }; |
| |
| // Helper macro to define common classof implementations for recipes. |
| #define VP_CLASSOF_IMPL(VPDefID) \ |
| static inline bool classof(const VPDef *D) { \ |
| return D->getVPDefID() == VPDefID; \ |
| } \ |
| static inline bool classof(const VPValue *V) { \ |
| auto *R = V->getDefiningRecipe(); \ |
| return R && R->getVPDefID() == VPDefID; \ |
| } \ |
| static inline bool classof(const VPUser *U) { \ |
| auto *R = dyn_cast<VPRecipeBase>(U); \ |
| return R && R->getVPDefID() == VPDefID; \ |
| } \ |
| static inline bool classof(const VPRecipeBase *R) { \ |
| return R->getVPDefID() == VPDefID; \ |
| } |
| |
| /// This is a concrete Recipe that models a single VPlan-level instruction. |
| /// While as any Recipe it may generate a sequence of IR instructions when |
| /// executed, these instructions would always form a single-def expression as |
| /// the VPInstruction is also a single def-use vertex. |
| class VPInstruction : public VPRecipeBase, public VPValue { |
| friend class VPlanSlp; |
| |
| public: |
| /// VPlan opcodes, extending LLVM IR with idiomatics instructions. |
| enum { |
| FirstOrderRecurrenceSplice = |
| Instruction::OtherOpsEnd + 1, // Combines the incoming and previous |
| // values of a first-order recurrence. |
| Not, |
| ICmpULE, |
| SLPLoad, |
| SLPStore, |
| ActiveLaneMask, |
| CalculateTripCountMinusVF, |
| CanonicalIVIncrement, |
| CanonicalIVIncrementNUW, |
| // The next two are similar to the above, but instead increment the |
| // canonical IV separately for each unrolled part. |
| CanonicalIVIncrementForPart, |
| CanonicalIVIncrementForPartNUW, |
| BranchOnCount, |
| BranchOnCond |
| }; |
| |
| private: |
| typedef unsigned char OpcodeTy; |
| OpcodeTy Opcode; |
| FastMathFlags FMF; |
| DebugLoc DL; |
| |
| /// An optional name that can be used for the generated IR instruction. |
| const std::string Name; |
| |
| /// Utility method serving execute(): generates a single instance of the |
| /// modeled instruction. |
| void generateInstruction(VPTransformState &State, unsigned Part); |
| |
| protected: |
| void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } |
| |
| public: |
| VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL, |
| const Twine &Name = "") |
| : VPRecipeBase(VPDef::VPInstructionSC, Operands), VPValue(this), |
| Opcode(Opcode), DL(DL), Name(Name.str()) {} |
| |
| VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, |
| DebugLoc DL = {}, const Twine &Name = "") |
| : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name) {} |
| |
| VP_CLASSOF_IMPL(VPDef::VPInstructionSC) |
| |
| VPInstruction *clone() const { |
| SmallVector<VPValue *, 2> Operands(operands()); |
| return new VPInstruction(Opcode, Operands, DL, Name); |
| } |
| |
| unsigned getOpcode() const { return Opcode; } |
| |
| /// Generate the instruction. |
| /// TODO: We currently execute only per-part unless a specific instance is |
| /// provided. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the VPInstruction to \p O. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| |
| /// Print the VPInstruction to dbgs() (for debugging). |
| LLVM_DUMP_METHOD void dump() const; |
| #endif |
| |
| /// Return true if this instruction may modify memory. |
| bool mayWriteToMemory() const { |
| // TODO: we can use attributes of the called function to rule out memory |
| // modifications. |
| return Opcode == Instruction::Store || Opcode == Instruction::Call || |
| Opcode == Instruction::Invoke || Opcode == SLPStore; |
| } |
| |
| bool hasResult() const { |
| // CallInst may or may not have a result, depending on the called function. |
| // Conservatively return calls have results for now. |
| switch (getOpcode()) { |
| case Instruction::Ret: |
| case Instruction::Br: |
| case Instruction::Store: |
| case Instruction::Switch: |
| case Instruction::IndirectBr: |
| case Instruction::Resume: |
| case Instruction::CatchRet: |
| case Instruction::Unreachable: |
| case Instruction::Fence: |
| case Instruction::AtomicRMW: |
| case VPInstruction::BranchOnCond: |
| case VPInstruction::BranchOnCount: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| /// Set the fast-math flags. |
| void setFastMathFlags(FastMathFlags FMFNew); |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| if (getOperand(0) != Op) |
| return false; |
| switch (getOpcode()) { |
| default: |
| return false; |
| case VPInstruction::ActiveLaneMask: |
| case VPInstruction::CalculateTripCountMinusVF: |
| case VPInstruction::CanonicalIVIncrement: |
| case VPInstruction::CanonicalIVIncrementNUW: |
| case VPInstruction::CanonicalIVIncrementForPart: |
| case VPInstruction::CanonicalIVIncrementForPartNUW: |
| case VPInstruction::BranchOnCount: |
| return true; |
| }; |
| llvm_unreachable("switch should return"); |
| } |
| }; |
| |
| /// Class to record LLVM IR flag for a recipe along with it. |
| class VPRecipeWithIRFlags : public VPRecipeBase { |
| enum class OperationType : unsigned char { |
| OverflowingBinOp, |
| PossiblyExactOp, |
| GEPOp, |
| FPMathOp, |
| Other |
| }; |
| struct WrapFlagsTy { |
| char HasNUW : 1; |
| char HasNSW : 1; |
| }; |
| struct ExactFlagsTy { |
| char IsExact : 1; |
| }; |
| struct GEPFlagsTy { |
| char IsInBounds : 1; |
| }; |
| struct FastMathFlagsTy { |
| char AllowReassoc : 1; |
| char NoNaNs : 1; |
| char NoInfs : 1; |
| char NoSignedZeros : 1; |
| char AllowReciprocal : 1; |
| char AllowContract : 1; |
| char ApproxFunc : 1; |
| }; |
| |
| OperationType OpType; |
| |
| union { |
| WrapFlagsTy WrapFlags; |
| ExactFlagsTy ExactFlags; |
| GEPFlagsTy GEPFlags; |
| FastMathFlagsTy FMFs; |
| unsigned char AllFlags; |
| }; |
| |
| public: |
| template <typename IterT> |
| VPRecipeWithIRFlags(const unsigned char SC, iterator_range<IterT> Operands) |
| : VPRecipeBase(SC, Operands) { |
| OpType = OperationType::Other; |
| AllFlags = 0; |
| } |
| |
| template <typename IterT> |
| VPRecipeWithIRFlags(const unsigned char SC, iterator_range<IterT> Operands, |
| Instruction &I) |
| : VPRecipeWithIRFlags(SC, Operands) { |
| if (auto *Op = dyn_cast<OverflowingBinaryOperator>(&I)) { |
| OpType = OperationType::OverflowingBinOp; |
| WrapFlags.HasNUW = Op->hasNoUnsignedWrap(); |
| WrapFlags.HasNSW = Op->hasNoSignedWrap(); |
| } else if (auto *Op = dyn_cast<PossiblyExactOperator>(&I)) { |
| OpType = OperationType::PossiblyExactOp; |
| ExactFlags.IsExact = Op->isExact(); |
| } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { |
| OpType = OperationType::GEPOp; |
| GEPFlags.IsInBounds = GEP->isInBounds(); |
| } else if (auto *Op = dyn_cast<FPMathOperator>(&I)) { |
| OpType = OperationType::FPMathOp; |
| FastMathFlags FMF = Op->getFastMathFlags(); |
| FMFs.AllowReassoc = FMF.allowReassoc(); |
| FMFs.NoNaNs = FMF.noNaNs(); |
| FMFs.NoInfs = FMF.noInfs(); |
| FMFs.NoSignedZeros = FMF.noSignedZeros(); |
| FMFs.AllowReciprocal = FMF.allowReciprocal(); |
| FMFs.AllowContract = FMF.allowContract(); |
| FMFs.ApproxFunc = FMF.approxFunc(); |
| } |
| } |
| |
| static inline bool classof(const VPRecipeBase *R) { |
| return R->getVPDefID() == VPRecipeBase::VPWidenSC || |
| R->getVPDefID() == VPRecipeBase::VPWidenGEPSC || |
| R->getVPDefID() == VPRecipeBase::VPReplicateSC; |
| } |
| |
| /// Drop all poison-generating flags. |
| void dropPoisonGeneratingFlags() { |
| // NOTE: This needs to be kept in-sync with |
| // Instruction::dropPoisonGeneratingFlags. |
| switch (OpType) { |
| case OperationType::OverflowingBinOp: |
| WrapFlags.HasNUW = false; |
| WrapFlags.HasNSW = false; |
| break; |
| case OperationType::PossiblyExactOp: |
| ExactFlags.IsExact = false; |
| break; |
| case OperationType::GEPOp: |
| GEPFlags.IsInBounds = false; |
| break; |
| case OperationType::FPMathOp: |
| FMFs.NoNaNs = false; |
| FMFs.NoInfs = false; |
| break; |
| case OperationType::Other: |
| break; |
| } |
| } |
| |
| /// Set the IR flags for \p I. |
| void setFlags(Instruction *I) const { |
| switch (OpType) { |
| case OperationType::OverflowingBinOp: |
| I->setHasNoUnsignedWrap(WrapFlags.HasNUW); |
| I->setHasNoSignedWrap(WrapFlags.HasNSW); |
| break; |
| case OperationType::PossiblyExactOp: |
| I->setIsExact(ExactFlags.IsExact); |
| break; |
| case OperationType::GEPOp: |
| cast<GetElementPtrInst>(I)->setIsInBounds(GEPFlags.IsInBounds); |
| break; |
| case OperationType::FPMathOp: |
| I->setHasAllowReassoc(FMFs.AllowReassoc); |
| I->setHasNoNaNs(FMFs.NoNaNs); |
| I->setHasNoInfs(FMFs.NoInfs); |
| I->setHasNoSignedZeros(FMFs.NoSignedZeros); |
| I->setHasAllowReciprocal(FMFs.AllowReciprocal); |
| I->setHasAllowContract(FMFs.AllowContract); |
| I->setHasApproxFunc(FMFs.ApproxFunc); |
| break; |
| case OperationType::Other: |
| break; |
| } |
| } |
| |
| bool isInBounds() const { |
| assert(OpType == OperationType::GEPOp && |
| "recipe doesn't have inbounds flag"); |
| return GEPFlags.IsInBounds; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| FastMathFlags getFastMathFlags() const { |
| FastMathFlags Res; |
| Res.setAllowReassoc(FMFs.AllowReassoc); |
| Res.setNoNaNs(FMFs.NoNaNs); |
| Res.setNoInfs(FMFs.NoInfs); |
| Res.setNoSignedZeros(FMFs.NoSignedZeros); |
