| //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/CGSCCPassManager.h" |
| #include "llvm/IR/CallSite.h" |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| |
| // Explicit instantiations for the core proxy templates. |
| template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; |
| template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, |
| LazyCallGraph &, CGSCCUpdateResult &>; |
| template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; |
| template class OuterAnalysisManagerProxy<ModuleAnalysisManager, |
| LazyCallGraph::SCC>; |
| template class InnerAnalysisManagerProxy<FunctionAnalysisManager, |
| LazyCallGraph::SCC>; |
| template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; |
| |
| /// Explicitly specialize the pass manager run method to handle call graph |
| /// updates. |
| template <> |
| PreservedAnalyses |
| PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, |
| CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, |
| CGSCCAnalysisManager &AM, |
| LazyCallGraph &G, CGSCCUpdateResult &UR) { |
| PreservedAnalyses PA = PreservedAnalyses::all(); |
| |
| if (DebugLogging) |
| dbgs() << "Starting CGSCC pass manager run.\n"; |
| |
| // The SCC may be refined while we are running passes over it, so set up |
| // a pointer that we can update. |
| LazyCallGraph::SCC *C = &InitialC; |
| |
| for (auto &Pass : Passes) { |
| if (DebugLogging) |
| dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; |
| |
| PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); |
| |
| // Update the SCC if necessary. |
| C = UR.UpdatedC ? UR.UpdatedC : C; |
| |
| // Check that we didn't miss any update scenario. |
| assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!"); |
| assert(C->begin() != C->end() && "Cannot have an empty SCC!"); |
| |
| // Update the analysis manager as each pass runs and potentially |
| // invalidates analyses. We also update the preserved set of analyses |
| // based on what analyses we have already handled the invalidation for |
| // here and don't need to invalidate when finished. |
| PassPA = AM.invalidate(*C, std::move(PassPA)); |
| |
| // Finally, we intersect the final preserved analyses to compute the |
| // aggregate preserved set for this pass manager. |
| PA.intersect(std::move(PassPA)); |
| |
| // FIXME: Historically, the pass managers all called the LLVM context's |
| // yield function here. We don't have a generic way to acquire the |
| // context and it isn't yet clear what the right pattern is for yielding |
| // in the new pass manager so it is currently omitted. |
| // ...getContext().yield(); |
| } |
| |
| if (DebugLogging) |
| dbgs() << "Finished CGSCC pass manager run.\n"; |
| |
| return PA; |
| } |
| |
| } // End llvm namespace |
| |
| namespace { |
| /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c |
| /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly |
| /// added SCCs. |
| /// |
| /// The range of new SCCs must be in postorder already. The SCC they were split |
| /// out of must be provided as \p C. The current node being mutated and |
| /// triggering updates must be passed as \p N. |
| /// |
| /// This function returns the SCC containing \p N. This will be either \p C if |
| /// no new SCCs have been split out, or it will be the new SCC containing \p N. |
| template <typename SCCRangeT> |
| LazyCallGraph::SCC * |
| incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, |
| LazyCallGraph::Node &N, LazyCallGraph::SCC *C, |
| CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, |
| bool DebugLogging = false) { |
| typedef LazyCallGraph::SCC SCC; |
| |
| if (NewSCCRange.begin() == NewSCCRange.end()) |
| return C; |
| |
| // Invalidate the analyses of the current SCC and add it to the worklist since |
| // it has changed its shape. |
| AM.invalidate(*C, PreservedAnalyses::none()); |
| UR.CWorklist.insert(C); |
| if (DebugLogging) |
| dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n"; |
| |
| SCC *OldC = C; |
| (void)OldC; |
| |
| // Update the current SCC. Note that if we have new SCCs, this must actually |
| // change the SCC. |
| assert(C != &*NewSCCRange.begin() && |
| "Cannot insert new SCCs without changing current SCC!"); |
| C = &*NewSCCRange.begin(); |
| assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); |
| |
| for (SCC &NewC : |
| reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) { |
| assert(C != &NewC && "No need to re-visit the current SCC!"); |
| assert(OldC != &NewC && "Already handled the original SCC!"); |
| UR.CWorklist.insert(&NewC); |
| if (DebugLogging) |
| dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"; |
