| //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass transforms loops by placing phi nodes at the end of the loops for |
| // all values that are live across the loop boundary. For example, it turns |
| // the left into the right code: |
| // |
| // for (...) for (...) |
| // if (c) if (c) |
| // X1 = ... X1 = ... |
| // else else |
| // X2 = ... X2 = ... |
| // X3 = phi(X1, X2) X3 = phi(X1, X2) |
| // ... = X3 + 4 X4 = phi(X3) |
| // ... = X4 + 4 |
| // |
| // This is still valid LLVM; the extra phi nodes are purely redundant, and will |
| // be trivially eliminated by InstCombine. The major benefit of this |
| // transformation is that it makes many other loop optimizations, such as |
| // LoopUnswitching, simpler. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/LCSSA.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PredIteratorCache.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "lcssa" |
| |
| STATISTIC(NumLCSSA, "Number of live out of a loop variables"); |
| |
| /// Return true if the specified block is in the list. |
| static bool isExitBlock(BasicBlock *BB, |
| const SmallVectorImpl<BasicBlock *> &ExitBlocks) { |
| return is_contained(ExitBlocks, BB); |
| } |
| |
| /// For every instruction from the worklist, check to see if it has any uses |
| /// that are outside the current loop. If so, insert LCSSA PHI nodes and |
| /// rewrite the uses. |
| bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, |
| DominatorTree &DT, LoopInfo &LI) { |
| SmallVector<Use *, 16> UsesToRewrite; |
| SmallVector<BasicBlock *, 8> ExitBlocks; |
| SmallSetVector<PHINode *, 16> PHIsToRemove; |
| PredIteratorCache PredCache; |
| bool Changed = false; |
| |
| while (!Worklist.empty()) { |
| UsesToRewrite.clear(); |
| ExitBlocks.clear(); |
| |
| Instruction *I = Worklist.pop_back_val(); |
| BasicBlock *InstBB = I->getParent(); |
| Loop *L = LI.getLoopFor(InstBB); |
| L->getExitBlocks(ExitBlocks); |
| |
| if (ExitBlocks.empty()) |
| continue; |
| |
| // Tokens cannot be used in PHI nodes, so we skip over them. |
| // We can run into tokens which are live out of a loop with catchswitch |
| // instructions in Windows EH if the catchswitch has one catchpad which |
| // is inside the loop and another which is not. |
| if (I->getType()->isTokenTy()) |
| continue; |
| |
| for (Use &U : I->uses()) { |
| Instruction *User = cast<Instruction>(U.getUser()); |
| BasicBlock *UserBB = User->getParent(); |
| if (PHINode *PN = dyn_cast<PHINode>(User)) |
| UserBB = PN->getIncomingBlock(U); |
| |
| if (InstBB != UserBB && !L->contains(UserBB)) |
| UsesToRewrite.push_back(&U); |
| } |
| |
| // If there are no uses outside the loop, exit with no change. |
| if (UsesToRewrite.empty()) |
| continue; |
| |
| ++NumLCSSA; // We are applying the transformation |
| |
| // Invoke instructions are special in that their result value is not |
| // available along their unwind edge. The code below tests to see whether |
| // DomBB dominates the value, so adjust DomBB to the normal destination |
| // block, which is effectively where the value is first usable. |
| BasicBlock *DomBB = InstBB; |
| if (InvokeInst *Inv = dyn_cast<InvokeInst>(I)) |
| DomBB = Inv->getNormalDest(); |
| |
| DomTreeNode *DomNode = DT.getNode(DomBB); |
| |
| SmallVector<PHINode *, 16> AddedPHIs; |
| SmallVector<PHINode *, 8> PostProcessPHIs; |
| |
| SmallVector<PHINode *, 4> InsertedPHIs; |
| SSAUpdater SSAUpdate(&InsertedPHIs); |
| SSAUpdate.Initialize(I->getType(), I->getName()); |
| |
| // Insert the LCSSA phi's into all of the exit blocks dominated by the |
| // value, and add them to the Phi's map. |
| for (BasicBlock *ExitBB : ExitBlocks) { |
| if (!DT.dominates(DomNode, DT.getNode(ExitBB))) |
| continue; |
| |
| // If we already inserted something for this BB, don't reprocess it. |
| if (SSAUpdate.HasValueForBlock(ExitBB)) |
| continue; |
| |
| PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), |
| I->getName() + ".lcssa", &ExitBB->front()); |
| |
| // Add inputs from inside the loop for this PHI. |
