| //===-- RISCVInstrInfo.cpp - RISC-V Instruction Information -----*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the RISC-V implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "RISCVInstrInfo.h" |
| #include "MCTargetDesc/RISCVMatInt.h" |
| #include "RISCV.h" |
| #include "RISCVMachineFunctionInfo.h" |
| #include "RISCVSubtarget.h" |
| #include "RISCVTargetMachine.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineCombinerPattern.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/MachineTraceMetrics.h" |
| #include "llvm/CodeGen/RegisterScavenging.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/MC/MCInstBuilder.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| using namespace llvm; |
| |
| #define GEN_CHECK_COMPRESS_INSTR |
| #include "RISCVGenCompressInstEmitter.inc" |
| |
| #define GET_INSTRINFO_CTOR_DTOR |
| #define GET_INSTRINFO_NAMED_OPS |
| #include "RISCVGenInstrInfo.inc" |
| |
| static cl::opt<bool> PreferWholeRegisterMove( |
| "riscv-prefer-whole-register-move", cl::init(false), cl::Hidden, |
| cl::desc("Prefer whole register move for vector registers.")); |
| |
| static cl::opt<MachineTraceStrategy> ForceMachineCombinerStrategy( |
| "riscv-force-machine-combiner-strategy", cl::Hidden, |
| cl::desc("Force machine combiner to use a specific strategy for machine " |
| "trace metrics evaluation."), |
| cl::init(MachineTraceStrategy::TS_NumStrategies), |
| cl::values(clEnumValN(MachineTraceStrategy::TS_Local, "local", |
| "Local strategy."), |
| clEnumValN(MachineTraceStrategy::TS_MinInstrCount, "min-instr", |
| "MinInstrCount strategy."))); |
| |
| namespace llvm::RISCVVPseudosTable { |
| |
| using namespace RISCV; |
| |
| #define GET_RISCVVPseudosTable_IMPL |
| #include "RISCVGenSearchableTables.inc" |
| |
| } // namespace llvm::RISCVVPseudosTable |
| |
| RISCVInstrInfo::RISCVInstrInfo(RISCVSubtarget &STI) |
| : RISCVGenInstrInfo(RISCV::ADJCALLSTACKDOWN, RISCV::ADJCALLSTACKUP), |
| STI(STI) {} |
| |
| MCInst RISCVInstrInfo::getNop() const { |
| if (STI.hasStdExtCOrZca()) |
| return MCInstBuilder(RISCV::C_NOP); |
| return MCInstBuilder(RISCV::ADDI) |
| .addReg(RISCV::X0) |
| .addReg(RISCV::X0) |
| .addImm(0); |
| } |
| |
| unsigned RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| unsigned Dummy; |
| return isLoadFromStackSlot(MI, FrameIndex, Dummy); |
| } |
| |
| unsigned RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex, |
| unsigned &MemBytes) const { |
| switch (MI.getOpcode()) { |
| default: |
| return 0; |
| case RISCV::LB: |
| case RISCV::LBU: |
| MemBytes = 1; |
| break; |
| case RISCV::LH: |
| case RISCV::LHU: |
| case RISCV::FLH: |
| MemBytes = 2; |
| break; |
| case RISCV::LW: |
| case RISCV::FLW: |
| case RISCV::LWU: |
| MemBytes = 4; |
| break; |
| case RISCV::LD: |
| case RISCV::FLD: |
| MemBytes = 8; |
| break; |
| } |
| |
| if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && |
| MI.getOperand(2).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| |
| return 0; |
| } |
| |
| unsigned RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| unsigned Dummy; |
| return isStoreToStackSlot(MI, FrameIndex, Dummy); |
| } |
| |
| unsigned RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex, |
| unsigned &MemBytes) const { |
| switch (MI.getOpcode()) { |
| default: |
| return 0; |
| case RISCV::SB: |
| MemBytes = 1; |
| break; |
| case RISCV::SH: |
| case RISCV::FSH: |
| MemBytes = 2; |
| break; |
| case RISCV::SW: |
| case RISCV::FSW: |
| MemBytes = 4; |
| break; |
| case RISCV::SD: |
| case RISCV::FSD: |
| MemBytes = 8; |
| break; |
| } |
| |
| if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && |
| MI.getOperand(2).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| |
| return 0; |
| } |
| |
| static bool forwardCopyWillClobberTuple(unsigned DstReg, unsigned SrcReg, |
| unsigned NumRegs) { |
| return DstReg > SrcReg && (DstReg - SrcReg) < NumRegs; |
| } |
| |
| static bool isConvertibleToVMV_V_V(const RISCVSubtarget &STI, |
| const MachineBasicBlock &MBB, |
| MachineBasicBlock::const_iterator MBBI, |
| MachineBasicBlock::const_iterator &DefMBBI, |
| RISCVII::VLMUL LMul) { |
| if (PreferWholeRegisterMove) |
| return false; |
| |
| assert(MBBI->getOpcode() == TargetOpcode::COPY && |
| "Unexpected COPY instruction."); |
| Register SrcReg = MBBI->getOperand(1).getReg(); |
| const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
| |
| bool FoundDef = false; |
| bool FirstVSetVLI = false; |
| unsigned FirstSEW = 0; |
| while (MBBI != MBB.begin()) { |
| --MBBI; |
| if (MBBI->isMetaInstruction()) |
| continue; |
| |
| if (MBBI->getOpcode() == RISCV::PseudoVSETVLI || |
| MBBI->getOpcode() == RISCV::PseudoVSETVLIX0 || |
| MBBI->getOpcode() == RISCV::PseudoVSETIVLI) { |
| // There is a vsetvli between COPY and source define instruction. |
| // vy = def_vop ... (producing instruction) |
| // ... |
| // vsetvli |
| // ... |
| // vx = COPY vy |
| if (!FoundDef) { |
| if (!FirstVSetVLI) { |
| FirstVSetVLI = true; |
| unsigned FirstVType = MBBI->getOperand(2).getImm(); |
| RISCVII::VLMUL FirstLMul = RISCVVType::getVLMUL(FirstVType); |
| FirstSEW = RISCVVType::getSEW(FirstVType); |
| // The first encountered vsetvli must have the same lmul as the |
| // register class of COPY. |
| if (FirstLMul != LMul) |
| return false; |
| } |
| // Only permit `vsetvli x0, x0, vtype` between COPY and the source |
| // define instruction. |
| if (MBBI->getOperand(0).getReg() != RISCV::X0) |
| return false; |
| if (MBBI->getOperand(1).isImm()) |
| return false; |
| if (MBBI->getOperand(1).getReg() != RISCV::X0) |
| return false; |
| continue; |
| } |
| |
| // MBBI is the first vsetvli before the producing instruction. |
| unsigned VType = MBBI->getOperand(2).getImm(); |
| // If there is a vsetvli between COPY and the producing instruction. |
| if (FirstVSetVLI) { |
| // If SEW is different, return false. |
| if (RISCVVType::getSEW(VType) != FirstSEW) |
| return false; |
| } |
| |
| // If the vsetvli is tail undisturbed, keep the whole register move. |
| if (!RISCVVType::isTailAgnostic(VType)) |
| return false; |
| |
| // The checking is conservative. We only have register classes for |
| // LMUL = 1/2/4/8. We should be able to convert vmv1r.v to vmv.v.v |
| // for fractional LMUL operations. However, we could not use the vsetvli |
| // lmul for widening operations. The result of widening operation is |
| // 2 x LMUL. |
| return LMul == RISCVVType::getVLMUL(VType); |
| } else if (MBBI->isInlineAsm() || MBBI->isCall()) { |
| return false; |
| } else if (MBBI->getNumDefs()) { |
| // Check all the instructions which will change VL. |
| // For example, vleff has implicit def VL. |
| if (MBBI->modifiesRegister(RISCV::VL)) |
| return false; |
| |
| // Only converting whole register copies to vmv.v.v when the defining |
| // value appears in the explicit operands. |
| for (const MachineOperand &MO : MBBI->explicit_operands()) { |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| if (!FoundDef && TRI->isSubRegisterEq(MO.getReg(), SrcReg)) { |
| // We only permit the source of COPY has the same LMUL as the defined |
| // operand. |
| // There are cases we need to keep the whole register copy if the LMUL |
| // is different. |
| // For example, |
| // $x0 = PseudoVSETIVLI 4, 73 // vsetivli zero, 4, e16,m2,ta,m |
| // $v28m4 = PseudoVWADD_VV_M2 $v26m2, $v8m2 |
| // # The COPY may be created by vlmul_trunc intrinsic. |
| // $v26m2 = COPY renamable $v28m2, implicit killed $v28m4 |
| // |
| // After widening, the valid value will be 4 x e32 elements. If we |
| // convert the COPY to vmv.v.v, it will only copy 4 x e16 elements. |
| // FIXME: The COPY of subregister of Zvlsseg register will not be able |
| // to convert to vmv.v.[v|i] under the constraint. |
| if (MO.getReg() != SrcReg) |
| return false; |
| |
| // In widening reduction instructions with LMUL_1 input vector case, |
| // only checking the LMUL is insufficient due to reduction result is |
| // always LMUL_1. |
| // For example, |
| // $x11 = PseudoVSETIVLI 1, 64 // vsetivli a1, 1, e8, m1, ta, mu |
| // $v8m1 = PseudoVWREDSUM_VS_M1 $v26, $v27 |
| // $v26 = COPY killed renamable $v8 |
| // After widening, The valid value will be 1 x e16 elements. If we |
| // convert the COPY to vmv.v.v, it will only copy 1 x e8 elements. |
| uint64_t TSFlags = MBBI->getDesc().TSFlags; |
| if (RISCVII::isRVVWideningReduction(TSFlags)) |
| return false; |
| |
| // If the producing instruction does not depend on vsetvli, do not |
| // convert COPY to vmv.v.v. For example, VL1R_V or PseudoVRELOAD. |
| if (!RISCVII::hasSEWOp(TSFlags) || !RISCVII::hasVLOp(TSFlags)) |
| return false; |
| |
| // Found the definition. |
| FoundDef = true; |
| DefMBBI = MBBI; |
| break; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| void RISCVInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| const DebugLoc &DL, MCRegister DstReg, |
| MCRegister SrcReg, bool KillSrc) const { |
| const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
| |
| if (RISCV::GPRPF64RegClass.contains(DstReg)) |
| DstReg = TRI->getSubReg(DstReg, RISCV::sub_32); |
| if (RISCV::GPRPF64RegClass.contains(SrcReg)) |
| SrcReg = TRI->getSubReg(SrcReg, RISCV::sub_32); |
| |
| if (RISCV::GPRRegClass.contains(DstReg, SrcReg)) { |
| BuildMI(MBB, MBBI, DL, get(RISCV::ADDI), DstReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .addImm(0); |
| return; |
| } |
| |
| // Handle copy from csr |
| if (RISCV::VCSRRegClass.contains(SrcReg) && |
| RISCV::GPRRegClass.contains(DstReg)) { |
| BuildMI(MBB, MBBI, DL, get(RISCV::CSRRS), DstReg) |
| .addImm(RISCVSysReg::lookupSysRegByName(TRI->getName(SrcReg))->Encoding) |
| .addReg(RISCV::X0); |
| return; |
| } |
| |
| // FPR->FPR copies and VR->VR copies. |
| unsigned Opc; |
| bool IsScalableVector = true; |
| unsigned NF = 1; |
| RISCVII::VLMUL LMul = RISCVII::LMUL_1; |
| unsigned SubRegIdx = RISCV::sub_vrm1_0; |
| if (RISCV::FPR16RegClass.contains(DstReg, SrcReg)) { |
| if (!STI.hasStdExtZfh() && STI.hasStdExtZfhmin()) { |
| // Zfhmin subset doesn't have FSGNJ_H, replaces FSGNJ_H with FSGNJ_S. |
| DstReg = TRI->getMatchingSuperReg(DstReg, RISCV::sub_16, |
| &RISCV::FPR32RegClass); |
| SrcReg = TRI->getMatchingSuperReg(SrcReg, RISCV::sub_16, |
| &RISCV::FPR32RegClass); |
| Opc = RISCV::FSGNJ_S; |
| } else { |
| Opc = RISCV::FSGNJ_H; |
| } |
| IsScalableVector = false; |
| } else if (RISCV::FPR32RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::FSGNJ_S; |
| IsScalableVector = false; |
| } else if (RISCV::FPR64RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::FSGNJ_D; |
| IsScalableVector = false; |
| } else if (RISCV::VRRegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV1R_V; |
| LMul = RISCVII::LMUL_1; |
| } else if (RISCV::VRM2RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV2R_V; |
| LMul = RISCVII::LMUL_2; |
| } else if (RISCV::VRM4RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV4R_V; |
| LMul = RISCVII::LMUL_4; |
| } else if (RISCV::VRM8RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV8R_V; |
| LMul = RISCVII::LMUL_8; |
| } else if (RISCV::VRN2M1RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV1R_V; |
| SubRegIdx = RISCV::sub_vrm1_0; |
| NF = 2; |
| LMul = RISCVII::LMUL_1; |
| } else if (RISCV::VRN2M2RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV2R_V; |
| SubRegIdx = RISCV::sub_vrm2_0; |
| NF = 2; |
| LMul = RISCVII::LMUL_2; |
| } else if (RISCV::VRN2M4RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV4R_V; |
| SubRegIdx = RISCV::sub_vrm4_0; |
| NF = 2; |
| LMul = RISCVII::LMUL_4; |
| } else if (RISCV::VRN3M1RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV1R_V; |
| SubRegIdx = RISCV::sub_vrm1_0; |
| NF = 3; |
