|  | //===-- ARM64CleanupLocalDynamicTLSPass.cpp -----------------------*- C++ -*-=// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Local-dynamic access to thread-local variables proceeds in three stages. | 
|  | // | 
|  | // 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated | 
|  | //    in much the same way as a general-dynamic TLS-descriptor access against | 
|  | //    the special symbol _TLS_MODULE_BASE. | 
|  | // 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using | 
|  | //    instructions with "dtprel" modifiers. | 
|  | // 3. These two are added, together with TPIDR_EL0, to obtain the variable's | 
|  | //    true address. | 
|  | // | 
|  | // This is only better than general-dynamic access to the variable if two or | 
|  | // more of the first stage TLS-descriptor calculations can be combined. This | 
|  | // pass looks through a function and performs such combinations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | #include "ARM64.h" | 
|  | #include "ARM64InstrInfo.h" | 
|  | #include "ARM64MachineFunctionInfo.h" | 
|  | #include "ARM64TargetMachine.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | struct LDTLSCleanup : public MachineFunctionPass { | 
|  | static char ID; | 
|  | LDTLSCleanup() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | virtual bool runOnMachineFunction(MachineFunction &MF) { | 
|  | ARM64FunctionInfo *AFI = MF.getInfo<ARM64FunctionInfo>(); | 
|  | if (AFI->getNumLocalDynamicTLSAccesses() < 2) { | 
|  | // No point folding accesses if there isn't at least two. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); | 
|  | return VisitNode(DT->getRootNode(), 0); | 
|  | } | 
|  |  | 
|  | // Visit the dominator subtree rooted at Node in pre-order. | 
|  | // If TLSBaseAddrReg is non-null, then use that to replace any | 
|  | // TLS_base_addr instructions. Otherwise, create the register | 
|  | // when the first such instruction is seen, and then use it | 
|  | // as we encounter more instructions. | 
|  | bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { | 
|  | MachineBasicBlock *BB = Node->getBlock(); | 
|  | bool Changed = false; | 
|  |  | 
|  | // Traverse the current block. | 
|  | for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; | 
|  | ++I) { | 
|  | switch (I->getOpcode()) { | 
|  | case ARM64::TLSDESC_BLR: | 
|  | // Make sure it's a local dynamic access. | 
|  | if (!I->getOperand(1).isSymbol() || | 
|  | strcmp(I->getOperand(1).getSymbolName(), "_TLS_MODULE_BASE_")) | 
|  | break; | 
|  |  | 
|  | if (TLSBaseAddrReg) | 
|  | I = replaceTLSBaseAddrCall(I, TLSBaseAddrReg); | 
|  | else | 
|  | I = setRegister(I, &TLSBaseAddrReg); | 
|  | Changed = true; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visit the children of this block in the dominator tree. | 
|  | for (MachineDomTreeNode *N : *Node) { | 
|  | Changed |= VisitNode(N, TLSBaseAddrReg); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Replace the TLS_base_addr instruction I with a copy from | 
|  | // TLSBaseAddrReg, returning the new instruction. | 
|  | MachineInstr *replaceTLSBaseAddrCall(MachineInstr *I, | 
|  | unsigned TLSBaseAddrReg) { | 
|  | MachineFunction *MF = I->getParent()->getParent(); | 
|  | const ARM64TargetMachine *TM = | 
|  | static_cast<const ARM64TargetMachine *>(&MF->getTarget()); | 
|  | const ARM64InstrInfo *TII = TM->getInstrInfo(); | 
|  |  | 
|  | // Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the | 
|  | // code sequence assumes the address will be. | 
|  | MachineInstr *Copy = | 
|  | BuildMI(*I->getParent(), I, I->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), ARM64::X0).addReg(TLSBaseAddrReg); | 
|  |  | 
|  | // Erase the TLS_base_addr instruction. | 
|  | I->eraseFromParent(); | 
|  |  | 
|  | return Copy; | 
|  | } | 
|  |  | 
|  | // Create a virtal register in *TLSBaseAddrReg, and populate it by | 
|  | // inserting a copy instruction after I. Returns the new instruction. | 
|  | MachineInstr *setRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) { | 
|  | MachineFunction *MF = I->getParent()->getParent(); | 
|  | const ARM64TargetMachine *TM = | 
|  | static_cast<const ARM64TargetMachine *>(&MF->getTarget()); | 
|  | const ARM64InstrInfo *TII = TM->getInstrInfo(); | 
|  |  | 
|  | // Create a virtual register for the TLS base address. | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | *TLSBaseAddrReg = RegInfo.createVirtualRegister(&ARM64::GPR64RegClass); | 
|  |  | 
|  | // Insert a copy from X0 to TLSBaseAddrReg for later. | 
|  | MachineInstr *Next = I->getNextNode(); | 
|  | MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), | 
|  | *TLSBaseAddrReg).addReg(ARM64::X0); | 
|  |  | 
|  | return Copy; | 
|  | } | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "Local Dynamic TLS Access Clean-up"; | 
|  | } | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char LDTLSCleanup::ID = 0; | 
|  | FunctionPass *llvm::createARM64CleanupLocalDynamicTLSPass() { | 
|  | return new LDTLSCleanup(); | 
|  | } |