| Res.setAllowReciprocal(FMFs.AllowReciprocal); |
| Res.setAllowContract(FMFs.AllowContract); |
| Res.setApproxFunc(FMFs.ApproxFunc); |
| return Res; |
| } |
| |
| void printFlags(raw_ostream &O) const; |
| #endif |
| }; |
| |
| /// VPWidenRecipe is a recipe for producing a copy of vector type its |
| /// ingredient. This recipe covers most of the traditional vectorization cases |
| /// where each ingredient transforms into a vectorized version of itself. |
| class VPWidenRecipe : public VPRecipeWithIRFlags, public VPValue { |
| |
| public: |
| template <typename IterT> |
| VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands) |
| : VPRecipeWithIRFlags(VPDef::VPWidenSC, Operands, I), VPValue(this, &I) {} |
| |
| ~VPWidenRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenSC) |
| |
| /// Produce widened copies of all Ingredients. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// VPWidenCastRecipe is a recipe to create vector cast instructions. |
| class VPWidenCastRecipe : public VPRecipeBase, public VPValue { |
| /// Cast instruction opcode. |
| Instruction::CastOps Opcode; |
| |
| /// Result type for the cast. |
| Type *ResultTy; |
| |
| public: |
| VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, |
| CastInst *UI = nullptr) |
| : VPRecipeBase(VPDef::VPWidenCastSC, Op), VPValue(this, UI), |
| Opcode(Opcode), ResultTy(ResultTy) { |
| assert((!UI || UI->getOpcode() == Opcode) && |
| "opcode of underlying cast doesn't match"); |
| assert((!UI || UI->getType() == ResultTy) && |
| "result type of underlying cast doesn't match"); |
| } |
| |
| ~VPWidenCastRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenCastSC) |
| |
| /// Produce widened copies of the cast. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| Instruction::CastOps getOpcode() const { return Opcode; } |
| |
| /// Returns the result type of the cast. |
| Type *getResultType() const { return ResultTy; } |
| }; |
| |
| /// A recipe for widening Call instructions. |
| class VPWidenCallRecipe : public VPRecipeBase, public VPValue { |
| /// ID of the vector intrinsic to call when widening the call. If set the |
| /// Intrinsic::not_intrinsic, a library call will be used instead. |
| Intrinsic::ID VectorIntrinsicID; |
| /// If this recipe represents a library call, Variant stores a pointer to |
| /// the chosen function. There is a 1:1 mapping between a given VF and the |
| /// chosen vectorized variant, so there will be a different vplan for each |
| /// VF with a valid variant. |
| Function *Variant; |
| |
| public: |
| template <typename IterT> |
| VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments, |
| Intrinsic::ID VectorIntrinsicID, |
| Function *Variant = nullptr) |
| : VPRecipeBase(VPDef::VPWidenCallSC, CallArguments), VPValue(this, &I), |
| VectorIntrinsicID(VectorIntrinsicID), Variant(Variant) {} |
| |
| ~VPWidenCallRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenCallSC) |
| |
| /// Produce a widened version of the call instruction. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A recipe for widening select instructions. |
| struct VPWidenSelectRecipe : public VPRecipeBase, public VPValue { |
| template <typename IterT> |
| VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands) |
| : VPRecipeBase(VPDef::VPWidenSelectSC, Operands), VPValue(this, &I) {} |
| |
| ~VPWidenSelectRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenSelectSC) |
| |
| /// Produce a widened version of the select instruction. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| VPValue *getCond() const { |
| return getOperand(0); |
| } |
| |
| bool isInvariantCond() const { |
| return getCond()->isDefinedOutsideVectorRegions(); |
| } |
| }; |
| |
| /// A recipe for handling GEP instructions. |
| class VPWidenGEPRecipe : public VPRecipeWithIRFlags, public VPValue { |
| bool isPointerLoopInvariant() const { |
| return getOperand(0)->isDefinedOutsideVectorRegions(); |
| } |
| |
| bool isIndexLoopInvariant(unsigned I) const { |
| return getOperand(I + 1)->isDefinedOutsideVectorRegions(); |
| } |
| |
| bool areAllOperandsInvariant() const { |
| return all_of(operands(), [](VPValue *Op) { |
| return Op->isDefinedOutsideVectorRegions(); |
| }); |
| } |
| |
| public: |
| template <typename IterT> |
| VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands) |
| : VPRecipeWithIRFlags(VPDef::VPWidenGEPSC, Operands, *GEP), |
| VPValue(this, GEP) {} |
| |
| ~VPWidenGEPRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenGEPSC) |
| |
| /// Generate the gep nodes. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A pure virtual base class for all recipes modeling header phis, including |
| /// phis for first order recurrences, pointer inductions and reductions. The |
| /// start value is the first operand of the recipe and the incoming value from |
| /// the backedge is the second operand. |
| /// |
| /// Inductions are modeled using the following sub-classes: |
| /// * VPCanonicalIVPHIRecipe: Canonical scalar induction of the vector loop, |
| /// starting at a specified value (zero for the main vector loop, the resume |
| /// value for the epilogue vector loop) and stepping by 1. The induction |
| /// controls exiting of the vector loop by comparing against the vector trip |
| /// count. Produces a single scalar PHI for the induction value per |
| /// iteration. |
| /// * VPWidenIntOrFpInductionRecipe: Generates vector values for integer and |
| /// floating point inductions with arbitrary start and step values. Produces |
| /// a vector PHI per-part. |
| /// * VPDerivedIVRecipe: Converts the canonical IV value to the corresponding |
| /// value of an IV with different start and step values. Produces a single |
| /// scalar value per iteration |
| /// * VPScalarIVStepsRecipe: Generates scalar values per-lane based on a |
| /// canonical or derived induction. |
| /// * VPWidenPointerInductionRecipe: Generate vector and scalar values for a |
| /// pointer induction. Produces either a vector PHI per-part or scalar values |
| /// per-lane based on the canonical induction. |
| class VPHeaderPHIRecipe : public VPRecipeBase, public VPValue { |
| protected: |
| VPHeaderPHIRecipe(unsigned char VPDefID, Instruction *UnderlyingInstr, |
| VPValue *Start = nullptr) |
| : VPRecipeBase(VPDefID, {}), VPValue(this, UnderlyingInstr) { |
| if (Start) |
| addOperand(Start); |
| } |
| |
| public: |
| ~VPHeaderPHIRecipe() override = default; |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPRecipeBase *B) { |
| return B->getVPDefID() >= VPDef::VPFirstHeaderPHISC && |
| B->getVPDefID() <= VPDef::VPLastHeaderPHISC; |
| } |
| static inline bool classof(const VPValue *V) { |
| auto *B = V->getDefiningRecipe(); |
| return B && B->getVPDefID() >= VPRecipeBase::VPFirstHeaderPHISC && |
| B->getVPDefID() <= VPRecipeBase::VPLastHeaderPHISC; |
| } |
| |
| /// Generate the phi nodes. |
| void execute(VPTransformState &State) override = 0; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override = 0; |
| #endif |
| |
| /// Returns the start value of the phi, if one is set. |
| VPValue *getStartValue() { |
| return getNumOperands() == 0 ? nullptr : getOperand(0); |
| } |
| VPValue *getStartValue() const { |
| return getNumOperands() == 0 ? nullptr : getOperand(0); |
| } |
| |
| /// Update the start value of the recipe. |
| void setStartValue(VPValue *V) { setOperand(0, V); } |
| |
| /// Returns the incoming value from the loop backedge. |
| virtual VPValue *getBackedgeValue() { |
| return getOperand(1); |
| } |
| |
| /// Returns the backedge value as a recipe. The backedge value is guaranteed |
| /// to be a recipe. |
| virtual VPRecipeBase &getBackedgeRecipe() { |
| return *getBackedgeValue()->getDefiningRecipe(); |
| } |
| }; |
| |
| /// A recipe for handling phi nodes of integer and floating-point inductions, |
| /// producing their vector values. |
| class VPWidenIntOrFpInductionRecipe : public VPHeaderPHIRecipe { |
| PHINode *IV; |
| TruncInst *Trunc; |
| const InductionDescriptor &IndDesc; |
| |
| public: |
| VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step, |
| const InductionDescriptor &IndDesc) |
| : VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start), IV(IV), |
| Trunc(nullptr), IndDesc(IndDesc) { |
| addOperand(Step); |
| } |
| |
| VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step, |
| const InductionDescriptor &IndDesc, |
| TruncInst *Trunc) |
| : VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, Trunc, Start), |
| IV(IV), Trunc(Trunc), IndDesc(IndDesc) { |
| addOperand(Step); |
| } |
| |
| ~VPWidenIntOrFpInductionRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenIntOrFpInductionSC) |
| |
| /// Generate the vectorized and scalarized versions of the phi node as |
| /// needed by their users. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| VPValue *getBackedgeValue() override { |
| // TODO: All operands of base recipe must exist and be at same index in |
| // derived recipe. |
| llvm_unreachable( |
| "VPWidenIntOrFpInductionRecipe generates its own backedge value"); |
| } |