| for (BasicBlock *Pred : PredCache.get(ExitBB)) { |
| PN->addIncoming(I, Pred); |
| |
| // If the exit block has a predecessor not within the loop, arrange for |
| // the incoming value use corresponding to that predecessor to be |
| // rewritten in terms of a different LCSSA PHI. |
| if (!L->contains(Pred)) |
| UsesToRewrite.push_back( |
| &PN->getOperandUse(PN->getOperandNumForIncomingValue( |
| PN->getNumIncomingValues() - 1))); |
| } |
| |
| AddedPHIs.push_back(PN); |
| |
| // Remember that this phi makes the value alive in this block. |
| SSAUpdate.AddAvailableValue(ExitBB, PN); |
| |
| // LoopSimplify might fail to simplify some loops (e.g. when indirect |
| // branches are involved). In such situations, it might happen that an |
| // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we |
| // create PHIs in such an exit block, we are also inserting PHIs into L2's |
| // header. This could break LCSSA form for L2 because these inserted PHIs |
| // can also have uses outside of L2. Remember all PHIs in such situation |
| // as to revisit than later on. FIXME: Remove this if indirectbr support |
| // into LoopSimplify gets improved. |
| if (auto *OtherLoop = LI.getLoopFor(ExitBB)) |
| if (!L->contains(OtherLoop)) |
| PostProcessPHIs.push_back(PN); |
| } |
| |
| // Rewrite all uses outside the loop in terms of the new PHIs we just |
| // inserted. |
| for (Use *UseToRewrite : UsesToRewrite) { |
| // If this use is in an exit block, rewrite to use the newly inserted PHI. |
| // This is required for correctness because SSAUpdate doesn't handle uses |
| // in the same block. It assumes the PHI we inserted is at the end of the |
| // block. |
| Instruction *User = cast<Instruction>(UseToRewrite->getUser()); |
| BasicBlock *UserBB = User->getParent(); |
| if (PHINode *PN = dyn_cast<PHINode>(User)) |
| UserBB = PN->getIncomingBlock(*UseToRewrite); |
| |
| if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { |
| // Tell the VHs that the uses changed. This updates SCEV's caches. |
| if (UseToRewrite->get()->hasValueHandle()) |
| ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); |
| UseToRewrite->set(&UserBB->front()); |
| continue; |
| } |
| |
| // Otherwise, do full PHI insertion. |
| SSAUpdate.RewriteUse(*UseToRewrite); |
| } |
| |
| // SSAUpdater might have inserted phi-nodes inside other loops. We'll need |
| // to post-process them to keep LCSSA form. |
| for (PHINode *InsertedPN : InsertedPHIs) { |
| if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) |
| if (!L->contains(OtherLoop)) |
| PostProcessPHIs.push_back(InsertedPN); |
| } |
| |
| // Post process PHI instructions that were inserted into another disjoint |
| // loop and update their exits properly. |
| for (auto *PostProcessPN : PostProcessPHIs) { |
| if (PostProcessPN->use_empty()) |
| continue; |
| |
| // Reprocess each PHI instruction. |
| Worklist.push_back(PostProcessPN); |
| } |
| |
| // Keep track of PHI nodes that we want to remove because they did not have |
| // any uses rewritten. |
| for (PHINode *PN : AddedPHIs) |
| if (PN->use_empty()) |
| PHIsToRemove.insert(PN); |
| |
| Changed = true; |
| } |
| // Remove PHI nodes that did not have any uses rewritten. |
| for (PHINode *PN : PHIsToRemove) { |
| assert (PN->use_empty() && "Trying to remove a phi with uses."); |
| PN->eraseFromParent(); |
| } |
| return Changed; |
| } |
| |
| /// Return true if the specified block dominates at least |
| /// one of the blocks in the specified list. |
| static bool |
| blockDominatesAnExit(BasicBlock *BB, |
| DominatorTree &DT, |
| const SmallVectorImpl<BasicBlock *> &ExitBlocks) { |
| DomTreeNode *DomNode = DT.getNode(BB); |
| return any_of(ExitBlocks, [&](BasicBlock *EB) { |
| return DT.dominates(DomNode, DT.getNode(EB)); |
| }); |
| } |
| |
| bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, |
| ScalarEvolution *SE) { |
| bool Changed = false; |
| |
| // Get the set of exiting blocks. |
| SmallVector<BasicBlock *, 8> ExitBlocks; |
| L.getExitBlocks(ExitBlocks); |