| LMul = RISCVII::LMUL_1; |
| } else if (RISCV::VRN3M2RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV2R_V; |
| SubRegIdx = RISCV::sub_vrm2_0; |
| NF = 3; |
| LMul = RISCVII::LMUL_2; |
| } else if (RISCV::VRN4M1RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV1R_V; |
| SubRegIdx = RISCV::sub_vrm1_0; |
| NF = 4; |
| LMul = RISCVII::LMUL_1; |
| } else if (RISCV::VRN4M2RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV2R_V; |
| SubRegIdx = RISCV::sub_vrm2_0; |
| NF = 4; |
| LMul = RISCVII::LMUL_2; |
| } else if (RISCV::VRN5M1RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV1R_V; |
| SubRegIdx = RISCV::sub_vrm1_0; |
| NF = 5; |
| LMul = RISCVII::LMUL_1; |
| } else if (RISCV::VRN6M1RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV1R_V; |
| SubRegIdx = RISCV::sub_vrm1_0; |
| NF = 6; |
| LMul = RISCVII::LMUL_1; |
| } else if (RISCV::VRN7M1RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV1R_V; |
| SubRegIdx = RISCV::sub_vrm1_0; |
| NF = 7; |
| LMul = RISCVII::LMUL_1; |
| } else if (RISCV::VRN8M1RegClass.contains(DstReg, SrcReg)) { |
| Opc = RISCV::VMV1R_V; |
| SubRegIdx = RISCV::sub_vrm1_0; |
| NF = 8; |
| LMul = RISCVII::LMUL_1; |
| } else { |
| llvm_unreachable("Impossible reg-to-reg copy"); |
| } |
| |
| if (IsScalableVector) { |
| bool UseVMV_V_V = false; |
| MachineBasicBlock::const_iterator DefMBBI; |
| unsigned VIOpc; |
| if (isConvertibleToVMV_V_V(STI, MBB, MBBI, DefMBBI, LMul)) { |
| UseVMV_V_V = true; |
| // We only need to handle LMUL = 1/2/4/8 here because we only define |
| // vector register classes for LMUL = 1/2/4/8. |
| switch (LMul) { |
| default: |
| llvm_unreachable("Impossible LMUL for vector register copy."); |
| case RISCVII::LMUL_1: |
| Opc = RISCV::PseudoVMV_V_V_M1; |
| VIOpc = RISCV::PseudoVMV_V_I_M1; |
| break; |
| case RISCVII::LMUL_2: |
| Opc = RISCV::PseudoVMV_V_V_M2; |
| VIOpc = RISCV::PseudoVMV_V_I_M2; |
| break; |
| case RISCVII::LMUL_4: |
| Opc = RISCV::PseudoVMV_V_V_M4; |
| VIOpc = RISCV::PseudoVMV_V_I_M4; |
| break; |
| case RISCVII::LMUL_8: |
| Opc = RISCV::PseudoVMV_V_V_M8; |
| VIOpc = RISCV::PseudoVMV_V_I_M8; |
| break; |
| } |
| } |
| |
| bool UseVMV_V_I = false; |
| if (UseVMV_V_V && (DefMBBI->getOpcode() == VIOpc)) { |
| UseVMV_V_I = true; |
| Opc = VIOpc; |
| } |
| |
| if (NF == 1) { |
| auto MIB = BuildMI(MBB, MBBI, DL, get(Opc), DstReg); |
| if (UseVMV_V_I) |
| MIB = MIB.add(DefMBBI->getOperand(1)); |
| else |
| MIB = MIB.addReg(SrcReg, getKillRegState(KillSrc)); |
| if (UseVMV_V_V) { |
| const MCInstrDesc &Desc = DefMBBI->getDesc(); |
| MIB.add(DefMBBI->getOperand(RISCVII::getVLOpNum(Desc))); // AVL |
| MIB.add(DefMBBI->getOperand(RISCVII::getSEWOpNum(Desc))); // SEW |
| MIB.addReg(RISCV::VL, RegState::Implicit); |
| MIB.addReg(RISCV::VTYPE, RegState::Implicit); |
| } |
| } else { |
| int I = 0, End = NF, Incr = 1; |
| unsigned SrcEncoding = TRI->getEncodingValue(SrcReg); |
| unsigned DstEncoding = TRI->getEncodingValue(DstReg); |
| unsigned LMulVal; |
| bool Fractional; |
| std::tie(LMulVal, Fractional) = RISCVVType::decodeVLMUL(LMul); |
| assert(!Fractional && "It is impossible be fractional lmul here."); |
| if (forwardCopyWillClobberTuple(DstEncoding, SrcEncoding, NF * LMulVal)) { |
| I = NF - 1; |
| End = -1; |
| Incr = -1; |
| } |
| |
| for (; I != End; I += Incr) { |
| auto MIB = BuildMI(MBB, MBBI, DL, get(Opc), |
| TRI->getSubReg(DstReg, SubRegIdx + I)); |
| if (UseVMV_V_I) |
| MIB = MIB.add(DefMBBI->getOperand(1)); |
| else |
| MIB = MIB.addReg(TRI->getSubReg(SrcReg, SubRegIdx + I), |
| getKillRegState(KillSrc)); |
| if (UseVMV_V_V) { |
| const MCInstrDesc &Desc = DefMBBI->getDesc(); |
| MIB.add(DefMBBI->getOperand(RISCVII::getVLOpNum(Desc))); // AVL |
| MIB.add(DefMBBI->getOperand(RISCVII::getSEWOpNum(Desc))); // SEW |
| MIB.addReg(RISCV::VL, RegState::Implicit); |
| MIB.addReg(RISCV::VTYPE, RegState::Implicit); |
| } |
| } |
| } |
| } else { |
| BuildMI(MBB, MBBI, DL, get(Opc), DstReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } |
| } |
| |
| void RISCVInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| Register SrcReg, bool IsKill, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI, |
| Register VReg) const { |
| DebugLoc DL; |
| if (I != MBB.end()) |
| DL = I->getDebugLoc(); |
| |
| MachineFunction *MF = MBB.getParent(); |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| |
| unsigned Opcode; |
| bool IsScalableVector = true; |
| if (RISCV::GPRRegClass.hasSubClassEq(RC)) { |
| Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ? |
| RISCV::SW : RISCV::SD; |
| IsScalableVector = false; |
| } else if (RISCV::GPRPF64RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::PseudoRV32ZdinxSD; |
| IsScalableVector = false; |
| } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::FSH; |
| IsScalableVector = false; |
| } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::FSW; |
| IsScalableVector = false; |
| } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::FSD; |
| IsScalableVector = false; |
| } else if (RISCV::VRRegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::VS1R_V; |
| } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::VS2R_V; |
| } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::VS4R_V; |
| } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::VS8R_V; |
| } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVSPILL2_M1; |
| else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVSPILL2_M2; |
| else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVSPILL2_M4; |
| else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVSPILL3_M1; |
| else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVSPILL3_M2; |
| else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVSPILL4_M1; |
| else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVSPILL4_M2; |
| else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVSPILL5_M1; |
| else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVSPILL6_M1; |
| else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVSPILL7_M1; |
| else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVSPILL8_M1; |
| else |
| llvm_unreachable("Can't store this register to stack slot"); |
| |
| if (IsScalableVector) { |
| MachineMemOperand *MMO = MF->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore, |
| MemoryLocation::UnknownSize, MFI.getObjectAlign(FI)); |
| |
| MFI.setStackID(FI, TargetStackID::ScalableVector); |
| BuildMI(MBB, I, DL, get(Opcode)) |
| .addReg(SrcReg, getKillRegState(IsKill)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO); |
| } else { |
| MachineMemOperand *MMO = MF->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore, |
| MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); |
| |
| BuildMI(MBB, I, DL, get(Opcode)) |
| .addReg(SrcReg, getKillRegState(IsKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO); |
| } |
| } |
| |
| void RISCVInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| Register DstReg, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI, |
| Register VReg) const { |
| DebugLoc DL; |
| if (I != MBB.end()) |
| DL = I->getDebugLoc(); |
| |
| MachineFunction *MF = MBB.getParent(); |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| |
| unsigned Opcode; |
| bool IsScalableVector = true; |
| if (RISCV::GPRRegClass.hasSubClassEq(RC)) { |
| Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ? |
| RISCV::LW : RISCV::LD; |
| IsScalableVector = false; |
| } else if (RISCV::GPRPF64RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::PseudoRV32ZdinxLD; |
| IsScalableVector = false; |
| } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::FLH; |
| IsScalableVector = false; |
| } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::FLW; |
| IsScalableVector = false; |
| } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::FLD; |
| IsScalableVector = false; |
| } else if (RISCV::VRRegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::VL1RE8_V; |
| } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::VL2RE8_V; |
| } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::VL4RE8_V; |
| } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) { |
| Opcode = RISCV::VL8RE8_V; |
| } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVRELOAD2_M1; |
| else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVRELOAD2_M2; |
| else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVRELOAD2_M4; |
| else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVRELOAD3_M1; |
| else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVRELOAD3_M2; |
| else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVRELOAD4_M1; |
| else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVRELOAD4_M2; |
| else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVRELOAD5_M1; |
| else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVRELOAD6_M1; |
| else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVRELOAD7_M1; |
| else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC)) |
| Opcode = RISCV::PseudoVRELOAD8_M1; |
| else |
| llvm_unreachable("Can't load this register from stack slot"); |
| |
| if (IsScalableVector) { |
| MachineMemOperand *MMO = MF->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad, |
| MemoryLocation::UnknownSize, MFI.getObjectAlign(FI)); |
| |
| MFI.setStackID(FI, TargetStackID::ScalableVector); |
| BuildMI(MBB, I, DL, get(Opcode), DstReg) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO); |
| } else { |
| MachineMemOperand *MMO = MF->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad, |
| MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); |
| |
| BuildMI(MBB, I, DL, get(Opcode), DstReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO); |
| } |
| } |
| |
| MachineInstr *RISCVInstrInfo::foldMemoryOperandImpl( |
| MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, |
| MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS, |
| VirtRegMap *VRM) const { |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| |
| // The below optimizations narrow the load so they are only valid for little |
| // endian. |
| // TODO: Support big endian by adding an offset into the frame object? |
| if (MF.getDataLayout().isBigEndian()) |
| return nullptr; |
| |
| // Fold load from stack followed by sext.w into lw. |
| // TODO: Fold with sext.b, sext.h, zext.b, zext.h, zext.w? |
| if (Ops.size() != 1 || Ops[0] != 1) |
| return nullptr; |
| |
| unsigned LoadOpc; |
| switch (MI.getOpcode()) { |
| default: |
| if (RISCV::isSEXT_W(MI)) { |
| LoadOpc = RISCV::LW; |
| break; |
| } |
| if (RISCV::isZEXT_W(MI)) { |
| LoadOpc = RISCV::LWU; |
| break; |
| } |
| if (RISCV::isZEXT_B(MI)) { |
| LoadOpc = RISCV::LBU; |
| break; |
| } |
| return nullptr; |
| case RISCV::SEXT_H: |
| LoadOpc = RISCV::LH; |
| break; |
| case RISCV::SEXT_B: |
| LoadOpc = RISCV::LB; |
| break; |
| case RISCV::ZEXT_H_RV32: |
| case RISCV::ZEXT_H_RV64: |
| LoadOpc = RISCV::LHU; |
| break; |
| } |
| |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FrameIndex), |
| MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIndex), |
| MFI.getObjectAlign(FrameIndex)); |
| |
| Register DstReg = MI.getOperand(0).getReg(); |
| return BuildMI(*MI.getParent(), InsertPt, MI.getDebugLoc(), get(LoadOpc), |
| DstReg) |
| .addFrameIndex(FrameIndex) |
| .addImm(0) |
| .addMemOperand(MMO); |
| } |
| |
| void RISCVInstrInfo::movImm(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| const DebugLoc &DL, Register DstReg, uint64_t Val, |
| MachineInstr::MIFlag Flag) const { |
| Register SrcReg = RISCV::X0; |
| |
| if (!STI.is64Bit() && !isInt<32>(Val)) |
| report_fatal_error("Should only materialize 32-bit constants for RV32"); |
| |
| RISCVMatInt::InstSeq Seq = |