| |
| VPRecipeBase &getBackedgeRecipe() override { |
| // TODO: All operands of base recipe must exist and be at same index in |
| // derived recipe. |
| llvm_unreachable( |
| "VPWidenIntOrFpInductionRecipe generates its own backedge value"); |
| } |
| |
| /// Returns the step value of the induction. |
| VPValue *getStepValue() { return getOperand(1); } |
| const VPValue *getStepValue() const { return getOperand(1); } |
| |
| /// Returns the first defined value as TruncInst, if it is one or nullptr |
| /// otherwise. |
| TruncInst *getTruncInst() { return Trunc; } |
| const TruncInst *getTruncInst() const { return Trunc; } |
| |
| PHINode *getPHINode() { return IV; } |
| |
| /// Returns the induction descriptor for the recipe. |
| const InductionDescriptor &getInductionDescriptor() const { return IndDesc; } |
| |
| /// Returns true if the induction is canonical, i.e. starting at 0 and |
| /// incremented by UF * VF (= the original IV is incremented by 1). |
| bool isCanonical() const; |
| |
| /// Returns the scalar type of the induction. |
| const Type *getScalarType() const { |
| return Trunc ? Trunc->getType() : IV->getType(); |
| } |
| }; |
| |
| class VPWidenPointerInductionRecipe : public VPHeaderPHIRecipe { |
| const InductionDescriptor &IndDesc; |
| |
| bool IsScalarAfterVectorization; |
| |
| public: |
| /// Create a new VPWidenPointerInductionRecipe for \p Phi with start value \p |
| /// Start. |
| VPWidenPointerInductionRecipe(PHINode *Phi, VPValue *Start, VPValue *Step, |
| const InductionDescriptor &IndDesc, |
| bool IsScalarAfterVectorization) |
| : VPHeaderPHIRecipe(VPDef::VPWidenPointerInductionSC, Phi), |
| IndDesc(IndDesc), |
| IsScalarAfterVectorization(IsScalarAfterVectorization) { |
| addOperand(Start); |
| addOperand(Step); |
| } |
| |
| ~VPWidenPointerInductionRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenPointerInductionSC) |
| |
| /// Generate vector values for the pointer induction. |
| void execute(VPTransformState &State) override; |
| |
| /// Returns true if only scalar values will be generated. |
| bool onlyScalarsGenerated(ElementCount VF); |
| |
| /// Returns the induction descriptor for the recipe. |
| const InductionDescriptor &getInductionDescriptor() const { return IndDesc; } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A recipe for handling header phis that are widened in the vector loop. |
| /// In the VPlan native path, all incoming VPValues & VPBasicBlock pairs are |
| /// managed in the recipe directly. |
| class VPWidenPHIRecipe : public VPHeaderPHIRecipe { |
| /// List of incoming blocks. Only used in the VPlan native path. |
| SmallVector<VPBasicBlock *, 2> IncomingBlocks; |
| |
| public: |
| /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start. |
| VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr) |
| : VPHeaderPHIRecipe(VPDef::VPWidenPHISC, Phi) { |
| if (Start) |
| addOperand(Start); |
| } |
| |
| ~VPWidenPHIRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenPHISC) |
| |
| /// Generate the phi/select nodes. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi. |
| void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) { |
| addOperand(IncomingV); |
| IncomingBlocks.push_back(IncomingBlock); |
| } |
| |
| /// Returns the \p I th incoming VPBasicBlock. |
| VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; } |
| |
| /// Returns the \p I th incoming VPValue. |
| VPValue *getIncomingValue(unsigned I) { return getOperand(I); } |
| }; |
| |
| /// A recipe for handling first-order recurrence phis. The start value is the |
| /// first operand of the recipe and the incoming value from the backedge is the |
| /// second operand. |
| struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe { |
| VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start) |
| : VPHeaderPHIRecipe(VPDef::VPFirstOrderRecurrencePHISC, Phi, &Start) {} |
| |
| VP_CLASSOF_IMPL(VPDef::VPFirstOrderRecurrencePHISC) |
| |
| static inline bool classof(const VPHeaderPHIRecipe *R) { |
| return R->getVPDefID() == VPDef::VPFirstOrderRecurrencePHISC; |
| } |
| |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A recipe for handling reduction phis. The start value is the first operand |
| /// of the recipe and the incoming value from the backedge is the second |
| /// operand. |
| class VPReductionPHIRecipe : public VPHeaderPHIRecipe { |
| /// Descriptor for the reduction. |
| const RecurrenceDescriptor &RdxDesc; |
| |
| /// The phi is part of an in-loop reduction. |
| bool IsInLoop; |
| |
| /// The phi is part of an ordered reduction. Requires IsInLoop to be true. |
| bool IsOrdered; |
| |
| public: |
| /// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p |
| /// RdxDesc. |
| VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc, |
| VPValue &Start, bool IsInLoop = false, |
| bool IsOrdered = false) |
| : VPHeaderPHIRecipe(VPDef::VPReductionPHISC, Phi, &Start), |
| RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) { |
| assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop"); |
| } |
| |
| ~VPReductionPHIRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPReductionPHISC) |
| |
| static inline bool classof(const VPHeaderPHIRecipe *R) { |
| return R->getVPDefID() == VPDef::VPReductionPHISC; |
| } |
| |
| /// Generate the phi/select nodes. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| const RecurrenceDescriptor &getRecurrenceDescriptor() const { |
| return RdxDesc; |
| } |
| |
| /// Returns true, if the phi is part of an ordered reduction. |
| bool isOrdered() const { return IsOrdered; } |
| |
| /// Returns true, if the phi is part of an in-loop reduction. |
| bool isInLoop() const { return IsInLoop; } |
| }; |
| |
| /// A recipe for vectorizing a phi-node as a sequence of mask-based select |
| /// instructions. |
| class VPBlendRecipe : public VPRecipeBase, public VPValue { |
| PHINode *Phi; |
| |
| public: |
| /// The blend operation is a User of the incoming values and of their |
| /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value |
| /// might be incoming with a full mask for which there is no VPValue. |
| VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands) |
| : VPRecipeBase(VPDef::VPBlendSC, Operands), VPValue(this, Phi), Phi(Phi) { |
| assert(Operands.size() > 0 && |
| ((Operands.size() == 1) || (Operands.size() % 2 == 0)) && |
| "Expected either a single incoming value or a positive even number " |
| "of operands"); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPBlendSC) |
| |
| /// Return the number of incoming values, taking into account that a single |
| /// incoming value has no mask. |
| unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; } |
| |
| /// Return incoming value number \p Idx. |
| VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } |
| |
| /// Return mask number \p Idx. |
| VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); } |
| |
| /// Generate the phi/select nodes. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| // Recursing through Blend recipes only, must terminate at header phi's the |
| // latest. |
| return all_of(users(), |
| [this](VPUser *U) { return U->onlyFirstLaneUsed(this); }); |
| } |
| }; |
| |
| /// VPInterleaveRecipe is a recipe for transforming an interleave group of load |
| /// or stores into one wide load/store and shuffles. The first operand of a |
| /// VPInterleave recipe is the address, followed by the stored values, followed |
| /// by an optional mask. |
| class VPInterleaveRecipe : public VPRecipeBase { |
| const InterleaveGroup<Instruction> *IG; |
| |
| /// Indicates if the interleave group is in a conditional block and requires a |
| /// mask. |
| bool HasMask = false; |
| |
| /// Indicates if gaps between members of the group need to be masked out or if |
| /// unusued gaps can be loaded speculatively. |
| bool NeedsMaskForGaps = false; |
| |
| public: |
| VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr, |
| ArrayRef<VPValue *> StoredValues, VPValue *Mask, |
| bool NeedsMaskForGaps) |
| : VPRecipeBase(VPDef::VPInterleaveSC, {Addr}), IG(IG), |
| NeedsMaskForGaps(NeedsMaskForGaps) { |
| for (unsigned i = 0; i < IG->getFactor(); ++i) |
| if (Instruction *I = IG->getMember(i)) { |
| if (I->getType()->isVoidTy()) |
| continue; |
| new VPValue(I, this); |
| } |
| |
| for (auto *SV : StoredValues) |
| addOperand(SV); |
| if (Mask) { |
| HasMask = true; |
| addOperand(Mask); |
| } |
| } |
| ~VPInterleaveRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPInterleaveSC) |
| |
| /// Return the address accessed by this recipe. |
| VPValue *getAddr() const { |
| return getOperand(0); // Address is the 1st, mandatory operand. |
| } |
| |
| /// Return the mask used by this recipe. Note that a full mask is represented |
| /// by a nullptr. |
| VPValue *getMask() const { |
| // Mask is optional and therefore the last, currently 2nd operand. |
| return HasMask ? getOperand(getNumOperands() - 1) : nullptr; |
| } |
| |
| /// Return the VPValues stored by this interleave group. If it is a load |
| /// interleave group, return an empty ArrayRef. |