| } |
| return C; |
| } |
| } |
| |
| LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( |
| LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, |
| CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging) { |
| typedef LazyCallGraph::Node Node; |
| typedef LazyCallGraph::Edge Edge; |
| typedef LazyCallGraph::SCC SCC; |
| typedef LazyCallGraph::RefSCC RefSCC; |
| |
| RefSCC &InitialRC = InitialC.getOuterRefSCC(); |
| SCC *C = &InitialC; |
| RefSCC *RC = &InitialRC; |
| Function &F = N.getFunction(); |
| |
| // Walk the function body and build up the set of retained, promoted, and |
| // demoted edges. |
| SmallVector<Constant *, 16> Worklist; |
| SmallPtrSet<Constant *, 16> Visited; |
| SmallPtrSet<Function *, 16> RetainedEdges; |
| SmallSetVector<Function *, 4> PromotedRefTargets; |
| SmallSetVector<Function *, 4> DemotedCallTargets; |
| // First walk the function and handle all called functions. We do this first |
| // because if there is a single call edge, whether there are ref edges is |
| // irrelevant. |
| for (BasicBlock &BB : F) |
| for (Instruction &I : BB) |
| if (auto CS = CallSite(&I)) |
| if (Function *Callee = CS.getCalledFunction()) |
| if (Visited.insert(Callee).second && !Callee->isDeclaration()) { |
| const Edge *E = N.lookup(*Callee); |
| // FIXME: We should really handle adding new calls. While it will |
| // make downstream usage more complex, there is no fundamental |
| // limitation and it will allow passes within the CGSCC to be a bit |
| // more flexible in what transforms they can do. Until then, we |
| // verify that new calls haven't been introduced. |
| assert(E && "No function transformations should introduce *new* " |
| "call edges! Any new calls should be modeled as " |
| "promoted existing ref edges!"); |
| RetainedEdges.insert(Callee); |
| if (!E->isCall()) |
| PromotedRefTargets.insert(Callee); |
| } |
| |
| // Now walk all references. |
| for (BasicBlock &BB : F) |
| for (Instruction &I : BB) { |
| for (Value *Op : I.operand_values()) |
| if (Constant *C = dyn_cast<Constant>(Op)) |
| if (Visited.insert(C).second) |
| Worklist.push_back(C); |
| |
| LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &Referee) { |
| // Skip declarations. |
| if (Referee.isDeclaration()) |
| return; |
| |
| const Edge *E = N.lookup(Referee); |
| // FIXME: Similarly to new calls, we also currently preclude |
| // introducing new references. See above for details. |
| assert(E && "No function transformations should introduce *new* ref " |
| "edges! Any new ref edges would require IPO which " |
| "function passes aren't allowed to do!"); |
| RetainedEdges.insert(&Referee); |
| if (E->isCall()) |
| DemotedCallTargets.insert(&Referee); |
| }); |
| } |
| |
| // First remove all of the edges that are no longer present in this function. |
| // We have to build a list of dead targets first and then remove them as the |
| // data structures will all be invalidated by removing them. |
| SmallVector<PointerIntPair<Node *, 1, Edge::Kind>, 4> DeadTargets; |
| for (Edge &E : N) |
| if (!RetainedEdges.count(&E.getFunction())) |
| DeadTargets.push_back({E.getNode(), E.getKind()}); |
| for (auto DeadTarget : DeadTargets) { |
| Node &TargetN = *DeadTarget.getPointer(); |
| bool IsCall = DeadTarget.getInt() == Edge::Call; |
| SCC &TargetC = *G.lookupSCC(TargetN); |
| RefSCC &TargetRC = TargetC.getOuterRefSCC(); |
| |
| if (&TargetRC != RC) { |
| RC->removeOutgoingEdge(N, TargetN); |
| if (DebugLogging) |
| dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN |
| << "'\n"; |
| continue; |
| } |
| if (DebugLogging) |
| dbgs() << "Deleting internal " << (IsCall ? "call" : "ref") |
| << " edge from '" << N << "' to '" << TargetN << "'\n"; |
| |
| if (IsCall) |
| C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N, |
| C, AM, UR, DebugLogging); |
| |
| auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN); |
| if (!NewRefSCCs.empty()) { |
| // Note that we don't bother to invalidate analyses as ref-edge |
| // connectivity is not really observable in any way and is intended |
| // exclusively to be used for ordering of transforms rather than for |
| // analysis conclusions. |
| |
| // The RC worklist is in reverse postorder, so we first enqueue the |
| // current RefSCC as it will remain the parent of all split RefSCCs, then |
| // we enqueue the new ones in RPO except for the one which contains the |
| // source node as that is the "bottom" we will continue processing in the |
| // bottom-up walk. |
| UR.RCWorklist.insert(RC); |
| if (DebugLogging) |
| dbgs() << "Enqueuing the existing RefSCC in the update worklist: " |