| RISCVMatInt::generateInstSeq(Val, STI.getFeatureBits()); |
| assert(!Seq.empty()); |
| |
| for (RISCVMatInt::Inst &Inst : Seq) { |
| switch (Inst.getOpndKind()) { |
| case RISCVMatInt::Imm: |
| BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()), DstReg) |
| .addImm(Inst.getImm()) |
| .setMIFlag(Flag); |
| break; |
| case RISCVMatInt::RegX0: |
| BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()), DstReg) |
| .addReg(SrcReg, RegState::Kill) |
| .addReg(RISCV::X0) |
| .setMIFlag(Flag); |
| break; |
| case RISCVMatInt::RegReg: |
| BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()), DstReg) |
| .addReg(SrcReg, RegState::Kill) |
| .addReg(SrcReg, RegState::Kill) |
| .setMIFlag(Flag); |
| break; |
| case RISCVMatInt::RegImm: |
| BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()), DstReg) |
| .addReg(SrcReg, RegState::Kill) |
| .addImm(Inst.getImm()) |
| .setMIFlag(Flag); |
| break; |
| } |
| |
| // Only the first instruction has X0 as its source. |
| SrcReg = DstReg; |
| } |
| } |
| |
| static RISCVCC::CondCode getCondFromBranchOpc(unsigned Opc) { |
| switch (Opc) { |
| default: |
| return RISCVCC::COND_INVALID; |
| case RISCV::BEQ: |
| return RISCVCC::COND_EQ; |
| case RISCV::BNE: |
| return RISCVCC::COND_NE; |
| case RISCV::BLT: |
| return RISCVCC::COND_LT; |
| case RISCV::BGE: |
| return RISCVCC::COND_GE; |
| case RISCV::BLTU: |
| return RISCVCC::COND_LTU; |
| case RISCV::BGEU: |
| return RISCVCC::COND_GEU; |
| } |
| } |
| |
| // The contents of values added to Cond are not examined outside of |
| // RISCVInstrInfo, giving us flexibility in what to push to it. For RISCV, we |
| // push BranchOpcode, Reg1, Reg2. |
| static void parseCondBranch(MachineInstr &LastInst, MachineBasicBlock *&Target, |
| SmallVectorImpl<MachineOperand> &Cond) { |
| // Block ends with fall-through condbranch. |
| assert(LastInst.getDesc().isConditionalBranch() && |
| "Unknown conditional branch"); |
| Target = LastInst.getOperand(2).getMBB(); |
| unsigned CC = getCondFromBranchOpc(LastInst.getOpcode()); |
| Cond.push_back(MachineOperand::CreateImm(CC)); |
| Cond.push_back(LastInst.getOperand(0)); |
| Cond.push_back(LastInst.getOperand(1)); |
| } |
| |
| const MCInstrDesc &RISCVInstrInfo::getBrCond(RISCVCC::CondCode CC) const { |
| switch (CC) { |
| default: |
| llvm_unreachable("Unknown condition code!"); |
| case RISCVCC::COND_EQ: |
| return get(RISCV::BEQ); |
| case RISCVCC::COND_NE: |
| return get(RISCV::BNE); |
| case RISCVCC::COND_LT: |
| return get(RISCV::BLT); |
| case RISCVCC::COND_GE: |
| return get(RISCV::BGE); |
| case RISCVCC::COND_LTU: |
| return get(RISCV::BLTU); |
| case RISCVCC::COND_GEU: |
| return get(RISCV::BGEU); |
| } |
| } |
| |
| RISCVCC::CondCode RISCVCC::getOppositeBranchCondition(RISCVCC::CondCode CC) { |
| switch (CC) { |
| default: |
| llvm_unreachable("Unrecognized conditional branch"); |
| case RISCVCC::COND_EQ: |
| return RISCVCC::COND_NE; |
| case RISCVCC::COND_NE: |
| return RISCVCC::COND_EQ; |
| case RISCVCC::COND_LT: |
| return RISCVCC::COND_GE; |
| case RISCVCC::COND_GE: |
| return RISCVCC::COND_LT; |
| case RISCVCC::COND_LTU: |
| return RISCVCC::COND_GEU; |
| case RISCVCC::COND_GEU: |
| return RISCVCC::COND_LTU; |
| } |
| } |
| |
| bool RISCVInstrInfo::analyzeBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| TBB = FBB = nullptr; |
| Cond.clear(); |
| |
| // If the block has no terminators, it just falls into the block after it. |
| MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end() || !isUnpredicatedTerminator(*I)) |
| return false; |
| |
| // Count the number of terminators and find the first unconditional or |
| // indirect branch. |
| MachineBasicBlock::iterator FirstUncondOrIndirectBr = MBB.end(); |
| int NumTerminators = 0; |
| for (auto J = I.getReverse(); J != MBB.rend() && isUnpredicatedTerminator(*J); |
| J++) { |
| NumTerminators++; |
| if (J->getDesc().isUnconditionalBranch() || |
| J->getDesc().isIndirectBranch()) { |
| FirstUncondOrIndirectBr = J.getReverse(); |
| } |
| } |
| |
| // If AllowModify is true, we can erase any terminators after |
| // FirstUncondOrIndirectBR. |
| if (AllowModify && FirstUncondOrIndirectBr != MBB.end()) { |
| while (std::next(FirstUncondOrIndirectBr) != MBB.end()) { |
| std::next(FirstUncondOrIndirectBr)->eraseFromParent(); |
| NumTerminators--; |
| } |
| I = FirstUncondOrIndirectBr; |
| } |
| |
| // We can't handle blocks that end in an indirect branch. |
| if (I->getDesc().isIndirectBranch()) |
| return true; |
| |
| // We can't handle blocks with more than 2 terminators. |
| if (NumTerminators > 2) |
| return true; |
| |
| // Handle a single unconditional branch. |
| if (NumTerminators == 1 && I->getDesc().isUnconditionalBranch()) { |
| TBB = getBranchDestBlock(*I); |
| return false; |
| } |
| |
| // Handle a single conditional branch. |
| if (NumTerminators == 1 && I->getDesc().isConditionalBranch()) { |
| parseCondBranch(*I, TBB, Cond); |
| return false; |
| } |
| |
| // Handle a conditional branch followed by an unconditional branch. |
| if (NumTerminators == 2 && std::prev(I)->getDesc().isConditionalBranch() && |
| I->getDesc().isUnconditionalBranch()) { |
| parseCondBranch(*std::prev(I), TBB, Cond); |
| FBB = getBranchDestBlock(*I); |
| return false; |
| } |
| |
| // Otherwise, we can't handle this. |
| return true; |
| } |
| |
| unsigned RISCVInstrInfo::removeBranch(MachineBasicBlock &MBB, |
| int *BytesRemoved) const { |
| if (BytesRemoved) |
| *BytesRemoved = 0; |
| MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end()) |
| return 0; |
| |
| if (!I->getDesc().isUnconditionalBranch() && |
| !I->getDesc().isConditionalBranch()) |
| return 0; |
| |
| // Remove the branch. |
| if (BytesRemoved) |
| *BytesRemoved += getInstSizeInBytes(*I); |
| I->eraseFromParent(); |
| |
| I = MBB.end(); |
| |
| if (I == MBB.begin()) |
| return 1; |
| --I; |
| if (!I->getDesc().isConditionalBranch()) |
| return 1; |
| |
| // Remove the branch. |
| if (BytesRemoved) |
| *BytesRemoved += getInstSizeInBytes(*I); |
| I->eraseFromParent(); |
| return 2; |
| } |
| |
| // Inserts a branch into the end of the specific MachineBasicBlock, returning |
| // the number of instructions inserted. |
| unsigned RISCVInstrInfo::insertBranch( |
| MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, |
| ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const { |
| if (BytesAdded) |
| *BytesAdded = 0; |
| |
| // Shouldn't be a fall through. |
| assert(TBB && "insertBranch must not be told to insert a fallthrough"); |
| assert((Cond.size() == 3 || Cond.size() == 0) && |
| "RISC-V branch conditions have two components!"); |
| |
| // Unconditional branch. |
| if (Cond.empty()) { |
| MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(TBB); |
| if (BytesAdded) |
| *BytesAdded += getInstSizeInBytes(MI); |
| return 1; |
| } |
| |
| // Either a one or two-way conditional branch. |
| auto CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm()); |
| MachineInstr &CondMI = |
| *BuildMI(&MBB, DL, getBrCond(CC)).add(Cond[1]).add(Cond[2]).addMBB(TBB); |
| if (BytesAdded) |
| *BytesAdded += getInstSizeInBytes(CondMI); |
| |
| // One-way conditional branch. |
| if (!FBB) |
| return 1; |
| |
| // Two-way conditional branch. |
| MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(FBB); |
| if (BytesAdded) |
| *BytesAdded += getInstSizeInBytes(MI); |
| return 2; |
| } |
| |
| void RISCVInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock &DestBB, |
| MachineBasicBlock &RestoreBB, |
| const DebugLoc &DL, int64_t BrOffset, |
| RegScavenger *RS) const { |
| assert(RS && "RegScavenger required for long branching"); |
| assert(MBB.empty() && |
| "new block should be inserted for expanding unconditional branch"); |
| assert(MBB.pred_size() == 1); |
| assert(RestoreBB.empty() && |
| "restore block should be inserted for restoring clobbered registers"); |
| |
| MachineFunction *MF = MBB.getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>(); |
| const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
| |
| if (!isInt<32>(BrOffset)) |
| report_fatal_error( |
| "Branch offsets outside of the signed 32-bit range not supported"); |
| |
| // FIXME: A virtual register must be used initially, as the register |
| // scavenger won't work with empty blocks (SIInstrInfo::insertIndirectBranch |
| // uses the same workaround). |
| Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); |
| auto II = MBB.end(); |
| // We may also update the jump target to RestoreBB later. |
| MachineInstr &MI = *BuildMI(MBB, II, DL, get(RISCV::PseudoJump)) |
| .addReg(ScratchReg, RegState::Define | RegState::Dead) |
| .addMBB(&DestBB, RISCVII::MO_CALL); |
| |
| RS->enterBasicBlockEnd(MBB); |
| Register TmpGPR = |
| RS->scavengeRegisterBackwards(RISCV::GPRRegClass, MI.getIterator(), |
| /*RestoreAfter=*/false, /*SpAdj=*/0, |
| /*AllowSpill=*/false); |
| if (TmpGPR != RISCV::NoRegister) |
| RS->setRegUsed(TmpGPR); |
| else { |
| // The case when there is no scavenged register needs special handling. |
| |
| // Pick s11 because it doesn't make a difference. |
| TmpGPR = RISCV::X27; |
| |
| int FrameIndex = RVFI->getBranchRelaxationScratchFrameIndex(); |
| if (FrameIndex == -1) |
| report_fatal_error("underestimated function size"); |
| |
| storeRegToStackSlot(MBB, MI, TmpGPR, /*IsKill=*/true, FrameIndex, |
| &RISCV::GPRRegClass, TRI, Register()); |
| TRI->eliminateFrameIndex(std::prev(MI.getIterator()), |
| /*SpAdj=*/0, /*FIOperandNum=*/1); |
| |
| MI.getOperand(1).setMBB(&RestoreBB); |
| |
| loadRegFromStackSlot(RestoreBB, RestoreBB.end(), TmpGPR, FrameIndex, |
| &RISCV::GPRRegClass, TRI, Register()); |
| TRI->eliminateFrameIndex(RestoreBB.back(), |
| /*SpAdj=*/0, /*FIOperandNum=*/1); |
| } |
| |
| MRI.replaceRegWith(ScratchReg, TmpGPR); |
| MRI.clearVirtRegs(); |
| } |
| |
| bool RISCVInstrInfo::reverseBranchCondition( |
| SmallVectorImpl<MachineOperand> &Cond) const { |
| assert((Cond.size() == 3) && "Invalid branch condition!"); |
| auto CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm()); |
| Cond[0].setImm(getOppositeBranchCondition(CC)); |
| return false; |
| } |
| |
| MachineBasicBlock * |
| RISCVInstrInfo::getBranchDestBlock(const MachineInstr &MI) const { |
| assert(MI.getDesc().isBranch() && "Unexpected opcode!"); |
| // The branch target is always the last operand. |
| int NumOp = MI.getNumExplicitOperands(); |
| return MI.getOperand(NumOp - 1).getMBB(); |
| } |
| |
| bool RISCVInstrInfo::isBranchOffsetInRange(unsigned BranchOp, |
| int64_t BrOffset) const { |
| unsigned XLen = STI.getXLen(); |
| // Ideally we could determine the supported branch offset from the |
| // RISCVII::FormMask, but this can't be used for Pseudo instructions like |
| // PseudoBR. |
| switch (BranchOp) { |
| default: |
| llvm_unreachable("Unexpected opcode!"); |
| case RISCV::BEQ: |
| case RISCV::BNE: |
| case RISCV::BLT: |
| case RISCV::BGE: |
| case RISCV::BLTU: |
| case RISCV::BGEU: |
| return isIntN(13, BrOffset); |
| case RISCV::JAL: |
| case RISCV::PseudoBR: |
| return isIntN(21, BrOffset); |
| case RISCV::PseudoJump: |
| return isIntN(32, SignExtend64(BrOffset + 0x800, XLen)); |
| } |
| } |
| |
| // If the operation has a predicated pseudo instruction, return the pseudo |
| // instruction opcode. Otherwise, return RISCV::INSTRUCTION_LIST_END. |
| // TODO: Support more operations. |
| unsigned getPredicatedOpcode(unsigned Opcode) { |
| switch (Opcode) { |
| case RISCV::ADD: return RISCV::PseudoCCADD; break; |
| case RISCV::SUB: return RISCV::PseudoCCSUB; break; |
| case RISCV::AND: return RISCV::PseudoCCAND; break; |
| case RISCV::OR: return RISCV::PseudoCCOR; break; |
| case RISCV::XOR: return RISCV::PseudoCCXOR; break; |
| |
| case RISCV::ADDW: return RISCV::PseudoCCADDW; break; |