| ArrayRef<VPValue *> getStoredValues() const { |
| // The first operand is the address, followed by the stored values, followed |
| // by an optional mask. |
| return ArrayRef<VPValue *>(op_begin(), getNumOperands()) |
| .slice(1, getNumStoreOperands()); |
| } |
| |
| /// Generate the wide load or store, and shuffles. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } |
| |
| /// Returns the number of stored operands of this interleave group. Returns 0 |
| /// for load interleave groups. |
| unsigned getNumStoreOperands() const { |
| return getNumOperands() - (HasMask ? 2 : 1); |
| } |
| |
| /// The recipe only uses the first lane of the address. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return Op == getAddr() && !llvm::is_contained(getStoredValues(), Op); |
| } |
| }; |
| |
| /// A recipe to represent inloop reduction operations, performing a reduction on |
| /// a vector operand into a scalar value, and adding the result to a chain. |
| /// The Operands are {ChainOp, VecOp, [Condition]}. |
| class VPReductionRecipe : public VPRecipeBase, public VPValue { |
| /// The recurrence decriptor for the reduction in question. |
| const RecurrenceDescriptor *RdxDesc; |
| /// Pointer to the TTI, needed to create the target reduction |
| const TargetTransformInfo *TTI; |
| |
| public: |
| VPReductionRecipe(const RecurrenceDescriptor *R, Instruction *I, |
| VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp, |
| const TargetTransformInfo *TTI) |
| : VPRecipeBase(VPDef::VPReductionSC, {ChainOp, VecOp}), VPValue(this, I), |
| RdxDesc(R), TTI(TTI) { |
| if (CondOp) |
| addOperand(CondOp); |
| } |
| |
| ~VPReductionRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPReductionSC) |
| |
| /// Generate the reduction in the loop |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// The VPValue of the scalar Chain being accumulated. |
| VPValue *getChainOp() const { return getOperand(0); } |
| /// The VPValue of the vector value to be reduced. |
| VPValue *getVecOp() const { return getOperand(1); } |
| /// The VPValue of the condition for the block. |
| VPValue *getCondOp() const { |
| return getNumOperands() > 2 ? getOperand(2) : nullptr; |
| } |
| }; |
| |
| /// VPReplicateRecipe replicates a given instruction producing multiple scalar |
| /// copies of the original scalar type, one per lane, instead of producing a |
| /// single copy of widened type for all lanes. If the instruction is known to be |
| /// uniform only one copy, per lane zero, will be generated. |
| class VPReplicateRecipe : public VPRecipeWithIRFlags, public VPValue { |
| /// Indicator if only a single replica per lane is needed. |
| bool IsUniform; |
| |
| /// Indicator if the replicas are also predicated. |
| bool IsPredicated; |
| |
| public: |
| template <typename IterT> |
| VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands, |
| bool IsUniform, VPValue *Mask = nullptr) |
| : VPRecipeWithIRFlags(VPDef::VPReplicateSC, Operands, *I), |
| VPValue(this, I), IsUniform(IsUniform), IsPredicated(Mask) { |
| if (Mask) |
| addOperand(Mask); |
| } |
| |
| ~VPReplicateRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPReplicateSC) |
| |
| /// Generate replicas of the desired Ingredient. Replicas will be generated |
| /// for all parts and lanes unless a specific part and lane are specified in |
| /// the \p State. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| bool isUniform() const { return IsUniform; } |
| |
| bool isPredicated() const { return IsPredicated; } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return isUniform(); |
| } |
| |
| /// Returns true if the recipe uses scalars of operand \p Op. |
| bool usesScalars(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| |
| /// Returns true if the recipe is used by a widened recipe via an intervening |
| /// VPPredInstPHIRecipe. In this case, the scalar values should also be packed |
| /// in a vector. |
| bool shouldPack() const; |
| |
| /// Return the mask of a predicated VPReplicateRecipe. |
| VPValue *getMask() { |
| assert(isPredicated() && "Trying to get the mask of a unpredicated recipe"); |
| return getOperand(getNumOperands() - 1); |
| } |
| }; |
| |
| /// A recipe for generating conditional branches on the bits of a mask. |
| class VPBranchOnMaskRecipe : public VPRecipeBase { |
| public: |
| VPBranchOnMaskRecipe(VPValue *BlockInMask) |
| : VPRecipeBase(VPDef::VPBranchOnMaskSC, {}) { |
| if (BlockInMask) // nullptr means all-one mask. |
| addOperand(BlockInMask); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPBranchOnMaskSC) |
| |
| /// Generate the extraction of the appropriate bit from the block mask and the |
| /// conditional branch. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override { |
| O << Indent << "BRANCH-ON-MASK "; |
| if (VPValue *Mask = getMask()) |
| Mask->printAsOperand(O, SlotTracker); |
| else |
| O << " All-One"; |
| } |
| #endif |
| |
| /// Return the mask used by this recipe. Note that a full mask is represented |
| /// by a nullptr. |
| VPValue *getMask() const { |
| assert(getNumOperands() <= 1 && "should have either 0 or 1 operands"); |
| // Mask is optional. |
| return getNumOperands() == 1 ? getOperand(0) : nullptr; |
| } |
| |
| /// Returns true if the recipe uses scalars of operand \p Op. |
| bool usesScalars(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| }; |
| |
| /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when |
| /// control converges back from a Branch-on-Mask. The phi nodes are needed in |
| /// order to merge values that are set under such a branch and feed their uses. |
| /// The phi nodes can be scalar or vector depending on the users of the value. |
| /// This recipe works in concert with VPBranchOnMaskRecipe. |
| class VPPredInstPHIRecipe : public VPRecipeBase, public VPValue { |
| public: |
| /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi |
| /// nodes after merging back from a Branch-on-Mask. |
| VPPredInstPHIRecipe(VPValue *PredV) |
| : VPRecipeBase(VPDef::VPPredInstPHISC, PredV), VPValue(this) {} |
| ~VPPredInstPHIRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPPredInstPHISC) |
| |
| /// Generates phi nodes for live-outs as needed to retain SSA form. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns true if the recipe uses scalars of operand \p Op. |
| bool usesScalars(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| }; |
| |
| /// A Recipe for widening load/store operations. |
| /// The recipe uses the following VPValues: |
| /// - For load: Address, optional mask |
| /// - For store: Address, stored value, optional mask |
| /// TODO: We currently execute only per-part unless a specific instance is |
| /// provided. |
| class VPWidenMemoryInstructionRecipe : public VPRecipeBase { |
| Instruction &Ingredient; |
| |
| // Whether the loaded-from / stored-to addresses are consecutive. |
| bool Consecutive; |
| |
| // Whether the consecutive loaded/stored addresses are in reverse order. |
| bool Reverse; |
| |
| void setMask(VPValue *Mask) { |
| if (!Mask) |
| return; |
| addOperand(Mask); |
| } |
| |
| bool isMasked() const { |
| return isStore() ? getNumOperands() == 3 : getNumOperands() == 2; |
| } |
| |
| public: |
| VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask, |
| bool Consecutive, bool Reverse) |
| : VPRecipeBase(VPDef::VPWidenMemoryInstructionSC, {Addr}), |
| Ingredient(Load), Consecutive(Consecutive), Reverse(Reverse) { |
| assert((Consecutive || !Reverse) && "Reverse implies consecutive"); |
| new VPValue(this, &Load); |
| setMask(Mask); |
| } |
| |
| VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr, |
| VPValue *StoredValue, VPValue *Mask, |
| bool Consecutive, bool Reverse) |
| : VPRecipeBase(VPDef::VPWidenMemoryInstructionSC, {Addr, StoredValue}), |
| Ingredient(Store), Consecutive(Consecutive), Reverse(Reverse) { |
| assert((Consecutive || !Reverse) && "Reverse implies consecutive"); |
| setMask(Mask); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenMemoryInstructionSC) |
| |
| /// Return the address accessed by this recipe. |
| VPValue *getAddr() const { |
| return getOperand(0); // Address is the 1st, mandatory operand. |
| } |
| |
| /// Return the mask used by this recipe. Note that a full mask is represented |
| /// by a nullptr. |
| VPValue *getMask() const { |
| // Mask is optional and therefore the last operand. |
| return isMasked() ? getOperand(getNumOperands() - 1) : nullptr; |
| } |
| |
| /// Returns true if this recipe is a store. |
| bool isStore() const { return isa<StoreInst>(Ingredient); } |
| |
| /// Return the address accessed by this recipe. |
| VPValue *getStoredValue() const { |
| assert(isStore() && "Stored value only available for store instructions"); |
| return getOperand(1); // Stored value is the 2nd, mandatory operand. |
| } |
| |
| // Return whether the loaded-from / stored-to addresses are consecutive. |
| bool isConsecutive() const { return Consecutive; } |
| |
| // Return whether the consecutive loaded/stored addresses are in reverse |
| // order. |
| bool isReverse() const { return Reverse; } |