| << *RC << "\n"; |
| // Update the RC to the "bottom". |
| assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); |
| RC = &C->getOuterRefSCC(); |
| assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); |
| for (RefSCC *NewRC : reverse(NewRefSCCs)) |
| if (NewRC != RC) { |
| UR.RCWorklist.insert(NewRC); |
| if (DebugLogging) |
| dbgs() << "Enqueuing a new RefSCC in the update worklist: " |
| << *NewRC << "\n"; |
| } |
| } |
| } |
| |
| // Next demote all the call edges that are now ref edges. This helps make |
| // the SCCs small which should minimize the work below as we don't want to |
| // form cycles that this would break. |
| for (Function *RefTarget : DemotedCallTargets) { |
| Node &TargetN = *G.lookup(*RefTarget); |
| SCC &TargetC = *G.lookupSCC(TargetN); |
| RefSCC &TargetRC = TargetC.getOuterRefSCC(); |
| |
| // The easy case is when the target RefSCC is not this RefSCC. This is |
| // only supported when the target RefSCC is a child of this RefSCC. |
| if (&TargetRC != RC) { |
| assert(RC->isAncestorOf(TargetRC) && |
| "Cannot potentially form RefSCC cycles here!"); |
| RC->switchOutgoingEdgeToRef(N, TargetN); |
| if (DebugLogging) |
| dbgs() << "Switch outgoing call edge to a ref edge from '" << N |
| << "' to '" << TargetN << "'\n"; |
| continue; |
| } |
| |
| // Otherwise we are switching an internal call edge to a ref edge. This |
| // may split up some SCCs. |
| C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N, C, |
| AM, UR, DebugLogging); |
| } |
| |
| // Now promote ref edges into call edges. |
| for (Function *CallTarget : PromotedRefTargets) { |
| Node &TargetN = *G.lookup(*CallTarget); |
| SCC &TargetC = *G.lookupSCC(TargetN); |
| RefSCC &TargetRC = TargetC.getOuterRefSCC(); |
| |
| // The easy case is when the target RefSCC is not this RefSCC. This is |
| // only supported when the target RefSCC is a child of this RefSCC. |
| if (&TargetRC != RC) { |
| assert(RC->isAncestorOf(TargetRC) && |
| "Cannot potentially form RefSCC cycles here!"); |
| RC->switchOutgoingEdgeToCall(N, TargetN); |
| if (DebugLogging) |
| dbgs() << "Switch outgoing ref edge to a call edge from '" << N |
| << "' to '" << TargetN << "'\n"; |
| continue; |
| } |
| if (DebugLogging) |
| dbgs() << "Switch an internal ref edge to a call edge from '" << N |
| << "' to '" << TargetN << "'\n"; |
| |
| // Otherwise we are switching an internal ref edge to a call edge. This |
| // may merge away some SCCs, and we add those to the UpdateResult. We also |
| // need to make sure to update the worklist in the event SCCs have moved |
| // before the current one in the post-order sequence. |
| auto InitialSCCIndex = RC->find(*C) - RC->begin(); |
| auto InvalidatedSCCs = RC->switchInternalEdgeToCall(N, TargetN); |
| if (!InvalidatedSCCs.empty()) { |
| C = &TargetC; |
| assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); |
| |
| // Any analyses cached for this SCC are no longer precise as the shape |
| // has changed by introducing this cycle. |
| AM.invalidate(*C, PreservedAnalyses::none()); |
| |
| for (SCC *InvalidatedC : InvalidatedSCCs) { |
| assert(InvalidatedC != C && "Cannot invalidate the current SCC!"); |
| UR.InvalidatedSCCs.insert(InvalidatedC); |
| |
| // Also clear any cached analyses for the SCCs that are dead. This |
| // isn't really necessary for correctness but can release memory. |
| AM.clear(*InvalidatedC); |
| } |
| } |
| auto NewSCCIndex = RC->find(*C) - RC->begin(); |
| if (InitialSCCIndex < NewSCCIndex) { |
| // Put our current SCC back onto the worklist as we'll visit other SCCs |
| // that are now definitively ordered prior to the current one in the |
| // post-order sequence, and may end up observing more precise context to |
| // optimize the current SCC. |
| UR.CWorklist.insert(C); |
| if (DebugLogging) |
| dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n"; |
| // Enqueue in reverse order as we pop off the back of the worklist. |
| for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex, |
| RC->begin() + NewSCCIndex))) { |
| UR.CWorklist.insert(&MovedC); |
| if (DebugLogging) |
| dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC |
| << "\n"; |
| } |
| } |
| } |
| |
| assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); |
| assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); |
| assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); |
| |
| // Record the current RefSCC and SCC for higher layers of the CGSCC pass |
| // manager now that all the updates have been applied. |
| if (RC != &InitialRC) |
| UR.UpdatedRC = RC; |
| if (C != &InitialC) |
| UR.UpdatedC = C; |
| |
| return *C; |
| } |