| case RISCV::SUBW: return RISCV::PseudoCCSUBW; break; |
| } |
| |
| return RISCV::INSTRUCTION_LIST_END; |
| } |
| |
| /// Identify instructions that can be folded into a CCMOV instruction, and |
| /// return the defining instruction. |
| static MachineInstr *canFoldAsPredicatedOp(Register Reg, |
| const MachineRegisterInfo &MRI, |
| const TargetInstrInfo *TII) { |
| if (!Reg.isVirtual()) |
| return nullptr; |
| if (!MRI.hasOneNonDBGUse(Reg)) |
| return nullptr; |
| MachineInstr *MI = MRI.getVRegDef(Reg); |
| if (!MI) |
| return nullptr; |
| // Check if MI can be predicated and folded into the CCMOV. |
| if (getPredicatedOpcode(MI->getOpcode()) == RISCV::INSTRUCTION_LIST_END) |
| return nullptr; |
| // Check if MI has any other defs or physreg uses. |
| for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) { |
| // Reject frame index operands, PEI can't handle the predicated pseudos. |
| if (MO.isFI() || MO.isCPI() || MO.isJTI()) |
| return nullptr; |
| if (!MO.isReg()) |
| continue; |
| // MI can't have any tied operands, that would conflict with predication. |
| if (MO.isTied()) |
| return nullptr; |
| if (MO.isDef()) |
| return nullptr; |
| // Allow constant physregs. |
| if (MO.getReg().isPhysical() && !MRI.isConstantPhysReg(MO.getReg())) |
| return nullptr; |
| } |
| bool DontMoveAcrossStores = true; |
| if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) |
| return nullptr; |
| return MI; |
| } |
| |
| bool RISCVInstrInfo::analyzeSelect(const MachineInstr &MI, |
| SmallVectorImpl<MachineOperand> &Cond, |
| unsigned &TrueOp, unsigned &FalseOp, |
| bool &Optimizable) const { |
| assert(MI.getOpcode() == RISCV::PseudoCCMOVGPR && |
| "Unknown select instruction"); |
| // CCMOV operands: |
| // 0: Def. |
| // 1: LHS of compare. |
| // 2: RHS of compare. |
| // 3: Condition code. |
| // 4: False use. |
| // 5: True use. |
| TrueOp = 5; |
| FalseOp = 4; |
| Cond.push_back(MI.getOperand(1)); |
| Cond.push_back(MI.getOperand(2)); |
| Cond.push_back(MI.getOperand(3)); |
| // We can only fold when we support short forward branch opt. |
| Optimizable = STI.hasShortForwardBranchOpt(); |
| return false; |
| } |
| |
| MachineInstr * |
| RISCVInstrInfo::optimizeSelect(MachineInstr &MI, |
| SmallPtrSetImpl<MachineInstr *> &SeenMIs, |
| bool PreferFalse) const { |
| assert(MI.getOpcode() == RISCV::PseudoCCMOVGPR && |
| "Unknown select instruction"); |
| if (!STI.hasShortForwardBranchOpt()) |
| return nullptr; |
| |
| MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| MachineInstr *DefMI = |
| canFoldAsPredicatedOp(MI.getOperand(5).getReg(), MRI, this); |
| bool Invert = !DefMI; |
| if (!DefMI) |
| DefMI = canFoldAsPredicatedOp(MI.getOperand(4).getReg(), MRI, this); |
| if (!DefMI) |
| return nullptr; |
| |
| // Find new register class to use. |
| MachineOperand FalseReg = MI.getOperand(Invert ? 5 : 4); |
| Register DestReg = MI.getOperand(0).getReg(); |
| const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); |
| if (!MRI.constrainRegClass(DestReg, PreviousClass)) |
| return nullptr; |
| |
| unsigned PredOpc = getPredicatedOpcode(DefMI->getOpcode()); |
| assert(PredOpc != RISCV::INSTRUCTION_LIST_END && "Unexpected opcode!"); |
| |
| // Create a new predicated version of DefMI. |
| MachineInstrBuilder NewMI = |
| BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(PredOpc), DestReg); |
| |
| // Copy the condition portion. |
| NewMI.add(MI.getOperand(1)); |
| NewMI.add(MI.getOperand(2)); |
| |
| // Add condition code, inverting if necessary. |
| auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); |
| if (Invert) |
| CC = RISCVCC::getOppositeBranchCondition(CC); |
| NewMI.addImm(CC); |
| |
| // Copy the false register. |
| NewMI.add(FalseReg); |
| |
| // Copy all the DefMI operands. |
| const MCInstrDesc &DefDesc = DefMI->getDesc(); |
| for (unsigned i = 1, e = DefDesc.getNumOperands(); i != e; ++i) |
| NewMI.add(DefMI->getOperand(i)); |
| |
| // Update SeenMIs set: register newly created MI and erase removed DefMI. |
| SeenMIs.insert(NewMI); |
| SeenMIs.erase(DefMI); |
| |
| // If MI is inside a loop, and DefMI is outside the loop, then kill flags on |
| // DefMI would be invalid when tranferred inside the loop. Checking for a |
| // loop is expensive, but at least remove kill flags if they are in different |
| // BBs. |
| if (DefMI->getParent() != MI.getParent()) |
| NewMI->clearKillInfo(); |
| |
| // The caller will erase MI, but not DefMI. |
| DefMI->eraseFromParent(); |
| return NewMI; |
| } |
| |
| unsigned RISCVInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { |
| if (MI.isMetaInstruction()) |
| return 0; |
| |
| unsigned Opcode = MI.getOpcode(); |
| |
| if (Opcode == TargetOpcode::INLINEASM || |
| Opcode == TargetOpcode::INLINEASM_BR) { |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const auto &TM = static_cast<const RISCVTargetMachine &>(MF.getTarget()); |
| return getInlineAsmLength(MI.getOperand(0).getSymbolName(), |
| *TM.getMCAsmInfo()); |
| } |
| |
| if (!MI.memoperands_empty()) { |
| MachineMemOperand *MMO = *(MI.memoperands_begin()); |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const auto &ST = MF.getSubtarget<RISCVSubtarget>(); |
| if (ST.hasStdExtZihintntl() && MMO->isNonTemporal()) { |
| if (ST.hasStdExtCOrZca() && ST.enableRVCHintInstrs()) { |
| if (isCompressibleInst(MI, STI)) |
| return 4; // c.ntl.all + c.load/c.store |
| return 6; // c.ntl.all + load/store |
| } |
| return 8; // ntl.all + load/store |
| } |
| } |
| |
| if (MI.getParent() && MI.getParent()->getParent()) { |
| if (isCompressibleInst(MI, STI)) |
| return 2; |
| } |
| return get(Opcode).getSize(); |
| } |
| |
| bool RISCVInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const { |
| const unsigned Opcode = MI.getOpcode(); |
| switch (Opcode) { |
| default: |
| break; |
| case RISCV::FSGNJ_D: |
| case RISCV::FSGNJ_S: |
| case RISCV::FSGNJ_H: |
| case RISCV::FSGNJ_D_INX: |
| case RISCV::FSGNJ_D_IN32X: |
| case RISCV::FSGNJ_S_INX: |
| case RISCV::FSGNJ_H_INX: |
| // The canonical floating-point move is fsgnj rd, rs, rs. |
| return MI.getOperand(1).isReg() && MI.getOperand(2).isReg() && |
| MI.getOperand(1).getReg() == MI.getOperand(2).getReg(); |
| case RISCV::ADDI: |
| case RISCV::ORI: |
| case RISCV::XORI: |
| return (MI.getOperand(1).isReg() && |
| MI.getOperand(1).getReg() == RISCV::X0) || |
| (MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0); |
| } |
| return MI.isAsCheapAsAMove(); |
| } |
| |
| std::optional<DestSourcePair> |
| RISCVInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { |
| if (MI.isMoveReg()) |
| return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case RISCV::ADDI: |
| // Operand 1 can be a frameindex but callers expect registers |
| if (MI.getOperand(1).isReg() && MI.getOperand(2).isImm() && |
| MI.getOperand(2).getImm() == 0) |
| return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; |
| break; |
| case RISCV::FSGNJ_D: |
| case RISCV::FSGNJ_S: |
| case RISCV::FSGNJ_H: |
| case RISCV::FSGNJ_D_INX: |
| case RISCV::FSGNJ_D_IN32X: |
| case RISCV::FSGNJ_S_INX: |
| case RISCV::FSGNJ_H_INX: |
| // The canonical floating-point move is fsgnj rd, rs, rs. |
| if (MI.getOperand(1).isReg() && MI.getOperand(2).isReg() && |
| MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) |
| return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; |
| break; |
| } |
| return std::nullopt; |
| } |
| |
| MachineTraceStrategy RISCVInstrInfo::getMachineCombinerTraceStrategy() const { |
| if (ForceMachineCombinerStrategy.getNumOccurrences() == 0) { |
| // The option is unused. Choose Local strategy only for in-order cores. When |
| // scheduling model is unspecified, use MinInstrCount strategy as more |
| // generic one. |
| const auto &SchedModel = STI.getSchedModel(); |
| return (!SchedModel.hasInstrSchedModel() || SchedModel.isOutOfOrder()) |
| ? MachineTraceStrategy::TS_MinInstrCount |
| : MachineTraceStrategy::TS_Local; |
| } |
| // The strategy was forced by the option. |
| return ForceMachineCombinerStrategy; |
| } |
| |
| void RISCVInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, |
| MachineInstr &OldMI2, |
| MachineInstr &NewMI1, |
| MachineInstr &NewMI2) const { |
| uint32_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); |
| NewMI1.setFlags(IntersectedFlags); |
| NewMI2.setFlags(IntersectedFlags); |
| } |
| |
| void RISCVInstrInfo::finalizeInsInstrs( |
| MachineInstr &Root, MachineCombinerPattern &P, |
| SmallVectorImpl<MachineInstr *> &InsInstrs) const { |
| int16_t FrmOpIdx = |
| RISCV::getNamedOperandIdx(Root.getOpcode(), RISCV::OpName::frm); |
| if (FrmOpIdx < 0) { |
| assert(all_of(InsInstrs, |
| [](MachineInstr *MI) { |
| return RISCV::getNamedOperandIdx(MI->getOpcode(), |
| RISCV::OpName::frm) < 0; |
| }) && |
| "New instructions require FRM whereas the old one does not have it"); |
| return; |
| } |
| |
| const MachineOperand &FRM = Root.getOperand(FrmOpIdx); |
| MachineFunction &MF = *Root.getMF(); |
| |
| for (auto *NewMI : InsInstrs) { |
| assert(static_cast<unsigned>(RISCV::getNamedOperandIdx( |
| NewMI->getOpcode(), RISCV::OpName::frm)) == |
| NewMI->getNumOperands() && |
| "Instruction has unexpected number of operands"); |
| MachineInstrBuilder MIB(MF, NewMI); |
| MIB.add(FRM); |
| if (FRM.getImm() == RISCVFPRndMode::DYN) |
| MIB.addUse(RISCV::FRM, RegState::Implicit); |
| } |
| } |
| |
| static bool isFADD(unsigned Opc) { |
| switch (Opc) { |
| default: |
| return false; |
| case RISCV::FADD_H: |
| case RISCV::FADD_S: |
| case RISCV::FADD_D: |
| return true; |
| } |
| } |
| |
| static bool isFSUB(unsigned Opc) { |
| switch (Opc) { |
| default: |
| return false; |
| case RISCV::FSUB_H: |
| case RISCV::FSUB_S: |
| case RISCV::FSUB_D: |
| return true; |
| } |
| } |
| |
| static bool isFMUL(unsigned Opc) { |
| switch (Opc) { |
| default: |
| return false; |
| case RISCV::FMUL_H: |
| case RISCV::FMUL_S: |
| case RISCV::FMUL_D: |
| return true; |
| } |
| } |
| |
| bool RISCVInstrInfo::hasReassociableSibling(const MachineInstr &Inst, |
| bool &Commuted) const { |
| if (!TargetInstrInfo::hasReassociableSibling(Inst, Commuted)) |
| return false; |
| |
| const MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo(); |
| unsigned OperandIdx = Commuted ? 2 : 1; |
| const MachineInstr &Sibling = |
| *MRI.getVRegDef(Inst.getOperand(OperandIdx).getReg()); |
| |
| int16_t InstFrmOpIdx = |
| RISCV::getNamedOperandIdx(Inst.getOpcode(), RISCV::OpName::frm); |
| int16_t SiblingFrmOpIdx = |
| RISCV::getNamedOperandIdx(Sibling.getOpcode(), RISCV::OpName::frm); |
| |
| return (InstFrmOpIdx < 0 && SiblingFrmOpIdx < 0) || |
| RISCV::hasEqualFRM(Inst, Sibling); |
| } |
| |
| bool RISCVInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, |
| bool Invert) const { |
| unsigned Opc = Inst.getOpcode(); |
| if (Invert) { |
| auto InverseOpcode = getInverseOpcode(Opc); |
| if (!InverseOpcode) |
| return false; |
| Opc = *InverseOpcode; |
| } |
| |
| if (isFADD(Opc) || isFMUL(Opc)) |
| return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && |
| Inst.getFlag(MachineInstr::MIFlag::FmNsz); |
| |
| switch (Opc) { |
| default: |
| return false; |
| case RISCV::ADD: |
| case RISCV::ADDW: |
| case RISCV::AND: |
| case RISCV::OR: |
| case RISCV::XOR: |
| // From RISC-V ISA spec, if both the high and low bits of the same product |
| // are required, then the recommended code sequence is: |
| // |
| // MULH[[S]U] rdh, rs1, rs2 |
| // MUL rdl, rs1, rs2 |
| // (source register specifiers must be in same order and rdh cannot be the |
| // same as rs1 or rs2) |
| // |
| // Microarchitectures can then fuse these into a single multiply operation |
| // instead of performing two separate multiplies. |