| |
| /// Generate the wide load/store. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| |
| // Widened, consecutive memory operations only demand the first lane of |
| // their address, unless the same operand is also stored. That latter can |
| // happen with opaque pointers. |
| return Op == getAddr() && isConsecutive() && |
| (!isStore() || Op != getStoredValue()); |
| } |
| |
| Instruction &getIngredient() const { return Ingredient; } |
| }; |
| |
| /// Recipe to expand a SCEV expression. |
| class VPExpandSCEVRecipe : public VPRecipeBase, public VPValue { |
| const SCEV *Expr; |
| ScalarEvolution &SE; |
| |
| public: |
| VPExpandSCEVRecipe(const SCEV *Expr, ScalarEvolution &SE) |
| : VPRecipeBase(VPDef::VPExpandSCEVSC, {}), VPValue(this), Expr(Expr), |
| SE(SE) {} |
| |
| ~VPExpandSCEVRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPExpandSCEVSC) |
| |
| /// Generate a canonical vector induction variable of the vector loop, with |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| const SCEV *getSCEV() const { return Expr; } |
| }; |
| |
| /// Canonical scalar induction phi of the vector loop. Starting at the specified |
| /// start value (either 0 or the resume value when vectorizing the epilogue |
| /// loop). VPWidenCanonicalIVRecipe represents the vector version of the |
| /// canonical induction variable. |
| class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe { |
| DebugLoc DL; |
| |
| public: |
| VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL) |
| : VPHeaderPHIRecipe(VPDef::VPCanonicalIVPHISC, nullptr, StartV), DL(DL) {} |
| |
| ~VPCanonicalIVPHIRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPCanonicalIVPHISC) |
| |
| static inline bool classof(const VPHeaderPHIRecipe *D) { |
| return D->getVPDefID() == VPDef::VPCanonicalIVPHISC; |
| } |
| |
| /// Generate the canonical scalar induction phi of the vector loop. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns the scalar type of the induction. |
| const Type *getScalarType() const { |
| return getOperand(0)->getLiveInIRValue()->getType(); |
| } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| |
| /// Check if the induction described by \p Kind, /p Start and \p Step is |
| /// canonical, i.e. has the same start, step (of 1), and type as the |
| /// canonical IV. |
| bool isCanonical(InductionDescriptor::InductionKind Kind, VPValue *Start, |
| VPValue *Step, Type *Ty) const; |
| }; |
| |
| /// A recipe for generating the active lane mask for the vector loop that is |
| /// used to predicate the vector operations. |
| /// TODO: It would be good to use the existing VPWidenPHIRecipe instead and |
| /// remove VPActiveLaneMaskPHIRecipe. |
| class VPActiveLaneMaskPHIRecipe : public VPHeaderPHIRecipe { |
| DebugLoc DL; |
| |
| public: |
| VPActiveLaneMaskPHIRecipe(VPValue *StartMask, DebugLoc DL) |
| : VPHeaderPHIRecipe(VPDef::VPActiveLaneMaskPHISC, nullptr, StartMask), |
| DL(DL) {} |
| |
| ~VPActiveLaneMaskPHIRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPActiveLaneMaskPHISC) |
| |
| static inline bool classof(const VPHeaderPHIRecipe *D) { |
| return D->getVPDefID() == VPDef::VPActiveLaneMaskPHISC; |
| } |
| |
| /// Generate the active lane mask phi of the vector loop. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A Recipe for widening the canonical induction variable of the vector loop. |
| class VPWidenCanonicalIVRecipe : public VPRecipeBase, public VPValue { |
| public: |
| VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV) |
| : VPRecipeBase(VPDef::VPWidenCanonicalIVSC, {CanonicalIV}), |
| VPValue(this) {} |
| |
| ~VPWidenCanonicalIVRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenCanonicalIVSC) |
| |
| /// Generate a canonical vector induction variable of the vector loop, with |
| /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and |
| /// step = <VF*UF, VF*UF, ..., VF*UF>. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns the scalar type of the induction. |
| const Type *getScalarType() const { |
| return cast<VPCanonicalIVPHIRecipe>(getOperand(0)->getDefiningRecipe()) |
| ->getScalarType(); |
| } |
| }; |
| |
| /// A recipe for converting the canonical IV value to the corresponding value of |
| /// an IV with different start and step values, using Start + CanonicalIV * |
| /// Step. |
| class VPDerivedIVRecipe : public VPRecipeBase, public VPValue { |
| /// The type of the result value. It may be smaller than the type of the |
| /// induction and in this case it will get truncated to ResultTy. |
| Type *ResultTy; |
| |
| /// Induction descriptor for the induction the canonical IV is transformed to. |
| const InductionDescriptor &IndDesc; |
| |
| public: |
| VPDerivedIVRecipe(const InductionDescriptor &IndDesc, VPValue *Start, |
| VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step, |
| Type *ResultTy) |
| : VPRecipeBase(VPDef::VPDerivedIVSC, {Start, CanonicalIV, Step}), |
| VPValue(this), ResultTy(ResultTy), IndDesc(IndDesc) {} |
| |
| ~VPDerivedIVRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPDerivedIVSC) |
| |
| /// Generate the transformed value of the induction at offset StartValue (1. |
| /// operand) + IV (2. operand) * StepValue (3, operand). |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| VPValue *getStartValue() const { return getOperand(0); } |
| VPValue *getCanonicalIV() const { return getOperand(1); } |
| VPValue *getStepValue() const { return getOperand(2); } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| }; |
| |
| /// A recipe for handling phi nodes of integer and floating-point inductions, |
| /// producing their scalar values. |
| class VPScalarIVStepsRecipe : public VPRecipeBase, public VPValue { |
| const InductionDescriptor &IndDesc; |
| |
| public: |
| VPScalarIVStepsRecipe(const InductionDescriptor &IndDesc, VPValue *IV, |
| VPValue *Step) |
| : VPRecipeBase(VPDef::VPScalarIVStepsSC, {IV, Step}), VPValue(this), |
| IndDesc(IndDesc) {} |
| |
| ~VPScalarIVStepsRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPScalarIVStepsSC) |
| |
| /// Generate the scalarized versions of the phi node as needed by their users. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| VPValue *getStepValue() const { return getOperand(1); } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| }; |
| |
| /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It |
| /// holds a sequence of zero or more VPRecipe's each representing a sequence of |
| /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes. |
| class VPBasicBlock : public VPBlockBase { |
| public: |
| using RecipeListTy = iplist<VPRecipeBase>; |
| |
| private: |
| /// The VPRecipes held in the order of output instructions to generate. |
| RecipeListTy Recipes; |
| |
| public: |
| VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) |
| : VPBlockBase(VPBasicBlockSC, Name.str()) { |
| if (Recipe) |
| appendRecipe(Recipe); |
| } |
| |
| ~VPBasicBlock() override { |
| while (!Recipes.empty()) |
| Recipes.pop_back(); |
| } |
| |
| /// Instruction iterators... |
| using iterator = RecipeListTy::iterator; |
| using const_iterator = RecipeListTy::const_iterator; |
| using reverse_iterator = RecipeListTy::reverse_iterator; |
| using const_reverse_iterator = RecipeListTy::const_reverse_iterator; |
| |
| //===--------------------------------------------------------------------===// |
| /// Recipe iterator methods |
| /// |
| inline iterator begin() { return Recipes.begin(); } |
| inline const_iterator begin() const { return Recipes.begin(); } |
| inline iterator end() { return Recipes.end(); } |
| inline const_iterator end() const { return Recipes.end(); } |
| |
| inline reverse_iterator rbegin() { return Recipes.rbegin(); } |
| inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } |
| inline reverse_iterator rend() { return Recipes.rend(); } |
| inline const_reverse_iterator rend() const { return Recipes.rend(); } |
| |
| inline size_t size() const { return Recipes.size(); } |
| inline bool empty() const { return Recipes.empty(); } |
| inline const VPRecipeBase &front() const { return Recipes.front(); } |
| inline VPRecipeBase &front() { return Recipes.front(); } |
| inline const VPRecipeBase &back() const { return Recipes.back(); } |
| inline VPRecipeBase &back() { return Recipes.back(); } |
| |
| /// Returns a reference to the list of recipes. |
| RecipeListTy &getRecipeList() { return Recipes; } |
| |
| /// Returns a pointer to a member of the recipe list. |
| static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { |
| return &VPBasicBlock::Recipes; |
| } |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPBlockBase *V) { |
| return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; |
| } |
| |
| void insert(VPRecipeBase *Recipe, iterator InsertPt) { |
| assert(Recipe && "No recipe to append."); |
| assert(!Recipe->Parent && "Recipe already in VPlan"); |
| Recipe->Parent = this; |
| Recipes.insert(InsertPt, Recipe); |
| } |
| |
| /// Augment the existing recipes of a VPBasicBlock with an additional |
| /// \p Recipe as the last recipe. |