| |
| if (ExitBlocks.empty()) |
| return false; |
| |
| SmallVector<Instruction *, 8> Worklist; |
| |
| // Look at all the instructions in the loop, checking to see if they have uses |
| // outside the loop. If so, put them into the worklist to rewrite those uses. |
| for (BasicBlock *BB : L.blocks()) { |
| // For large loops, avoid use-scanning by using dominance information: In |
| // particular, if a block does not dominate any of the loop exits, then none |
| // of the values defined in the block could be used outside the loop. |
| if (!blockDominatesAnExit(BB, DT, ExitBlocks)) |
| continue; |
| |
| for (Instruction &I : *BB) { |
| // Reject two common cases fast: instructions with no uses (like stores) |
| // and instructions with one use that is in the same block as this. |
| if (I.use_empty() || |
| (I.hasOneUse() && I.user_back()->getParent() == BB && |
| !isa<PHINode>(I.user_back()))) |
| continue; |
| |
| Worklist.push_back(&I); |
| } |
| } |
| Changed = formLCSSAForInstructions(Worklist, DT, *LI); |
| |
| // If we modified the code, remove any caches about the loop from SCEV to |
| // avoid dangling entries. |
| // FIXME: This is a big hammer, can we clear the cache more selectively? |
| if (SE && Changed) |
| SE->forgetLoop(&L); |
| |
| assert(L.isLCSSAForm(DT)); |
| |
| return Changed; |
| } |
| |
| /// Process a loop nest depth first. |
| bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, |
| ScalarEvolution *SE) { |
| bool Changed = false; |
| |
| // Recurse depth-first through inner loops. |
| for (Loop *SubLoop : L.getSubLoops()) |
| Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); |
| |
| Changed |= formLCSSA(L, DT, LI, SE); |
| return Changed; |
| } |
| |
| /// Process all loops in the function, inner-most out. |
| static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, |
| ScalarEvolution *SE) { |
| bool Changed = false; |
| for (auto &L : *LI) |
| Changed |= formLCSSARecursively(*L, DT, LI, SE); |
| return Changed; |
| } |
| |
| namespace { |
| struct LCSSAWrapperPass : public FunctionPass { |
| static char ID; // Pass identification, replacement for typeid |
| LCSSAWrapperPass() : FunctionPass(ID) { |
| initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| // Cached analysis information for the current function. |
| DominatorTree *DT; |
| LoopInfo *LI; |
| ScalarEvolution *SE; |
| |
| bool runOnFunction(Function &F) override; |
| void verifyAnalysis() const override { |
| assert( |
| all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); }) && |
| "LCSSA form is broken!"); |
| }; |
| |
| /// This transformation requires natural loop information & requires that |
| /// loop preheaders be inserted into the CFG. It maintains both of these, |
| /// as well as the CFG. It also requires dominator information. |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| AU.addPreserved<BasicAAWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| AU.addPreserved<ScalarEvolutionWrapperPass>(); |
| AU.addPreserved<SCEVAAWrapperPass>(); |
| } |
| }; |
| } |
| |
| char LCSSAWrapperPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", |
| false, false) |
| |
| Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } |
| char &llvm::LCSSAID = LCSSAWrapperPass::ID; |
| |
| /// Transform \p F into loop-closed SSA form. |
| bool LCSSAWrapperPass::runOnFunction(Function &F) { |
| LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); |
| SE = SEWP ? &SEWP->getSE() : nullptr; |
| |
| return formLCSSAOnAllLoops(LI, *DT, SE); |
| } |
| |
| PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { |
| auto &LI = AM.getResult<LoopAnalysis>(F); |
| auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); |
| if (!formLCSSAOnAllLoops(&LI, DT, SE)) |
| return PreservedAnalyses::all(); |
| |
| // FIXME: This should also 'preserve the CFG'. |
| PreservedAnalyses PA; |
| PA.preserve<BasicAA>(); |
| PA.preserve<GlobalsAA>(); |
| PA.preserve<SCEVAA>(); |
| PA.preserve<ScalarEvolutionAnalysis>(); |
| return PA; |
| } |