| // MachineCombiner may reassociate MUL operands and lose the fusion |
| // opportunity. |
| case RISCV::MUL: |
| case RISCV::MULW: |
| case RISCV::MIN: |
| case RISCV::MINU: |
| case RISCV::MAX: |
| case RISCV::MAXU: |
| case RISCV::FMIN_H: |
| case RISCV::FMIN_S: |
| case RISCV::FMIN_D: |
| case RISCV::FMAX_H: |
| case RISCV::FMAX_S: |
| case RISCV::FMAX_D: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| std::optional<unsigned> |
| RISCVInstrInfo::getInverseOpcode(unsigned Opcode) const { |
| switch (Opcode) { |
| default: |
| return std::nullopt; |
| case RISCV::FADD_H: |
| return RISCV::FSUB_H; |
| case RISCV::FADD_S: |
| return RISCV::FSUB_S; |
| case RISCV::FADD_D: |
| return RISCV::FSUB_D; |
| case RISCV::FSUB_H: |
| return RISCV::FADD_H; |
| case RISCV::FSUB_S: |
| return RISCV::FADD_S; |
| case RISCV::FSUB_D: |
| return RISCV::FADD_D; |
| case RISCV::ADD: |
| return RISCV::SUB; |
| case RISCV::SUB: |
| return RISCV::ADD; |
| case RISCV::ADDW: |
| return RISCV::SUBW; |
| case RISCV::SUBW: |
| return RISCV::ADDW; |
| } |
| } |
| |
| static bool canCombineFPFusedMultiply(const MachineInstr &Root, |
| const MachineOperand &MO, |
| bool DoRegPressureReduce) { |
| if (!MO.isReg() || !MO.getReg().isVirtual()) |
| return false; |
| const MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); |
| MachineInstr *MI = MRI.getVRegDef(MO.getReg()); |
| if (!MI || !isFMUL(MI->getOpcode())) |
| return false; |
| |
| if (!Root.getFlag(MachineInstr::MIFlag::FmContract) || |
| !MI->getFlag(MachineInstr::MIFlag::FmContract)) |
| return false; |
| |
| // Try combining even if fmul has more than one use as it eliminates |
| // dependency between fadd(fsub) and fmul. However, it can extend liveranges |
| // for fmul operands, so reject the transformation in register pressure |
| // reduction mode. |
| if (DoRegPressureReduce && !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) |
| return false; |
| |
| // Do not combine instructions from different basic blocks. |
| if (Root.getParent() != MI->getParent()) |
| return false; |
| return RISCV::hasEqualFRM(Root, *MI); |
| } |
| |
| static bool |
| getFPFusedMultiplyPatterns(MachineInstr &Root, |
| SmallVectorImpl<MachineCombinerPattern> &Patterns, |
| bool DoRegPressureReduce) { |
| unsigned Opc = Root.getOpcode(); |
| bool IsFAdd = isFADD(Opc); |
| if (!IsFAdd && !isFSUB(Opc)) |
| return false; |
| bool Added = false; |
| if (canCombineFPFusedMultiply(Root, Root.getOperand(1), |
| DoRegPressureReduce)) { |
| Patterns.push_back(IsFAdd ? MachineCombinerPattern::FMADD_AX |
| : MachineCombinerPattern::FMSUB); |
| Added = true; |
| } |
| if (canCombineFPFusedMultiply(Root, Root.getOperand(2), |
| DoRegPressureReduce)) { |
| Patterns.push_back(IsFAdd ? MachineCombinerPattern::FMADD_XA |
| : MachineCombinerPattern::FNMSUB); |
| Added = true; |
| } |
| return Added; |
| } |
| |
| static bool getFPPatterns(MachineInstr &Root, |
| SmallVectorImpl<MachineCombinerPattern> &Patterns, |
| bool DoRegPressureReduce) { |
| return getFPFusedMultiplyPatterns(Root, Patterns, DoRegPressureReduce); |
| } |
| |
| bool RISCVInstrInfo::getMachineCombinerPatterns( |
| MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, |
| bool DoRegPressureReduce) const { |
| |
| if (getFPPatterns(Root, Patterns, DoRegPressureReduce)) |
| return true; |
| |
| return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, |
| DoRegPressureReduce); |
| } |
| |
| static unsigned getFPFusedMultiplyOpcode(unsigned RootOpc, |
| MachineCombinerPattern Pattern) { |
| switch (RootOpc) { |
| default: |
| llvm_unreachable("Unexpected opcode"); |
| case RISCV::FADD_H: |
| return RISCV::FMADD_H; |
| case RISCV::FADD_S: |
| return RISCV::FMADD_S; |
| case RISCV::FADD_D: |
| return RISCV::FMADD_D; |
| case RISCV::FSUB_H: |
| return Pattern == MachineCombinerPattern::FMSUB ? RISCV::FMSUB_H |
| : RISCV::FNMSUB_H; |
| case RISCV::FSUB_S: |
| return Pattern == MachineCombinerPattern::FMSUB ? RISCV::FMSUB_S |
| : RISCV::FNMSUB_S; |
| case RISCV::FSUB_D: |
| return Pattern == MachineCombinerPattern::FMSUB ? RISCV::FMSUB_D |
| : RISCV::FNMSUB_D; |
| } |
| } |
| |
| static unsigned getAddendOperandIdx(MachineCombinerPattern Pattern) { |
| switch (Pattern) { |
| default: |
| llvm_unreachable("Unexpected pattern"); |
| case MachineCombinerPattern::FMADD_AX: |
| case MachineCombinerPattern::FMSUB: |
| return 2; |
| case MachineCombinerPattern::FMADD_XA: |
| case MachineCombinerPattern::FNMSUB: |
| return 1; |
| } |
| } |
| |
| static void combineFPFusedMultiply(MachineInstr &Root, MachineInstr &Prev, |
| MachineCombinerPattern Pattern, |
| SmallVectorImpl<MachineInstr *> &InsInstrs, |
| SmallVectorImpl<MachineInstr *> &DelInstrs) { |
| MachineFunction *MF = Root.getMF(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| |
| MachineOperand &Mul1 = Prev.getOperand(1); |
| MachineOperand &Mul2 = Prev.getOperand(2); |
| MachineOperand &Dst = Root.getOperand(0); |
| MachineOperand &Addend = Root.getOperand(getAddendOperandIdx(Pattern)); |
| |
| Register DstReg = Dst.getReg(); |
| unsigned FusedOpc = getFPFusedMultiplyOpcode(Root.getOpcode(), Pattern); |
| uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags(); |
| DebugLoc MergedLoc = |
| DILocation::getMergedLocation(Root.getDebugLoc(), Prev.getDebugLoc()); |
| |
| MachineInstrBuilder MIB = |
| BuildMI(*MF, MergedLoc, TII->get(FusedOpc), DstReg) |
| .addReg(Mul1.getReg(), getKillRegState(Mul1.isKill())) |
| .addReg(Mul2.getReg(), getKillRegState(Mul2.isKill())) |
| .addReg(Addend.getReg(), getKillRegState(Addend.isKill())) |
| .setMIFlags(IntersectedFlags); |
| |
| // Mul operands are not killed anymore. |
| Mul1.setIsKill(false); |
| Mul2.setIsKill(false); |
| |
| InsInstrs.push_back(MIB); |
| if (MRI.hasOneNonDBGUse(Prev.getOperand(0).getReg())) |
| DelInstrs.push_back(&Prev); |
| DelInstrs.push_back(&Root); |
| } |
| |
| void RISCVInstrInfo::genAlternativeCodeSequence( |
| MachineInstr &Root, MachineCombinerPattern Pattern, |
| SmallVectorImpl<MachineInstr *> &InsInstrs, |
| SmallVectorImpl<MachineInstr *> &DelInstrs, |
| DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { |
| MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); |
| switch (Pattern) { |
| default: |
| TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, |
| DelInstrs, InstrIdxForVirtReg); |
| return; |
| case MachineCombinerPattern::FMADD_AX: |
| case MachineCombinerPattern::FMSUB: { |
| MachineInstr &Prev = *MRI.getVRegDef(Root.getOperand(1).getReg()); |
| combineFPFusedMultiply(Root, Prev, Pattern, InsInstrs, DelInstrs); |
| return; |
| } |
| case MachineCombinerPattern::FMADD_XA: |
| case MachineCombinerPattern::FNMSUB: { |
| MachineInstr &Prev = *MRI.getVRegDef(Root.getOperand(2).getReg()); |
| combineFPFusedMultiply(Root, Prev, Pattern, InsInstrs, DelInstrs); |
| return; |
| } |
| } |
| } |
| |
| bool RISCVInstrInfo::verifyInstruction(const MachineInstr &MI, |
| StringRef &ErrInfo) const { |
| MCInstrDesc const &Desc = MI.getDesc(); |
| |
| for (const auto &[Index, Operand] : enumerate(Desc.operands())) { |
| unsigned OpType = Operand.OperandType; |
| if (OpType >= RISCVOp::OPERAND_FIRST_RISCV_IMM && |
| OpType <= RISCVOp::OPERAND_LAST_RISCV_IMM) { |
| const MachineOperand &MO = MI.getOperand(Index); |
| if (MO.isImm()) { |
| int64_t Imm = MO.getImm(); |
| bool Ok; |
| switch (OpType) { |
| default: |
| llvm_unreachable("Unexpected operand type"); |
| |
| // clang-format off |
| #define CASE_OPERAND_UIMM(NUM) \ |
| case RISCVOp::OPERAND_UIMM##NUM: \ |
| Ok = isUInt<NUM>(Imm); \ |
| break; |
| CASE_OPERAND_UIMM(1) |
| CASE_OPERAND_UIMM(2) |
| CASE_OPERAND_UIMM(3) |
| CASE_OPERAND_UIMM(4) |
| CASE_OPERAND_UIMM(5) |
| CASE_OPERAND_UIMM(6) |
| CASE_OPERAND_UIMM(7) |
| CASE_OPERAND_UIMM(8) |
| CASE_OPERAND_UIMM(12) |
| CASE_OPERAND_UIMM(20) |
| // clang-format on |
| case RISCVOp::OPERAND_UIMM2_LSB0: |
| Ok = isShiftedUInt<1, 1>(Imm); |
| break; |
| case RISCVOp::OPERAND_UIMM7_LSB00: |
| Ok = isShiftedUInt<5, 2>(Imm); |
| break; |
| case RISCVOp::OPERAND_UIMM8_LSB00: |
| Ok = isShiftedUInt<6, 2>(Imm); |
| break; |
| case RISCVOp::OPERAND_UIMM8_LSB000: |
| Ok = isShiftedUInt<5, 3>(Imm); |
| break; |
| case RISCVOp::OPERAND_UIMM8_GE32: |
| Ok = isUInt<8>(Imm) && Imm >= 32; |
| break; |
| case RISCVOp::OPERAND_UIMM9_LSB000: |
| Ok = isShiftedUInt<6, 3>(Imm); |
| break; |
| case RISCVOp::OPERAND_SIMM10_LSB0000_NONZERO: |
| Ok = isShiftedInt<6, 4>(Imm) && (Imm != 0); |
| break; |
| case RISCVOp::OPERAND_UIMM10_LSB00_NONZERO: |
| Ok = isShiftedUInt<8, 2>(Imm) && (Imm != 0); |
| break; |
| case RISCVOp::OPERAND_ZERO: |
| Ok = Imm == 0; |
| break; |
| case RISCVOp::OPERAND_SIMM5: |
| Ok = isInt<5>(Imm); |
| break; |
| case RISCVOp::OPERAND_SIMM5_PLUS1: |
| Ok = (isInt<5>(Imm) && Imm != -16) || Imm == 16; |
| break; |
| case RISCVOp::OPERAND_SIMM6: |
| Ok = isInt<6>(Imm); |
| break; |
| case RISCVOp::OPERAND_SIMM6_NONZERO: |
| Ok = Imm != 0 && isInt<6>(Imm); |
| break; |
| case RISCVOp::OPERAND_VTYPEI10: |
| Ok = isUInt<10>(Imm); |
| break; |
| case RISCVOp::OPERAND_VTYPEI11: |
| Ok = isUInt<11>(Imm); |
| break; |
| case RISCVOp::OPERAND_SIMM12: |
| Ok = isInt<12>(Imm); |
| break; |
| case RISCVOp::OPERAND_SIMM12_LSB00000: |
| Ok = isShiftedInt<7, 5>(Imm); |
| break; |
| case RISCVOp::OPERAND_UIMMLOG2XLEN: |
| Ok = STI.is64Bit() ? isUInt<6>(Imm) : isUInt<5>(Imm); |
| break; |
| case RISCVOp::OPERAND_UIMMLOG2XLEN_NONZERO: |
| Ok = STI.is64Bit() ? isUInt<6>(Imm) : isUInt<5>(Imm); |
| Ok = Ok && Imm != 0; |
| break; |
| case RISCVOp::OPERAND_CLUI_IMM: |
| Ok = (isUInt<5>(Imm) && Imm != 0) || |
| (Imm >= 0xfffe0 && Imm <= 0xfffff); |
| break; |
| case RISCVOp::OPERAND_RVKRNUM: |
| Ok = Imm >= 0 && Imm <= 10; |
| break; |
| case RISCVOp::OPERAND_RVKRNUM_0_7: |
| Ok = Imm >= 0 && Imm <= 7; |
| break; |
| case RISCVOp::OPERAND_RVKRNUM_1_10: |
| Ok = Imm >= 1 && Imm <= 10; |
| break; |
| case RISCVOp::OPERAND_RVKRNUM_2_14: |
| Ok = Imm >= 2 && Imm <= 14; |
| break; |
| } |
| if (!Ok) { |
| ErrInfo = "Invalid immediate"; |
| return false; |
| } |
| } |
| } |
| } |
| |
| const uint64_t TSFlags = Desc.TSFlags; |
| if (RISCVII::hasMergeOp(TSFlags)) { |
| unsigned OpIdx = RISCVII::getMergeOpNum(Desc); |
| if (MI.findTiedOperandIdx(0) != OpIdx) { |
| ErrInfo = "Merge op improperly tied"; |
| return false; |
| } |
| } |
| if (RISCVII::hasVLOp(TSFlags)) { |
| const MachineOperand &Op = MI.getOperand(RISCVII::getVLOpNum(Desc)); |
| if (!Op.isImm() && !Op.isReg()) { |
| ErrInfo = "Invalid operand type for VL operand"; |
| return false; |
| } |
| if (Op.isReg() && Op.getReg() != RISCV::NoRegister) { |
| const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| auto *RC = MRI.getRegClass(Op.getReg()); |
| if (!RISCV::GPRRegClass.hasSubClassEq(RC)) { |
| ErrInfo = "Invalid register class for VL operand"; |
| return false; |
| } |
| } |
| if (!RISCVII::hasSEWOp(TSFlags)) { |
| ErrInfo = "VL operand w/o SEW operand?"; |
| return false; |
| } |
| } |
| if (RISCVII::hasSEWOp(TSFlags)) { |
| unsigned OpIdx = RISCVII::getSEWOpNum(Desc); |
| uint64_t Log2SEW = MI.getOperand(OpIdx).getImm(); |
| if (Log2SEW > 31) { |
| ErrInfo = "Unexpected SEW value"; |
| return false; |
| } |
| unsigned SEW = Log2SEW ? 1 << Log2SEW : 8; |
| if (!RISCVVType::isValidSEW(SEW)) { |
| ErrInfo = "Unexpected SEW value"; |
| return false; |
| } |
| } |
| if (RISCVII::hasVecPolicyOp(TSFlags)) { |
| unsigned OpIdx = RISCVII::getVecPolicyOpNum(Desc); |
| uint64_t Policy = MI.getOperand(OpIdx).getImm(); |
| if (Policy > (RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC)) { |
| ErrInfo = "Invalid Policy Value"; |
| return false; |
| } |
| if (!RISCVII::hasVLOp(TSFlags)) { |