| void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } |
| |
| /// The method which generates the output IR instructions that correspond to |
| /// this VPBasicBlock, thereby "executing" the VPlan. |
| void execute(VPTransformState *State) override; |
| |
| /// Return the position of the first non-phi node recipe in the block. |
| iterator getFirstNonPhi(); |
| |
| /// Returns an iterator range over the PHI-like recipes in the block. |
| iterator_range<iterator> phis() { |
| return make_range(begin(), getFirstNonPhi()); |
| } |
| |
| void dropAllReferences(VPValue *NewValue) override; |
| |
| /// Split current block at \p SplitAt by inserting a new block between the |
| /// current block and its successors and moving all recipes starting at |
| /// SplitAt to the new block. Returns the new block. |
| VPBasicBlock *splitAt(iterator SplitAt); |
| |
| VPRegionBlock *getEnclosingLoopRegion(); |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p |
| /// SlotTracker is used to print unnamed VPValue's using consequtive numbers. |
| /// |
| /// Note that the numbering is applied to the whole VPlan, so printing |
| /// individual blocks is consistent with the whole VPlan printing. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| using VPBlockBase::print; // Get the print(raw_stream &O) version. |
| #endif |
| |
| /// If the block has multiple successors, return the branch recipe terminating |
| /// the block. If there are no or only a single successor, return nullptr; |
| VPRecipeBase *getTerminator(); |
| const VPRecipeBase *getTerminator() const; |
| |
| /// Returns true if the block is exiting it's parent region. |
| bool isExiting() const; |
| |
| private: |
| /// Create an IR BasicBlock to hold the output instructions generated by this |
| /// VPBasicBlock, and return it. Update the CFGState accordingly. |
| BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); |
| }; |
| |
| /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks |
| /// which form a Single-Entry-Single-Exiting subgraph of the output IR CFG. |
| /// A VPRegionBlock may indicate that its contents are to be replicated several |
| /// times. This is designed to support predicated scalarization, in which a |
| /// scalar if-then code structure needs to be generated VF * UF times. Having |
| /// this replication indicator helps to keep a single model for multiple |
| /// candidate VF's. The actual replication takes place only once the desired VF |
| /// and UF have been determined. |
| class VPRegionBlock : public VPBlockBase { |
| /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. |
| VPBlockBase *Entry; |
| |
| /// Hold the Single Exiting block of the SESE region modelled by the |
| /// VPRegionBlock. |
| VPBlockBase *Exiting; |
| |
| /// An indicator whether this region is to generate multiple replicated |
| /// instances of output IR corresponding to its VPBlockBases. |
| bool IsReplicator; |
| |
| public: |
| VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, |
| const std::string &Name = "", bool IsReplicator = false) |
| : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exiting(Exiting), |
| IsReplicator(IsReplicator) { |
| assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); |
| assert(Exiting->getSuccessors().empty() && "Exit block has successors."); |
| Entry->setParent(this); |
| Exiting->setParent(this); |
| } |
| VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) |
| : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exiting(nullptr), |
| IsReplicator(IsReplicator) {} |
| |
| ~VPRegionBlock() override { |
| if (Entry) { |
| VPValue DummyValue; |
| Entry->dropAllReferences(&DummyValue); |
| deleteCFG(Entry); |
| } |
| } |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPBlockBase *V) { |
| return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; |
| } |
| |
| const VPBlockBase *getEntry() const { return Entry; } |
| VPBlockBase *getEntry() { return Entry; } |
| |
| /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p |
| /// EntryBlock must have no predecessors. |
| void setEntry(VPBlockBase *EntryBlock) { |
| assert(EntryBlock->getPredecessors().empty() && |
| "Entry block cannot have predecessors."); |
| Entry = EntryBlock; |
| EntryBlock->setParent(this); |
| } |
| |
| const VPBlockBase *getExiting() const { return Exiting; } |
| VPBlockBase *getExiting() { return Exiting; } |
| |
| /// Set \p ExitingBlock as the exiting VPBlockBase of this VPRegionBlock. \p |
| /// ExitingBlock must have no successors. |
| void setExiting(VPBlockBase *ExitingBlock) { |
| assert(ExitingBlock->getSuccessors().empty() && |
| "Exit block cannot have successors."); |
| Exiting = ExitingBlock; |
| ExitingBlock->setParent(this); |
| } |
| |
| /// Returns the pre-header VPBasicBlock of the loop region. |
| VPBasicBlock *getPreheaderVPBB() { |
| assert(!isReplicator() && "should only get pre-header of loop regions"); |
| return getSinglePredecessor()->getExitingBasicBlock(); |
| } |
| |
| /// An indicator whether this region is to generate multiple replicated |
| /// instances of output IR corresponding to its VPBlockBases. |
| bool isReplicator() const { return IsReplicator; } |
| |
| /// The method which generates the output IR instructions that correspond to |
| /// this VPRegionBlock, thereby "executing" the VPlan. |
| void execute(VPTransformState *State) override; |
| |
| void dropAllReferences(VPValue *NewValue) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with |
| /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using |
| /// consequtive numbers. |
| /// |
| /// Note that the numbering is applied to the whole VPlan, so printing |
| /// individual regions is consistent with the whole VPlan printing. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| using VPBlockBase::print; // Get the print(raw_stream &O) version. |
| #endif |
| }; |
| |
| /// VPlan models a candidate for vectorization, encoding various decisions take |
| /// to produce efficient output IR, including which branches, basic-blocks and |
| /// output IR instructions to generate, and their cost. VPlan holds a |
| /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry |
| /// VPBasicBlock. |
| class VPlan { |
| friend class VPlanPrinter; |
| friend class VPSlotTracker; |
| |
| /// Hold the single entry to the Hierarchical CFG of the VPlan, i.e. the |
| /// preheader of the vector loop. |
| VPBasicBlock *Entry; |
| |
| /// VPBasicBlock corresponding to the original preheader. Used to place |
| /// VPExpandSCEV recipes for expressions used during skeleton creation and the |
| /// rest of VPlan execution. |
| VPBasicBlock *Preheader; |
| |
| /// Holds the VFs applicable to this VPlan. |
| SmallSetVector<ElementCount, 2> VFs; |
| |
| /// Holds the UFs applicable to this VPlan. If empty, the VPlan is valid for |
| /// any UF. |
| SmallSetVector<unsigned, 2> UFs; |
| |
| /// Holds the name of the VPlan, for printing. |
| std::string Name; |
| |
| /// Represents the trip count of the original loop, for folding |
| /// the tail. |
| VPValue *TripCount = nullptr; |
| |
| /// Represents the backedge taken count of the original loop, for folding |
| /// the tail. It equals TripCount - 1. |
| VPValue *BackedgeTakenCount = nullptr; |
| |
| /// Represents the vector trip count. |
| VPValue VectorTripCount; |
| |
| /// Holds a mapping between Values and their corresponding VPValue inside |
| /// VPlan. |
| Value2VPValueTy Value2VPValue; |
| |
| /// Contains all the external definitions created for this VPlan. External |
| /// definitions are VPValues that hold a pointer to their underlying IR. |
| SmallVector<VPValue *, 16> VPLiveInsToFree; |
| |
| /// Indicates whether it is safe use the Value2VPValue mapping or if the |
| /// mapping cannot be used any longer, because it is stale. |
| bool Value2VPValueEnabled = true; |
| |
| /// Values used outside the plan. |
| MapVector<PHINode *, VPLiveOut *> LiveOuts; |
| |
| /// Mapping from SCEVs to the VPValues representing their expansions. |
| /// NOTE: This mapping is temporary and will be removed once all users have |
| /// been modeled in VPlan directly. |
| DenseMap<const SCEV *, VPValue *> SCEVToExpansion; |
| |
| public: |
| /// Construct a VPlan with original preheader \p Preheader, trip count \p TC |
| /// and \p Entry to the plan. At the moment, \p Preheader and \p Entry need to |
| /// be disconnected, as the bypass blocks between them are not yet modeled in |
| /// VPlan. |
| VPlan(VPBasicBlock *Preheader, VPValue *TC, VPBasicBlock *Entry) |
| : VPlan(Preheader, Entry) { |
| TripCount = TC; |
| } |
| |
| /// Construct a VPlan with original preheader \p Preheader and \p Entry to |
| /// the plan. At the moment, \p Preheader and \p Entry need to be |
| /// disconnected, as the bypass blocks between them are not yet modeled in |
| /// VPlan. |
| VPlan(VPBasicBlock *Preheader, VPBasicBlock *Entry) |
| : Entry(Entry), Preheader(Preheader) { |
| Entry->setPlan(this); |
| Preheader->setPlan(this); |
| assert(Preheader->getNumSuccessors() == 0 && |
| Preheader->getNumPredecessors() == 0 && |
| "preheader must be disconnected"); |
| } |
| |
| ~VPlan(); |
| |
| /// Create an initial VPlan with preheader and entry blocks. Creates a |
| /// VPExpandSCEVRecipe for \p TripCount and uses it as plan's trip count. |
| static VPlanPtr createInitialVPlan(const SCEV *TripCount, |
| ScalarEvolution &PSE); |
| |
| /// Prepare the plan for execution, setting up the required live-in values. |
| void prepareToExecute(Value *TripCount, Value *VectorTripCount, |
| Value *CanonicalIVStartValue, VPTransformState &State, |
| bool IsEpilogueVectorization); |
| |
| /// Generate the IR code for this VPlan. |
| void execute(VPTransformState *State); |
| |
| VPBasicBlock *getEntry() { return Entry; } |
| const VPBasicBlock *getEntry() const { return Entry; } |
| |
| /// The trip count of the original loop. |
| VPValue *getTripCount() const { |
| assert(TripCount && "trip count needs to be set before accessing it"); |
| return TripCount; |
| } |
| |
| /// The backedge taken count of the original loop. |
| VPValue *getOrCreateBackedgeTakenCount() { |
| if (!BackedgeTakenCount) |
| BackedgeTakenCount = new VPValue(); |
| return BackedgeTakenCount; |
| } |
| |
| /// The vector trip count. |
| VPValue &getVectorTripCount() { return VectorTripCount; } |
| |
| /// Mark the plan to indicate that using Value2VPValue is not safe any |
| /// longer, because it may be stale. |
| void disableValue2VPValue() { Value2VPValueEnabled = false; } |
| |
| void addVF(ElementCount VF) { VFs.insert(VF); } |
| |
| void setVF(ElementCount VF) { |
| assert(hasVF(VF) && "Cannot set VF not already in plan"); |
| VFs.clear(); |
| VFs.insert(VF); |
| } |
| |
| bool hasVF(ElementCount VF) { return VFs.count(VF); } |
| |
| bool hasScalarVFOnly() const { return VFs.size() == 1 && VFs[0].isScalar(); } |
| |
| bool hasUF(unsigned UF) const { return UFs.empty() || UFs.contains(UF); } |
| |
| void setUF(unsigned UF) { |
| assert(hasUF(UF) && "Cannot set the UF not already in plan"); |
| UFs.clear(); |
| UFs.insert(UF); |
| } |
| |
| /// Return a string with the name of the plan and the applicable VFs and UFs. |
| std::string getName() const; |
| |
| void setName(const Twine &newName) { Name = newName.str(); } |
| |
| void addVPValue(Value *V, VPValue *VPV) { |
| assert((Value2VPValueEnabled || VPV->isLiveIn()) && |
| "Value2VPValue mapping may be out of date!"); |
| assert(V && "Trying to add a null Value to VPlan"); |
| assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); |
| Value2VPValue[V] = VPV; |
| } |
| |
| /// Returns the VPValue for \p V. \p OverrideAllowed can be used to disable |
| /// /// checking whether it is safe to query VPValues using IR Values. |
| VPValue *getVPValue(Value *V, bool OverrideAllowed = false) { |
| assert(V && "Trying to get the VPValue of a null Value"); |
| assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); |
| assert((Value2VPValueEnabled || OverrideAllowed || |
| Value2VPValue[V]->isLiveIn()) && |
| "Value2VPValue mapping may be out of date!"); |
| return Value2VPValue[V]; |
| } |
| |
| /// Gets the VPValue for \p V or adds a new live-in (if none exists yet) for |
| /// \p V. |
| VPValue *getVPValueOrAddLiveIn(Value *V) { |
| assert(V && "Trying to get or add the VPValue of a null Value"); |
| if (!Value2VPValue.count(V)) { |
| VPValue *VPV = new VPValue(V); |
| VPLiveInsToFree.push_back(VPV); |
| addVPValue(V, VPV); |
| } |
| |
| return getVPValue(V); |
| } |
| |
| void removeVPValueFor(Value *V) { |
| assert(Value2VPValueEnabled && |
| "IR value to VPValue mapping may be out of date!"); |
| Value2VPValue.erase(V); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print this VPlan to \p O. |
| void print(raw_ostream &O) const; |
| |
| /// Print this VPlan in DOT format to \p O. |
| void printDOT(raw_ostream &O) const; |
| |
| /// Dump the plan to stderr (for debugging). |
| LLVM_DUMP_METHOD void dump() const; |
| #endif |
| |
| /// Returns a range mapping the values the range \p Operands to their |
| /// corresponding VPValues. |
| iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>> |
| mapToVPValues(User::op_range Operands) { |
| std::function<VPValue *(Value *)> Fn = [this](Value *Op) { |
| return getVPValueOrAddLiveIn(Op); |
| }; |
| return map_range(Operands, Fn); |
| } |
| |
| /// Returns the VPRegionBlock of the vector loop. |
| VPRegionBlock *getVectorLoopRegion() { |
| return cast<VPRegionBlock>(getEntry()->getSingleSuccessor()); |
| } |
| const VPRegionBlock *getVectorLoopRegion() const { |
| return cast<VPRegionBlock>(getEntry()->getSingleSuccessor()); |
| } |
| |
| /// Returns the canonical induction recipe of the vector loop. |
| VPCanonicalIVPHIRecipe *getCanonicalIV() { |
| VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock(); |
| if (EntryVPBB->empty()) { |
| // VPlan native path. |
| EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor()); |
| } |
| return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin()); |
| } |
| |
| /// Find and return the VPActiveLaneMaskPHIRecipe from the header - there |
| /// be only one at most. If there isn't one, then return nullptr. |
| VPActiveLaneMaskPHIRecipe *getActiveLaneMaskPhi(); |
| |
| void addLiveOut(PHINode *PN, VPValue *V); |
| |
| void removeLiveOut(PHINode *PN) { |
| delete LiveOuts[PN]; |
| LiveOuts.erase(PN); |
| } |
| |
| const MapVector<PHINode *, VPLiveOut *> &getLiveOuts() const { |
| return LiveOuts; |
| } |
| |
| VPValue *getSCEVExpansion(const SCEV *S) const { |
| auto I = SCEVToExpansion.find(S); |
| if (I == SCEVToExpansion.end()) |
| return nullptr; |
| return I->second; |
| } |
| |
| void addSCEVExpansion(const SCEV *S, VPValue *V) { |
| assert(!SCEVToExpansion.contains(S) && "SCEV already expanded"); |
| SCEVToExpansion[S] = V; |
| } |
| |
| /// \return The block corresponding to the original preheader. |
| VPBasicBlock *getPreheader() { return Preheader; } |
| const VPBasicBlock *getPreheader() const { return Preheader; } |
| |
| private: |
| /// Add to the given dominator tree the header block and every new basic block |
| /// that was created between it and the latch block, inclusive. |
| static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB, |
| BasicBlock *LoopPreHeaderBB, |
| BasicBlock *LoopExitBB); |
| }; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// VPlanPrinter prints a given VPlan to a given output stream. The printing is |
| /// indented and follows the dot format. |
| class VPlanPrinter { |
| raw_ostream &OS; |
| const VPlan &Plan; |
| unsigned Depth = 0; |
| unsigned TabWidth = 2; |
| std::string Indent; |
| unsigned BID = 0; |
| SmallDenseMap<const VPBlockBase *, unsigned> BlockID; |
| |
| VPSlotTracker SlotTracker; |
| |
| /// Handle indentation. |
| void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } |
| |
| /// Print a given \p Block of the Plan. |
| void dumpBlock(const VPBlockBase *Block); |
| |
| /// Print the information related to the CFG edges going out of a given |
| /// \p Block, followed by printing the successor blocks themselves. |
| void dumpEdges(const VPBlockBase *Block); |
| |
| /// Print a given \p BasicBlock, including its VPRecipes, followed by printing |
| /// its successor blocks. |
| void dumpBasicBlock(const VPBasicBlock *BasicBlock); |
| |
| /// Print a given \p Region of the Plan. |
| void dumpRegion(const VPRegionBlock *Region); |
| |
| unsigned getOrCreateBID(const VPBlockBase *Block) { |
| return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; |
| } |
| |
| Twine getOrCreateName(const VPBlockBase *Block); |
| |
| Twine getUID(const VPBlockBase *Block); |
| |
| /// Print the information related to a CFG edge between two VPBlockBases. |
| void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, |
| const Twine &Label); |
| |
| public: |
| VPlanPrinter(raw_ostream &O, const VPlan &P) |
| : OS(O), Plan(P), SlotTracker(&P) {} |
| |
| LLVM_DUMP_METHOD void dump(); |
| }; |
| |
| struct VPlanIngredient { |
| const Value *V; |
| |
| VPlanIngredient(const Value *V) : V(V) {} |
| |
| void print(raw_ostream &O) const; |
| }; |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { |
| I.print(OS); |
| return OS; |
| } |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { |
| Plan.print(OS); |
| return OS; |
| } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // VPlan Utilities |
| //===----------------------------------------------------------------------===// |
| |
| /// Class that provides utilities for VPBlockBases in VPlan. |
| class VPBlockUtils { |
| public: |
| VPBlockUtils() = delete; |
| |
| /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p |
| /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p |
| /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p BlockPtr's |
| /// successors are moved from \p BlockPtr to \p NewBlock. \p NewBlock must |
| /// have neither successors nor predecessors. |
| static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { |
| assert(NewBlock->getSuccessors().empty() && |
| NewBlock->getPredecessors().empty() && |
| "Can't insert new block with predecessors or successors."); |