| ErrInfo = "policy operand w/o VL operand?"; |
| return false; |
| } |
| |
| // VecPolicy operands can only exist on instructions with passthru/merge |
| // arguments. Note that not all arguments with passthru have vec policy |
| // operands- some instructions have implicit policies. |
| unsigned UseOpIdx; |
| if (!MI.isRegTiedToUseOperand(0, &UseOpIdx)) { |
| ErrInfo = "policy operand w/o tied operand?"; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Return true if get the base operand, byte offset of an instruction and the |
| // memory width. Width is the size of memory that is being loaded/stored. |
| bool RISCVInstrInfo::getMemOperandWithOffsetWidth( |
| const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, |
| unsigned &Width, const TargetRegisterInfo *TRI) const { |
| if (!LdSt.mayLoadOrStore()) |
| return false; |
| |
| // Here we assume the standard RISC-V ISA, which uses a base+offset |
| // addressing mode. You'll need to relax these conditions to support custom |
| // load/stores instructions. |
| if (LdSt.getNumExplicitOperands() != 3) |
| return false; |
| if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isImm()) |
| return false; |
| |
| if (!LdSt.hasOneMemOperand()) |
| return false; |
| |
| Width = (*LdSt.memoperands_begin())->getSize(); |
| BaseReg = &LdSt.getOperand(1); |
| Offset = LdSt.getOperand(2).getImm(); |
| return true; |
| } |
| |
| bool RISCVInstrInfo::areMemAccessesTriviallyDisjoint( |
| const MachineInstr &MIa, const MachineInstr &MIb) const { |
| assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); |
| assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); |
| |
| if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || |
| MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) |
| return false; |
| |
| // Retrieve the base register, offset from the base register and width. Width |
| // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If |
| // base registers are identical, and the offset of a lower memory access + |
| // the width doesn't overlap the offset of a higher memory access, |
| // then the memory accesses are different. |
| const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
| const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; |
| int64_t OffsetA = 0, OffsetB = 0; |
| unsigned int WidthA = 0, WidthB = 0; |
| if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && |
| getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { |
| if (BaseOpA->isIdenticalTo(*BaseOpB)) { |
| int LowOffset = std::min(OffsetA, OffsetB); |
| int HighOffset = std::max(OffsetA, OffsetB); |
| int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; |
| if (LowOffset + LowWidth <= HighOffset) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| std::pair<unsigned, unsigned> |
| RISCVInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { |
| const unsigned Mask = RISCVII::MO_DIRECT_FLAG_MASK; |
| return std::make_pair(TF & Mask, TF & ~Mask); |
| } |
| |
| ArrayRef<std::pair<unsigned, const char *>> |
| RISCVInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { |
| using namespace RISCVII; |
| static const std::pair<unsigned, const char *> TargetFlags[] = { |
| {MO_CALL, "riscv-call"}, |
| {MO_PLT, "riscv-plt"}, |
| {MO_LO, "riscv-lo"}, |
| {MO_HI, "riscv-hi"}, |
| {MO_PCREL_LO, "riscv-pcrel-lo"}, |
| {MO_PCREL_HI, "riscv-pcrel-hi"}, |
| {MO_GOT_HI, "riscv-got-hi"}, |
| {MO_TPREL_LO, "riscv-tprel-lo"}, |
| {MO_TPREL_HI, "riscv-tprel-hi"}, |
| {MO_TPREL_ADD, "riscv-tprel-add"}, |
| {MO_TLS_GOT_HI, "riscv-tls-got-hi"}, |
| {MO_TLS_GD_HI, "riscv-tls-gd-hi"}}; |
| return ArrayRef(TargetFlags); |
| } |
| bool RISCVInstrInfo::isFunctionSafeToOutlineFrom( |
| MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { |
| const Function &F = MF.getFunction(); |
| |
| // Can F be deduplicated by the linker? If it can, don't outline from it. |
| if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) |
| return false; |
| |
| // Don't outline from functions with section markings; the program could |
| // expect that all the code is in the named section. |
| if (F.hasSection()) |
| return false; |
| |
| // It's safe to outline from MF. |
| return true; |
| } |
| |
| bool RISCVInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, |
| unsigned &Flags) const { |
| // More accurate safety checking is done in getOutliningCandidateInfo. |
| return TargetInstrInfo::isMBBSafeToOutlineFrom(MBB, Flags); |
| } |
| |
| // Enum values indicating how an outlined call should be constructed. |
| enum MachineOutlinerConstructionID { |
| MachineOutlinerDefault |
| }; |
| |
| bool RISCVInstrInfo::shouldOutlineFromFunctionByDefault( |
| MachineFunction &MF) const { |
| return MF.getFunction().hasMinSize(); |
| } |
| |
| std::optional<outliner::OutlinedFunction> |
| RISCVInstrInfo::getOutliningCandidateInfo( |
| std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { |
| |
| // First we need to filter out candidates where the X5 register (IE t0) can't |
| // be used to setup the function call. |
| auto CannotInsertCall = [](outliner::Candidate &C) { |
| const TargetRegisterInfo *TRI = C.getMF()->getSubtarget().getRegisterInfo(); |
| return !C.isAvailableAcrossAndOutOfSeq(RISCV::X5, *TRI); |
| }; |
| |
| llvm::erase_if(RepeatedSequenceLocs, CannotInsertCall); |
| |
| // If the sequence doesn't have enough candidates left, then we're done. |
| if (RepeatedSequenceLocs.size() < 2) |
| return std::nullopt; |
| |
| unsigned SequenceSize = 0; |
| |
| auto I = RepeatedSequenceLocs[0].front(); |
| auto E = std::next(RepeatedSequenceLocs[0].back()); |
| for (; I != E; ++I) |
| SequenceSize += getInstSizeInBytes(*I); |
| |
| // call t0, function = 8 bytes. |
| unsigned CallOverhead = 8; |
| for (auto &C : RepeatedSequenceLocs) |
| C.setCallInfo(MachineOutlinerDefault, CallOverhead); |
| |
| // jr t0 = 4 bytes, 2 bytes if compressed instructions are enabled. |
| unsigned FrameOverhead = 4; |
| if (RepeatedSequenceLocs[0] |
| .getMF() |
| ->getSubtarget<RISCVSubtarget>() |
| .hasStdExtCOrZca()) |
| FrameOverhead = 2; |
| |
| return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, |
| FrameOverhead, MachineOutlinerDefault); |
| } |
| |
| outliner::InstrType |
| RISCVInstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MBBI, |
| unsigned Flags) const { |
| MachineInstr &MI = *MBBI; |
| MachineBasicBlock *MBB = MI.getParent(); |
| const TargetRegisterInfo *TRI = |
| MBB->getParent()->getSubtarget().getRegisterInfo(); |
| const auto &F = MI.getMF()->getFunction(); |
| |
| // We can manually strip out CFI instructions later. |
| if (MI.isCFIInstruction()) |
| // If current function has exception handling code, we can't outline & |
| // strip these CFI instructions since it may break .eh_frame section |
| // needed in unwinding. |
| return F.needsUnwindTableEntry() ? outliner::InstrType::Illegal |
| : outliner::InstrType::Invisible; |
| |
| // We need support for tail calls to outlined functions before return |
| // statements can be allowed. |
| if (MI.isReturn()) |
| return outliner::InstrType::Illegal; |
| |
| // Don't allow modifying the X5 register which we use for return addresses for |
| // these outlined functions. |
| if (MI.modifiesRegister(RISCV::X5, TRI) || |
| MI.getDesc().hasImplicitDefOfPhysReg(RISCV::X5)) |
| return outliner::InstrType::Illegal; |
| |
| // Make sure the operands don't reference something unsafe. |
| for (const auto &MO : MI.operands()) { |
| |
| // pcrel-hi and pcrel-lo can't put in separate sections, filter that out |
| // if any possible. |
| if (MO.getTargetFlags() == RISCVII::MO_PCREL_LO && |
| (MI.getMF()->getTarget().getFunctionSections() || F.hasComdat() || |
| F.hasSection())) |
| return outliner::InstrType::Illegal; |
| } |
| |
| return outliner::InstrType::Legal; |
| } |
| |
| void RISCVInstrInfo::buildOutlinedFrame( |
| MachineBasicBlock &MBB, MachineFunction &MF, |
| const outliner::OutlinedFunction &OF) const { |
| |
| // Strip out any CFI instructions |
| bool Changed = true; |
| while (Changed) { |
| Changed = false; |
| auto I = MBB.begin(); |
| auto E = MBB.end(); |
| for (; I != E; ++I) { |
| if (I->isCFIInstruction()) { |
| I->removeFromParent(); |
| Changed = true; |
| break; |
| } |
| } |
| } |
| |
| MBB.addLiveIn(RISCV::X5); |
| |
| // Add in a return instruction to the end of the outlined frame. |
| MBB.insert(MBB.end(), BuildMI(MF, DebugLoc(), get(RISCV::JALR)) |
| .addReg(RISCV::X0, RegState::Define) |
| .addReg(RISCV::X5) |
| .addImm(0)); |
| } |
| |
| MachineBasicBlock::iterator RISCVInstrInfo::insertOutlinedCall( |
| Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, |
| MachineFunction &MF, outliner::Candidate &C) const { |
| |
| // Add in a call instruction to the outlined function at the given location. |
| It = MBB.insert(It, |
| BuildMI(MF, DebugLoc(), get(RISCV::PseudoCALLReg), RISCV::X5) |
| .addGlobalAddress(M.getNamedValue(MF.getName()), 0, |
| RISCVII::MO_CALL)); |
| return It; |
| } |
| |
| // MIR printer helper function to annotate Operands with a comment. |
| std::string RISCVInstrInfo::createMIROperandComment( |
| const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, |
| const TargetRegisterInfo *TRI) const { |
| // Print a generic comment for this operand if there is one. |
| std::string GenericComment = |
| TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); |
| if (!GenericComment.empty()) |
| return GenericComment; |
| |
| // If not, we must have an immediate operand. |
| if (!Op.isImm()) |
| return std::string(); |
| |
| std::string Comment; |
| raw_string_ostream OS(Comment); |
| |
| uint64_t TSFlags = MI.getDesc().TSFlags; |
| |
| // Print the full VType operand of vsetvli/vsetivli instructions, and the SEW |
| // operand of vector codegen pseudos. |
| if ((MI.getOpcode() == RISCV::VSETVLI || MI.getOpcode() == RISCV::VSETIVLI || |
| MI.getOpcode() == RISCV::PseudoVSETVLI || |
| MI.getOpcode() == RISCV::PseudoVSETIVLI || |
| MI.getOpcode() == RISCV::PseudoVSETVLIX0) && |
| OpIdx == 2) { |
| unsigned Imm = MI.getOperand(OpIdx).getImm(); |
| RISCVVType::printVType(Imm, OS); |
| } else if (RISCVII::hasSEWOp(TSFlags) && |
| OpIdx == RISCVII::getSEWOpNum(MI.getDesc())) { |
| unsigned Log2SEW = MI.getOperand(OpIdx).getImm(); |
| unsigned SEW = Log2SEW ? 1 << Log2SEW : 8; |
| assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); |
| OS << "e" << SEW; |
| } else if (RISCVII::hasVecPolicyOp(TSFlags) && |
| OpIdx == RISCVII::getVecPolicyOpNum(MI.getDesc())) { |
| unsigned Policy = MI.getOperand(OpIdx).getImm(); |
| assert(Policy <= (RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC) && |
| "Invalid Policy Value"); |
| OS << (Policy & RISCVII::TAIL_AGNOSTIC ? "ta" : "tu") << ", " |
| << (Policy & RISCVII::MASK_AGNOSTIC ? "ma" : "mu"); |
| } |
| |
| OS.flush(); |
| return Comment; |
| } |
| |
| // clang-format off |
| #define CASE_VFMA_OPCODE_COMMON(OP, TYPE, LMUL) \ |
| RISCV::PseudoV##OP##_##TYPE##_##LMUL |
| |
| #define CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE) \ |
| CASE_VFMA_OPCODE_COMMON(OP, TYPE, M1): \ |
| case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M2): \ |
| case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M4): \ |
| case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M8) |
| |
| #define CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE) \ |
| CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF2): \ |
| case CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE) |
| |
| #define CASE_VFMA_OPCODE_LMULS_MF4(OP, TYPE) \ |
| CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF4): \ |
| case CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE) |
| |
| #define CASE_VFMA_OPCODE_LMULS(OP, TYPE) \ |
| CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF8): \ |
| case CASE_VFMA_OPCODE_LMULS_MF4(OP, TYPE) |
| |
| #define CASE_VFMA_SPLATS(OP) \ |
| CASE_VFMA_OPCODE_LMULS_MF4(OP, VF16): \ |
| case CASE_VFMA_OPCODE_LMULS_MF2(OP, VF32): \ |
| case CASE_VFMA_OPCODE_LMULS_M1(OP, VF64) |
| // clang-format on |
| |
| bool RISCVInstrInfo::findCommutedOpIndices(const MachineInstr &MI, |
| unsigned &SrcOpIdx1, |
| unsigned &SrcOpIdx2) const { |
| const MCInstrDesc &Desc = MI.getDesc(); |
| if (!Desc.isCommutable()) |
| return false; |
| |
| switch (MI.getOpcode()) { |
| case RISCV::TH_MVEQZ: |
| case RISCV::TH_MVNEZ: |
| // We can't commute operands if operand 2 (i.e., rs1 in |
| // mveqz/mvnez rd,rs1,rs2) is the zero-register (as it is |
| // not valid as the in/out-operand 1). |
| if (MI.getOperand(2).getReg() == RISCV::X0) |
| return false; |
| // Operands 1 and 2 are commutable, if we switch the opcode. |
| return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2); |
| case RISCV::TH_MULA: |
| case RISCV::TH_MULAW: |
| case RISCV::TH_MULAH: |
| case RISCV::TH_MULS: |
| case RISCV::TH_MULSW: |
| case RISCV::TH_MULSH: |
| // Operands 2 and 3 are commutable. |
| return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); |
| case RISCV::PseudoCCMOVGPR: |
| // Operands 4 and 5 are commutable. |
| return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 4, 5); |
| case CASE_VFMA_SPLATS(FMADD): |
| case CASE_VFMA_SPLATS(FMSUB): |
| case CASE_VFMA_SPLATS(FMACC): |
| case CASE_VFMA_SPLATS(FMSAC): |
| case CASE_VFMA_SPLATS(FNMADD): |
| case CASE_VFMA_SPLATS(FNMSUB): |
| case CASE_VFMA_SPLATS(FNMACC): |
| case CASE_VFMA_SPLATS(FNMSAC): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FMACC, VV): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FMSAC, VV): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FNMACC, VV): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FNMSAC, VV): |
| case CASE_VFMA_OPCODE_LMULS(MADD, VX): |
| case CASE_VFMA_OPCODE_LMULS(NMSUB, VX): |
| case CASE_VFMA_OPCODE_LMULS(MACC, VX): |
| case CASE_VFMA_OPCODE_LMULS(NMSAC, VX): |
| case CASE_VFMA_OPCODE_LMULS(MACC, VV): |
| case CASE_VFMA_OPCODE_LMULS(NMSAC, VV): { |
| // If the tail policy is undisturbed we can't commute. |
| assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags)); |
| if ((MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 1) == 0) |
| return false; |
| |
| // For these instructions we can only swap operand 1 and operand 3 by |
| // changing the opcode. |
| unsigned CommutableOpIdx1 = 1; |
| unsigned CommutableOpIdx2 = 3; |
| if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, |
| CommutableOpIdx2)) |
| return false; |
| return true; |
| } |
| case CASE_VFMA_OPCODE_LMULS_MF4(FMADD, VV): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FMSUB, VV): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FNMADD, VV): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FNMSUB, VV): |
| case CASE_VFMA_OPCODE_LMULS(MADD, VV): |
| case CASE_VFMA_OPCODE_LMULS(NMSUB, VV): { |
| // If the tail policy is undisturbed we can't commute. |
| assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags)); |
| if ((MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 1) == 0) |
| return false; |
| |
| // For these instructions we have more freedom. We can commute with the |
| // other multiplicand or with the addend/subtrahend/minuend. |
| |
| // Any fixed operand must be from source 1, 2 or 3. |
| if (SrcOpIdx1 != CommuteAnyOperandIndex && SrcOpIdx1 > 3) |
| return false; |
| if (SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx2 > 3) |
| return false; |
| |
| // It both ops are fixed one must be the tied source. |
| if (SrcOpIdx1 != CommuteAnyOperandIndex && |
| SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx1 != 1 && SrcOpIdx2 != 1) |
| return false; |
| |
| // Look for two different register operands assumed to be commutable |
| // regardless of the FMA opcode. The FMA opcode is adjusted later if |
| // needed. |
| if (SrcOpIdx1 == CommuteAnyOperandIndex || |
| SrcOpIdx2 == CommuteAnyOperandIndex) { |
| // At least one of operands to be commuted is not specified and |
| // this method is free to choose appropriate commutable operands. |
| unsigned CommutableOpIdx1 = SrcOpIdx1; |
| if (SrcOpIdx1 == SrcOpIdx2) { |
| // Both of operands are not fixed. Set one of commutable |
| // operands to the tied source. |
| CommutableOpIdx1 = 1; |
| } else if (SrcOpIdx1 == CommuteAnyOperandIndex) { |
| // Only one of the operands is not fixed. |
| CommutableOpIdx1 = SrcOpIdx2; |
| } |
| |
| // CommutableOpIdx1 is well defined now. Let's choose another commutable |
| // operand and assign its index to CommutableOpIdx2. |
| unsigned CommutableOpIdx2; |
| if (CommutableOpIdx1 != 1) { |
| // If we haven't already used the tied source, we must use it now. |
| CommutableOpIdx2 = 1; |
| } else { |
| Register Op1Reg = MI.getOperand(CommutableOpIdx1).getReg(); |
| |
| // The commuted operands should have different registers. |
| // Otherwise, the commute transformation does not change anything and |
| // is useless. We use this as a hint to make our decision. |
| if (Op1Reg != MI.getOperand(2).getReg()) |
| CommutableOpIdx2 = 2; |
| else |
| CommutableOpIdx2 = 3; |
| } |
| |
| // Assign the found pair of commutable indices to SrcOpIdx1 and |
| // SrcOpIdx2 to return those values. |
| if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, |
| CommutableOpIdx2)) |
| return false; |
| } |
| |
| return true; |
| } |
| } |
| |
| return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| } |
| |
| #define CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL) \ |
| case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL: \ |
| Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL; \ |
| break; |
| |
| #define CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE) \ |
| CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1) \ |
| CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2) \ |
| CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4) \ |
| CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8) |
| |
| #define CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE) \ |
| CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2) \ |
| CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE) |
| |
| #define CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE) \ |
| CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4) \ |
| CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE) |
| |
| #define CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE) \ |
| CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8) \ |
| CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE) |
| |
| #define CASE_VFMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP) \ |
| CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VF16) \ |
| CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VF32) \ |
| CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VF64) |
| |
| MachineInstr *RISCVInstrInfo::commuteInstructionImpl(MachineInstr &MI, |
| bool NewMI, |
| unsigned OpIdx1, |
| unsigned OpIdx2) const { |
| auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { |
| if (NewMI) |
| return *MI.getParent()->getParent()->CloneMachineInstr(&MI); |
| return MI; |
| }; |
| |
| switch (MI.getOpcode()) { |
| case RISCV::TH_MVEQZ: |
| case RISCV::TH_MVNEZ: { |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.setDesc(get(MI.getOpcode() == RISCV::TH_MVEQZ ? RISCV::TH_MVNEZ |
| : RISCV::TH_MVEQZ)); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, false, OpIdx1, |
| OpIdx2); |
| } |
| case RISCV::PseudoCCMOVGPR: { |
| // CCMOV can be commuted by inverting the condition. |
| auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); |
| CC = RISCVCC::getOppositeBranchCondition(CC); |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.getOperand(3).setImm(CC); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI*/ false, |
| OpIdx1, OpIdx2); |
| } |
| case CASE_VFMA_SPLATS(FMACC): |
| case CASE_VFMA_SPLATS(FMADD): |
| case CASE_VFMA_SPLATS(FMSAC): |
| case CASE_VFMA_SPLATS(FMSUB): |
| case CASE_VFMA_SPLATS(FNMACC): |
| case CASE_VFMA_SPLATS(FNMADD): |
| case CASE_VFMA_SPLATS(FNMSAC): |
| case CASE_VFMA_SPLATS(FNMSUB): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FMACC, VV): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FMSAC, VV): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FNMACC, VV): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FNMSAC, VV): |
| case CASE_VFMA_OPCODE_LMULS(MADD, VX): |
| case CASE_VFMA_OPCODE_LMULS(NMSUB, VX): |
| case CASE_VFMA_OPCODE_LMULS(MACC, VX): |
| case CASE_VFMA_OPCODE_LMULS(NMSAC, VX): |
| case CASE_VFMA_OPCODE_LMULS(MACC, VV): |
| case CASE_VFMA_OPCODE_LMULS(NMSAC, VV): { |
| // It only make sense to toggle these between clobbering the |
| // addend/subtrahend/minuend one of the multiplicands. |
| assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index"); |
| assert((OpIdx1 == 3 || OpIdx2 == 3) && "Unexpected opcode index"); |
| unsigned Opc; |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected opcode"); |
| CASE_VFMA_CHANGE_OPCODE_SPLATS(FMACC, FMADD) |
| CASE_VFMA_CHANGE_OPCODE_SPLATS(FMADD, FMACC) |
| CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSAC, FMSUB) |
| CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSUB, FMSAC) |
| CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMACC, FNMADD) |
| CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMADD, FNMACC) |
| CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSAC, FNMSUB) |
| CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSUB, FNMSAC) |
| CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FMACC, FMADD, VV) |
| CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FMSAC, FMSUB, VV) |
| CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FNMACC, FNMADD, VV) |
| CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FNMSAC, FNMSUB, VV) |
| CASE_VFMA_CHANGE_OPCODE_LMULS(MACC, MADD, VX) |
| CASE_VFMA_CHANGE_OPCODE_LMULS(MADD, MACC, VX) |
| CASE_VFMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VX) |
| CASE_VFMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VX) |
| CASE_VFMA_CHANGE_OPCODE_LMULS(MACC, MADD, VV) |
| CASE_VFMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VV) |
| } |
| |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.setDesc(get(Opc)); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| case CASE_VFMA_OPCODE_LMULS_MF4(FMADD, VV): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FMSUB, VV): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FNMADD, VV): |
| case CASE_VFMA_OPCODE_LMULS_MF4(FNMSUB, VV): |
| case CASE_VFMA_OPCODE_LMULS(MADD, VV): |
| case CASE_VFMA_OPCODE_LMULS(NMSUB, VV): { |
| assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index"); |
| // If one of the operands, is the addend we need to change opcode. |
| // Otherwise we're just swapping 2 of the multiplicands. |
| if (OpIdx1 == 3 || OpIdx2 == 3) { |
| unsigned Opc; |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected opcode"); |
| CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FMADD, FMACC, VV) |
| CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FMSUB, FMSAC, VV) |
| CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FNMADD, FNMACC, VV) |
| CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FNMSUB, FNMSAC, VV) |
| CASE_VFMA_CHANGE_OPCODE_LMULS(MADD, MACC, VV) |
| CASE_VFMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VV) |
| } |
| |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.setDesc(get(Opc)); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| // Let the default code handle it. |
| break; |
| } |
| } |
| |
| return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| } |
| |
| #undef CASE_VFMA_CHANGE_OPCODE_SPLATS |
| #undef CASE_VFMA_CHANGE_OPCODE_LMULS |
| #undef CASE_VFMA_CHANGE_OPCODE_COMMON |
| #undef CASE_VFMA_SPLATS |
| #undef CASE_VFMA_OPCODE_LMULS |
| #undef CASE_VFMA_OPCODE_COMMON |
| |
| // clang-format off |
| #define CASE_WIDEOP_OPCODE_COMMON(OP, LMUL) \ |
| RISCV::PseudoV##OP##_##LMUL##_TIED |
| |
| #define CASE_WIDEOP_OPCODE_LMULS_MF4(OP) \ |
| CASE_WIDEOP_OPCODE_COMMON(OP, MF4): \ |
| case CASE_WIDEOP_OPCODE_COMMON(OP, MF2): \ |
| case CASE_WIDEOP_OPCODE_COMMON(OP, M1): \ |
| case CASE_WIDEOP_OPCODE_COMMON(OP, M2): \ |
| case CASE_WIDEOP_OPCODE_COMMON(OP, M4) |
| |
| #define CASE_WIDEOP_OPCODE_LMULS(OP) \ |
| CASE_WIDEOP_OPCODE_COMMON(OP, MF8): \ |
| case CASE_WIDEOP_OPCODE_LMULS_MF4(OP) |
| // clang-format on |
| |
| #define CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, LMUL) \ |
| case RISCV::PseudoV##OP##_##LMUL##_TIED: \ |
| NewOpc = RISCV::PseudoV##OP##_##LMUL; \ |
| break; |
| |
| #define CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP) \ |
| CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF4) \ |
| CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2) \ |
| CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1) \ |
| CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2) \ |
| CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4) |
| |
| #define CASE_WIDEOP_CHANGE_OPCODE_LMULS(OP) \ |
| CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF8) \ |
| CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP) |
| |
| MachineInstr *RISCVInstrInfo::convertToThreeAddress(MachineInstr &MI, |
| LiveVariables *LV, |
| LiveIntervals *LIS) const { |
| switch (MI.getOpcode()) { |
| default: |
| break; |
| case CASE_WIDEOP_OPCODE_LMULS_MF4(FWADD_WV): |
| case CASE_WIDEOP_OPCODE_LMULS_MF4(FWSUB_WV): |
| case CASE_WIDEOP_OPCODE_LMULS(WADD_WV): |
| case CASE_WIDEOP_OPCODE_LMULS(WADDU_WV): |
| case CASE_WIDEOP_OPCODE_LMULS(WSUB_WV): |
| case CASE_WIDEOP_OPCODE_LMULS(WSUBU_WV): { |
| // If the tail policy is undisturbed we can't convert. |
| assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags) && |
| MI.getNumExplicitOperands() == 6); |
| if ((MI.getOperand(5).getImm() & 1) == 0) |
| return nullptr; |
| |
| // clang-format off |
| unsigned NewOpc; |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected opcode"); |
| CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(FWADD_WV) |
| CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(FWSUB_WV) |
| CASE_WIDEOP_CHANGE_OPCODE_LMULS(WADD_WV) |
| CASE_WIDEOP_CHANGE_OPCODE_LMULS(WADDU_WV) |
| CASE_WIDEOP_CHANGE_OPCODE_LMULS(WSUB_WV) |
| CASE_WIDEOP_CHANGE_OPCODE_LMULS(WSUBU_WV) |
| } |
| // clang-format on |
| |
| MachineBasicBlock &MBB = *MI.getParent(); |
| MachineInstrBuilder MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) |
| .add(MI.getOperand(0)) |
| .add(MI.getOperand(1)) |
| .add(MI.getOperand(2)) |
| .add(MI.getOperand(3)) |
| .add(MI.getOperand(4)); |
| MIB.copyImplicitOps(MI); |
| |
| if (LV) { |
| unsigned NumOps = MI.getNumOperands(); |
| for (unsigned I = 1; I < NumOps; ++I) { |
| MachineOperand &Op = MI.getOperand(I); |
| if (Op.isReg() && Op.isKill()) |
| LV->replaceKillInstruction(Op.getReg(), MI, *MIB); |
| } |
| } |
| |
| if (LIS) { |
| SlotIndex Idx = LIS->ReplaceMachineInstrInMaps(MI, *MIB); |
| |
| if (MI.getOperand(0).isEarlyClobber()) { |
| // Use operand 1 was tied to early-clobber def operand 0, so its live |
| // interval could have ended at an early-clobber slot. Now they are not |
| // tied we need to update it to the normal register slot. |
| LiveInterval &LI = LIS->getInterval(MI.getOperand(1).getReg()); |
| LiveRange::Segment *S = LI.getSegmentContaining(Idx); |
| if (S->end == Idx.getRegSlot(true)) |
| S->end = Idx.getRegSlot(); |
| } |
| } |
| |
| return MIB; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| #undef CASE_WIDEOP_CHANGE_OPCODE_LMULS |
| #undef CASE_WIDEOP_CHANGE_OPCODE_COMMON |
| #undef CASE_WIDEOP_OPCODE_LMULS |
| #undef CASE_WIDEOP_OPCODE_COMMON |
| |
| void RISCVInstrInfo::getVLENFactoredAmount(MachineFunction &MF, |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator II, |
| const DebugLoc &DL, Register DestReg, |
| int64_t Amount, |
| MachineInstr::MIFlag Flag) const { |
| assert(Amount > 0 && "There is no need to get VLEN scaled value."); |
| assert(Amount % 8 == 0 && |
| "Reserve the stack by the multiple of one vector size."); |
| |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| int64_t NumOfVReg = Amount / 8; |
| |
| BuildMI(MBB, II, DL, get(RISCV::PseudoReadVLENB), DestReg).setMIFlag(Flag); |
| assert(isInt<32>(NumOfVReg) && |
| "Expect the number of vector registers within 32-bits."); |
| if (llvm::has_single_bit<uint32_t>(NumOfVReg)) { |
| uint32_t ShiftAmount = Log2_32(NumOfVReg); |
| if (ShiftAmount == 0) |
| return; |
| BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg) |
| .addReg(DestReg, RegState::Kill) |
| .addImm(ShiftAmount) |
| .setMIFlag(Flag); |
| } else if (STI.hasStdExtZba() && |
| ((NumOfVReg % 3 == 0 && isPowerOf2_64(NumOfVReg / 3)) || |
| (NumOfVReg % 5 == 0 && isPowerOf2_64(NumOfVReg / 5)) || |
| (NumOfVReg % 9 == 0 && isPowerOf2_64(NumOfVReg / 9)))) { |
| // We can use Zba SHXADD+SLLI instructions for multiply in some cases. |
| unsigned Opc; |
| uint32_t ShiftAmount; |
| if (NumOfVReg % 9 == 0) { |
| Opc = RISCV::SH3ADD; |
| ShiftAmount = Log2_64(NumOfVReg / 9); |
| } else if (NumOfVReg % 5 == 0) { |
| Opc = RISCV::SH2ADD; |
| ShiftAmount = Log2_64(NumOfVReg / 5); |
| } else if (NumOfVReg % 3 == 0) { |
| Opc = RISCV::SH1ADD; |
| ShiftAmount = Log2_64(NumOfVReg / 3); |
| } else { |
| llvm_unreachable("Unexpected number of vregs"); |
| } |
| if (ShiftAmount) |
| BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg) |
| .addReg(DestReg, RegState::Kill) |
| .addImm(ShiftAmount) |
| .setMIFlag(Flag); |
| BuildMI(MBB, II, DL, get(Opc), DestReg) |
| .addReg(DestReg, RegState::Kill) |
| .addReg(DestReg) |
| .setMIFlag(Flag); |
| } else if (llvm::has_single_bit<uint32_t>(NumOfVReg - 1)) { |
| Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass); |
| uint32_t ShiftAmount = Log2_32(NumOfVReg - 1); |
| BuildMI(MBB, II, DL, get(RISCV::SLLI), ScaledRegister) |
| .addReg(DestReg) |
| .addImm(ShiftAmount) |
| .setMIFlag(Flag); |
| BuildMI(MBB, II, DL, get(RISCV::ADD), DestReg) |
| .addReg(ScaledRegister, RegState::Kill) |
| .addReg(DestReg, RegState::Kill) |
| .setMIFlag(Flag); |
| } else if (llvm::has_single_bit<uint32_t>(NumOfVReg + 1)) { |
| Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass); |
| uint32_t ShiftAmount = Log2_32(NumOfVReg + 1); |
| BuildMI(MBB, II, DL, get(RISCV::SLLI), ScaledRegister) |
| .addReg(DestReg) |
| .addImm(ShiftAmount) |
| .setMIFlag(Flag); |
| BuildMI(MBB, II, DL, get(RISCV::SUB), DestReg) |
| .addReg(ScaledRegister, RegState::Kill) |
| .addReg(DestReg, RegState::Kill) |
| .setMIFlag(Flag); |
| } else { |
| Register N = MRI.createVirtualRegister(&RISCV::GPRRegClass); |
| movImm(MBB, II, DL, N, NumOfVReg, Flag); |
| if (!STI.hasStdExtM() && !STI.hasStdExtZmmul()) |
| MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ |
| MF.getFunction(), |
| "M- or Zmmul-extension must be enabled to calculate the vscaled size/" |
| "offset."}); |
| BuildMI(MBB, II, DL, get(RISCV::MUL), DestReg) |
| .addReg(DestReg, RegState::Kill) |
| .addReg(N, RegState::Kill) |
| .setMIFlag(Flag); |
| } |
| } |
| |
| ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> |
| RISCVInstrInfo::getSerializableMachineMemOperandTargetFlags() const { |
| static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] = |
| {{MONontemporalBit0, "riscv-nontemporal-domain-bit-0"}, |
| {MONontemporalBit1, "riscv-nontemporal-domain-bit-1"}}; |
| return ArrayRef(TargetFlags); |
| } |
| |
| // Returns true if this is the sext.w pattern, addiw rd, rs1, 0. |
| bool RISCV::isSEXT_W(const MachineInstr &MI) { |
| return MI.getOpcode() == RISCV::ADDIW && MI.getOperand(1).isReg() && |
| MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0; |
| } |
| |
| // Returns true if this is the zext.w pattern, adduw rd, rs1, x0. |
| bool RISCV::isZEXT_W(const MachineInstr &MI) { |
| return MI.getOpcode() == RISCV::ADD_UW && MI.getOperand(1).isReg() && |
| MI.getOperand(2).isReg() && MI.getOperand(2).getReg() == RISCV::X0; |
| } |
| |
| // Returns true if this is the zext.b pattern, andi rd, rs1, 255. |
| bool RISCV::isZEXT_B(const MachineInstr &MI) { |
| return MI.getOpcode() == RISCV::ANDI && MI.getOperand(1).isReg() && |
| MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 255; |
| } |
| |
| static bool isRVVWholeLoadStore(unsigned Opcode) { |
| switch (Opcode) { |
| default: |
| return false; |
| case RISCV::VS1R_V: |
| case RISCV::VS2R_V: |
| case RISCV::VS4R_V: |
| case RISCV::VS8R_V: |
| case RISCV::VL1RE8_V: |
| case RISCV::VL2RE8_V: |
| case RISCV::VL4RE8_V: |
| case RISCV::VL8RE8_V: |
| case RISCV::VL1RE16_V: |
| case RISCV::VL2RE16_V: |
| case RISCV::VL4RE16_V: |
| case RISCV::VL8RE16_V: |
| case RISCV::VL1RE32_V: |
| case RISCV::VL2RE32_V: |
| case RISCV::VL4RE32_V: |
| case RISCV::VL8RE32_V: |
| case RISCV::VL1RE64_V: |
| case RISCV::VL2RE64_V: |
| case RISCV::VL4RE64_V: |
| case RISCV::VL8RE64_V: |
| return true; |
| } |
| } |
| |
| bool RISCV::isRVVSpill(const MachineInstr &MI) { |
| // RVV lacks any support for immediate addressing for stack addresses, so be |
| // conservative. |
| unsigned Opcode = MI.getOpcode(); |
| if (!RISCVVPseudosTable::getPseudoInfo(Opcode) && |
| !isRVVWholeLoadStore(Opcode) && !isRVVSpillForZvlsseg(Opcode)) |
| return false; |
| return true; |
| } |
| |
| std::optional<std::pair<unsigned, unsigned>> |
| RISCV::isRVVSpillForZvlsseg(unsigned Opcode) { |
| switch (Opcode) { |
| default: |
| return std::nullopt; |
| case RISCV::PseudoVSPILL2_M1: |
| case RISCV::PseudoVRELOAD2_M1: |
| return std::make_pair(2u, 1u); |
| case RISCV::PseudoVSPILL2_M2: |
| case RISCV::PseudoVRELOAD2_M2: |
| return std::make_pair(2u, 2u); |
| case RISCV::PseudoVSPILL2_M4: |
| case RISCV::PseudoVRELOAD2_M4: |
| return std::make_pair(2u, 4u); |
| case RISCV::PseudoVSPILL3_M1: |
| case RISCV::PseudoVRELOAD3_M1: |
| return std::make_pair(3u, 1u); |
| case RISCV::PseudoVSPILL3_M2: |
| case RISCV::PseudoVRELOAD3_M2: |
| return std::make_pair(3u, 2u); |
| case RISCV::PseudoVSPILL4_M1: |
| case RISCV::PseudoVRELOAD4_M1: |
| return std::make_pair(4u, 1u); |
| case RISCV::PseudoVSPILL4_M2: |
| case RISCV::PseudoVRELOAD4_M2: |
| return std::make_pair(4u, 2u); |
| case RISCV::PseudoVSPILL5_M1: |
| case RISCV::PseudoVRELOAD5_M1: |
| return std::make_pair(5u, 1u); |
| case RISCV::PseudoVSPILL6_M1: |
| case RISCV::PseudoVRELOAD6_M1: |
| return std::make_pair(6u, 1u); |
| case RISCV::PseudoVSPILL7_M1: |
| case RISCV::PseudoVRELOAD7_M1: |
| return std::make_pair(7u, 1u); |
| case RISCV::PseudoVSPILL8_M1: |
| case RISCV::PseudoVRELOAD8_M1: |
| return std::make_pair(8u, 1u); |
| } |
| } |
| |
| bool RISCV::isFaultFirstLoad(const MachineInstr &MI) { |
| return MI.getNumExplicitDefs() == 2 && MI.modifiesRegister(RISCV::VL) && |
| !MI.isInlineAsm(); |
| } |
| |
| bool RISCV::hasEqualFRM(const MachineInstr &MI1, const MachineInstr &MI2) { |
| int16_t MI1FrmOpIdx = |
| RISCV::getNamedOperandIdx(MI1.getOpcode(), RISCV::OpName::frm); |
| int16_t MI2FrmOpIdx = |
| RISCV::getNamedOperandIdx(MI2.getOpcode(), RISCV::OpName::frm); |
| if (MI1FrmOpIdx < 0 || MI2FrmOpIdx < 0) |
| return false; |
| MachineOperand FrmOp1 = MI1.getOperand(MI1FrmOpIdx); |
| MachineOperand FrmOp2 = MI2.getOperand(MI2FrmOpIdx); |
| return FrmOp1.getImm() == FrmOp2.getImm(); |
| } |