| NewBlock->setParent(BlockPtr->getParent()); |
| SmallVector<VPBlockBase *> Succs(BlockPtr->successors()); |
| for (VPBlockBase *Succ : Succs) { |
| disconnectBlocks(BlockPtr, Succ); |
| connectBlocks(NewBlock, Succ); |
| } |
| connectBlocks(BlockPtr, NewBlock); |
| } |
| |
| /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p |
| /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p |
| /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr |
| /// parent to \p IfTrue and \p IfFalse. \p BlockPtr must have no successors |
| /// and \p IfTrue and \p IfFalse must have neither successors nor |
| /// predecessors. |
| static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, |
| VPBlockBase *BlockPtr) { |
| assert(IfTrue->getSuccessors().empty() && |
| "Can't insert IfTrue with successors."); |
| assert(IfFalse->getSuccessors().empty() && |
| "Can't insert IfFalse with successors."); |
| BlockPtr->setTwoSuccessors(IfTrue, IfFalse); |
| IfTrue->setPredecessors({BlockPtr}); |
| IfFalse->setPredecessors({BlockPtr}); |
| IfTrue->setParent(BlockPtr->getParent()); |
| IfFalse->setParent(BlockPtr->getParent()); |
| } |
| |
| /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to |
| /// the successors of \p From and \p From to the predecessors of \p To. Both |
| /// VPBlockBases must have the same parent, which can be null. Both |
| /// VPBlockBases can be already connected to other VPBlockBases. |
| static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { |
| assert((From->getParent() == To->getParent()) && |
| "Can't connect two block with different parents"); |
| assert(From->getNumSuccessors() < 2 && |
| "Blocks can't have more than two successors."); |
| From->appendSuccessor(To); |
| To->appendPredecessor(From); |
| } |
| |
| /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To |
| /// from the successors of \p From and \p From from the predecessors of \p To. |
| static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { |
| assert(To && "Successor to disconnect is null."); |
| From->removeSuccessor(To); |
| To->removePredecessor(From); |
| } |
| |
| /// Return an iterator range over \p Range which only includes \p BlockTy |
| /// blocks. The accesses are casted to \p BlockTy. |
| template <typename BlockTy, typename T> |
| static auto blocksOnly(const T &Range) { |
| // Create BaseTy with correct const-ness based on BlockTy. |
| using BaseTy = std::conditional_t<std::is_const<BlockTy>::value, |
| const VPBlockBase, VPBlockBase>; |
| |
| // We need to first create an iterator range over (const) BlocktTy & instead |
| // of (const) BlockTy * for filter_range to work properly. |
| auto Mapped = |
| map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; }); |
| auto Filter = make_filter_range( |
| Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); }); |
| return map_range(Filter, [](BaseTy &Block) -> BlockTy * { |
| return cast<BlockTy>(&Block); |
| }); |
| } |
| }; |
| |
| class VPInterleavedAccessInfo { |
| DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *> |
| InterleaveGroupMap; |
| |
| /// Type for mapping of instruction based interleave groups to VPInstruction |
| /// interleave groups |
| using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *, |
| InterleaveGroup<VPInstruction> *>; |
| |
| /// Recursively \p Region and populate VPlan based interleave groups based on |
| /// \p IAI. |
| void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, |
| InterleavedAccessInfo &IAI); |
| /// Recursively traverse \p Block and populate VPlan based interleave groups |
| /// based on \p IAI. |
| void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, |
| InterleavedAccessInfo &IAI); |
| |
| public: |
| VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); |
| |
| ~VPInterleavedAccessInfo() { |
| SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet; |
| // Avoid releasing a pointer twice. |
| for (auto &I : InterleaveGroupMap) |
| DelSet.insert(I.second); |
| for (auto *Ptr : DelSet) |
| delete Ptr; |
| } |
| |
| /// Get the interleave group that \p Instr belongs to. |
| /// |
| /// \returns nullptr if doesn't have such group. |
| InterleaveGroup<VPInstruction> * |
| getInterleaveGroup(VPInstruction *Instr) const { |
| return InterleaveGroupMap.lookup(Instr); |
| } |
| }; |
| |
| /// Class that maps (parts of) an existing VPlan to trees of combined |
| /// VPInstructions. |
| class VPlanSlp { |
| enum class OpMode { Failed, Load, Opcode }; |
| |
| /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as |
| /// DenseMap keys. |
| struct BundleDenseMapInfo { |
| static SmallVector<VPValue *, 4> getEmptyKey() { |
| return {reinterpret_cast<VPValue *>(-1)}; |
| } |
| |
| static SmallVector<VPValue *, 4> getTombstoneKey() { |
| return {reinterpret_cast<VPValue *>(-2)}; |
| } |
| |
| static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) { |
| return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); |
| } |
| |
| static bool isEqual(const SmallVector<VPValue *, 4> &LHS, |
| const SmallVector<VPValue *, 4> &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| |
| /// Mapping of values in the original VPlan to a combined VPInstruction. |
| DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo> |
| BundleToCombined; |
| |
| VPInterleavedAccessInfo &IAI; |
| |
| /// Basic block to operate on. For now, only instructions in a single BB are |
| /// considered. |
| const VPBasicBlock &BB; |
| |
| /// Indicates whether we managed to combine all visited instructions or not. |
| bool CompletelySLP = true; |
| |
| /// Width of the widest combined bundle in bits. |
| unsigned WidestBundleBits = 0; |
| |
| using MultiNodeOpTy = |
| typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>; |
| |
| // Input operand bundles for the current multi node. Each multi node operand |
| // bundle contains values not matching the multi node's opcode. They will |
| // be reordered in reorderMultiNodeOps, once we completed building a |
| // multi node. |
| SmallVector<MultiNodeOpTy, 4> MultiNodeOps; |
| |
| /// Indicates whether we are building a multi node currently. |
| bool MultiNodeActive = false; |
| |
| /// Check if we can vectorize Operands together. |
| bool areVectorizable(ArrayRef<VPValue *> Operands) const; |
| |
| /// Add combined instruction \p New for the bundle \p Operands. |
| void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New); |
| |
| /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. |
| VPInstruction *markFailed(); |
| |
| /// Reorder operands in the multi node to maximize sequential memory access |
| /// and commutative operations. |
| SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps(); |
| |
| /// Choose the best candidate to use for the lane after \p Last. The set of |
| /// candidates to choose from are values with an opcode matching \p Last's |
| /// or loads consecutive to \p Last. |
| std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last, |
| SmallPtrSetImpl<VPValue *> &Candidates, |
| VPInterleavedAccessInfo &IAI); |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print bundle \p Values to dbgs(). |
| void dumpBundle(ArrayRef<VPValue *> Values); |
| #endif |
| |
| public: |
| VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} |
| |
| ~VPlanSlp() = default; |
| |
| /// Tries to build an SLP tree rooted at \p Operands and returns a |
| /// VPInstruction combining \p Operands, if they can be combined. |
| VPInstruction *buildGraph(ArrayRef<VPValue *> Operands); |
| |
| /// Return the width of the widest combined bundle in bits. |
| unsigned getWidestBundleBits() const { return WidestBundleBits; } |
| |
| /// Return true if all visited instruction can be combined. |
| bool isCompletelySLP() const { return CompletelySLP; } |
| }; |
| |
| namespace vputils { |
| |
| /// Returns true if only the first lane of \p Def is used. |
| bool onlyFirstLaneUsed(VPValue *Def); |
| |
| /// Get or create a VPValue that corresponds to the expansion of \p Expr. If \p |
| /// Expr is a SCEVConstant or SCEVUnknown, return a VPValue wrapping the live-in |
| /// value. Otherwise return a VPExpandSCEVRecipe to expand \p Expr. If \p Plan's |
| /// pre-header already contains a recipe expanding \p Expr, return it. If not, |
| /// create a new one. |
| VPValue *getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, |
| ScalarEvolution &SE); |
| |
| /// Returns true if \p VPV is uniform after vectorization. |
| inline bool isUniformAfterVectorization(VPValue *VPV) { |
| // A value defined outside the vector region must be uniform after |
| // vectorization inside a vector region. |
| if (VPV->isDefinedOutsideVectorRegions()) |
| return true; |
| VPRecipeBase *Def = VPV->getDefiningRecipe(); |
| assert(Def && "Must have definition for value defined inside vector region"); |
| if (auto Rep = dyn_cast<VPReplicateRecipe>(Def)) |
| return Rep->isUniform(); |
| if (auto *GEP = dyn_cast<VPWidenGEPRecipe>(Def)) |
| return all_of(GEP->operands(), isUniformAfterVectorization); |
| return false; |
| } |
| } // end namespace vputils |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |