| //===- PartialInlining.cpp - Inline parts of functions --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass performs partial inlining, typically by inlining an if statement |
| // that surrounds the body of the function. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/PartialInlining.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/CodeMetrics.h" |
| #include "llvm/Analysis/InlineCost.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/OptimizationDiagnosticInfo.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/CodeExtractor.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "partial-inlining" |
| |
| STATISTIC(NumPartialInlined, |
| "Number of callsites functions partially inlined into."); |
| |
| // Command line option to disable partial-inlining. The default is false: |
| static cl::opt<bool> |
| DisablePartialInlining("disable-partial-inlining", cl::init(false), |
| cl::Hidden, cl::desc("Disable partial ininling")); |
| // This is an option used by testing: |
| static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis", |
| cl::init(false), cl::ZeroOrMore, |
| cl::ReallyHidden, |
| cl::desc("Skip Cost Analysis")); |
| |
| static cl::opt<unsigned> MaxNumInlineBlocks( |
| "max-num-inline-blocks", cl::init(5), cl::Hidden, |
| cl::desc("Max Number of Blocks To be Partially Inlined")); |
| |
| // Command line option to set the maximum number of partial inlining allowed |
| // for the module. The default value of -1 means no limit. |
| static cl::opt<int> MaxNumPartialInlining( |
| "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore, |
| cl::desc("Max number of partial inlining. The default is unlimited")); |
| |
| // Used only when PGO or user annotated branch data is absent. It is |
| // the least value that is used to weigh the outline region. If BFI |
| // produces larger value, the BFI value will be used. |
| static cl::opt<int> |
| OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75), |
| cl::Hidden, cl::ZeroOrMore, |
| cl::desc("Relative frequency of outline region to " |
| "the entry block")); |
| |
| namespace { |
| |
| struct FunctionOutliningInfo { |
| FunctionOutliningInfo() |
| : Entries(), ReturnBlock(nullptr), NonReturnBlock(nullptr), |
| ReturnBlockPreds() {} |
| // Returns the number of blocks to be inlined including all blocks |
| // in Entries and one return block. |
| unsigned GetNumInlinedBlocks() const { return Entries.size() + 1; } |
| |
| // A set of blocks including the function entry that guard |
| // the region to be outlined. |
| SmallVector<BasicBlock *, 4> Entries; |
| // The return block that is not included in the outlined region. |
| BasicBlock *ReturnBlock; |
| // The dominating block of the region ot be outlined. |
| BasicBlock *NonReturnBlock; |
| // The set of blocks in Entries that that are predecessors to ReturnBlock |
| SmallVector<BasicBlock *, 4> ReturnBlockPreds; |
| }; |
| |
| struct PartialInlinerImpl { |
| PartialInlinerImpl( |
| std::function<AssumptionCache &(Function &)> *GetAC, |
| std::function<TargetTransformInfo &(Function &)> *GTTI, |
| Optional<function_ref<BlockFrequencyInfo &(Function &)>> GBFI, |
| ProfileSummaryInfo *ProfSI) |
| : GetAssumptionCache(GetAC), GetTTI(GTTI), GetBFI(GBFI), PSI(ProfSI) {} |
| bool run(Module &M); |
| Function *unswitchFunction(Function *F); |
| |
| private: |
| int NumPartialInlining = 0; |
| std::function<AssumptionCache &(Function &)> *GetAssumptionCache; |
| std::function<TargetTransformInfo &(Function &)> *GetTTI; |
| Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI; |
| ProfileSummaryInfo *PSI; |
| |
| // Return the frequency of the OutlininingBB relative to F's entry point. |
| // The result is no larger than 1 and is represented using BP. |
| // (Note that the outlined region's 'head' block can only have incoming |
| // edges from the guarding entry blocks). |
| BranchProbability getOutliningCallBBRelativeFreq(Function *F, |
| FunctionOutliningInfo *OI, |
| Function *DuplicateFunction, |
| BlockFrequencyInfo *BFI, |
| BasicBlock *OutliningCallBB); |
| |
| // Return true if the callee of CS should be partially inlined with |
| // profit. |
| bool shouldPartialInline(CallSite CS, Function *F, FunctionOutliningInfo *OI, |
| BlockFrequencyInfo *CalleeBFI, |
| BasicBlock *OutliningCallBB, |
| int OutliningCallOverhead, |
| OptimizationRemarkEmitter &ORE); |
| |
| // Try to inline DuplicateFunction (cloned from F with call to |
| // the OutlinedFunction into its callers. Return true |
| // if there is any successful inlining. |
| bool tryPartialInline(Function *DuplicateFunction, |
| Function *F, /*orignal function */ |
| FunctionOutliningInfo *OI, Function *OutlinedFunction, |
| BlockFrequencyInfo *CalleeBFI); |
| |
| // Compute the mapping from use site of DuplicationFunction to the enclosing |
| // BB's profile count. |
| void computeCallsiteToProfCountMap(Function *DuplicateFunction, |
| DenseMap<User *, uint64_t> &SiteCountMap); |
| |
| bool IsLimitReached() { |
| return (MaxNumPartialInlining != -1 && |
| NumPartialInlining >= MaxNumPartialInlining); |
| } |
| |
| CallSite getCallSite(User *U) { |
| CallSite CS; |
| if (CallInst *CI = dyn_cast<CallInst>(U)) |
| CS = CallSite(CI); |
| else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) |
| CS = CallSite(II); |
| else |
| llvm_unreachable("All uses must be calls"); |
| return CS; |
| } |
| |
| CallSite getOneCallSiteTo(Function *F) { |
| User *User = *F->user_begin(); |
| return getCallSite(User); |
| } |
| |
| std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function *F) { |
| CallSite CS = getOneCallSiteTo(F); |
| DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); |
| BasicBlock *Block = CS.getParent(); |
| return std::make_tuple(DLoc, Block); |
| } |
| |
| // Returns the costs associated with function outlining: |
| // - The first value is the non-weighted runtime cost for making the call |
| // to the outlined function 'OutlinedFunction', including the addtional |
| // setup cost in the outlined function itself; |
| // - The second value is the estimated size of the new call sequence in |
| // basic block 'OutliningCallBB'; |
| // - The third value is the estimated size of the original code from |
| // function 'F' that is extracted into the outlined function. |
| std::tuple<int, int, int> |
| computeOutliningCosts(Function *F, const FunctionOutliningInfo *OutliningInfo, |
| Function *OutlinedFunction, |
| BasicBlock *OutliningCallBB); |
| // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to |
| // approximate both the size and runtime cost (Note that in the current |
| // inline cost analysis, there is no clear distinction there either). |
| int computeBBInlineCost(BasicBlock *BB); |
| |
| std::unique_ptr<FunctionOutliningInfo> computeOutliningInfo(Function *F); |
| |
| }; |
| |
| struct PartialInlinerLegacyPass : public ModulePass { |
| static char ID; // Pass identification, replacement for typeid |
| PartialInlinerLegacyPass() : ModulePass(ID) { |
| initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| } |
| bool runOnModule(Module &M) override { |
| if (skipModule(M)) |
| return false; |
| |
| AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>(); |
| TargetTransformInfoWrapperPass *TTIWP = |
| &getAnalysis<TargetTransformInfoWrapperPass>(); |
| ProfileSummaryInfo *PSI = |
| getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| |
| std::function<AssumptionCache &(Function &)> GetAssumptionCache = |
| [&ACT](Function &F) -> AssumptionCache & { |
| return ACT->getAssumptionCache(F); |
| }; |
| |
| std::function<TargetTransformInfo &(Function &)> GetTTI = |
| [&TTIWP](Function &F) -> TargetTransformInfo & { |
| return TTIWP->getTTI(F); |
| }; |
| |
| return PartialInlinerImpl(&GetAssumptionCache, &GetTTI, None, PSI).run(M); |
| } |
| }; |
| } |
| |
| std::unique_ptr<FunctionOutliningInfo> |
| PartialInlinerImpl::computeOutliningInfo(Function *F) { |
| BasicBlock *EntryBlock = &F->front(); |
| BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator()); |
| if (!BR || BR->isUnconditional()) |
| return std::unique_ptr<FunctionOutliningInfo>(); |
| |
| // Returns true if Succ is BB's successor |
| auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) { |
| return is_contained(successors(BB), Succ); |
| }; |
| |
| auto SuccSize = [](BasicBlock *BB) { |
| return std::distance(succ_begin(BB), succ_end(BB)); |
| }; |
| |
| auto IsReturnBlock = [](BasicBlock *BB) { |
| TerminatorInst *TI = BB->getTerminator(); |
| return isa<ReturnInst>(TI); |
| }; |
| |
| auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) { |
| if (IsReturnBlock(Succ1)) |
| return std::make_tuple(Succ1, Succ2); |
| if (IsReturnBlock(Succ2)) |
| return std::make_tuple(Succ2, Succ1); |
| |
| return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr); |
| }; |
| |
| // Detect a triangular shape: |
| auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) { |
| if (IsSuccessor(Succ1, Succ2)) |
| return std::make_tuple(Succ1, Succ2); |
| if (IsSuccessor(Succ2, Succ1)) |
| return std::make_tuple(Succ2, Succ1); |
| |
| return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr); |
| }; |
| |
| std::unique_ptr<FunctionOutliningInfo> OutliningInfo = |
| llvm::make_unique<FunctionOutliningInfo>(); |
| |
| BasicBlock *CurrEntry = EntryBlock; |
| bool CandidateFound = false; |
| do { |
| // The number of blocks to be inlined has already reached |
| // the limit. When MaxNumInlineBlocks is set to 0 or 1, this |
| // disables partial inlining for the function. |
| if (OutliningInfo->GetNumInlinedBlocks() >= MaxNumInlineBlocks) |
| break; |
| |
| if (SuccSize(CurrEntry) != 2) |
| break; |
| |
| BasicBlock *Succ1 = *succ_begin(CurrEntry); |
| BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1); |
| |
| BasicBlock *ReturnBlock, *NonReturnBlock; |
| std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2); |
| |
| if (ReturnBlock) { |
| OutliningInfo->Entries.push_back(CurrEntry); |
| OutliningInfo->ReturnBlock = ReturnBlock; |
| OutliningInfo->NonReturnBlock = NonReturnBlock; |
| CandidateFound = true; |
| break; |
| } |
| |
| BasicBlock *CommSucc; |
| BasicBlock *OtherSucc; |
| std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2); |
| |
| if (!CommSucc) |
| break; |
| |
| OutliningInfo->Entries.push_back(CurrEntry); |
| CurrEntry = OtherSucc; |
| |
| } while (true); |
| |
| if (!CandidateFound) |
| return std::unique_ptr<FunctionOutliningInfo>(); |
| |
| // Do sanity check of the entries: threre should not |
| // be any successors (not in the entry set) other than |
| // {ReturnBlock, NonReturnBlock} |
| assert(OutliningInfo->Entries[0] == &F->front() && |
| "Function Entry must be the first in Entries vector"); |
| DenseSet<BasicBlock *> Entries; |
| for (BasicBlock *E : OutliningInfo->Entries) |
| Entries.insert(E); |
| |
| // Returns true of BB has Predecessor which is not |
| // in Entries set. |
| auto HasNonEntryPred = [Entries](BasicBlock *BB) { |
| for (auto Pred : predecessors(BB)) { |
| if (!Entries.count(Pred)) |
| return true; |
| } |
| return false; |
| }; |
| auto CheckAndNormalizeCandidate = |
| [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) { |
| for (BasicBlock *E : OutliningInfo->Entries) { |
| for (auto Succ : successors(E)) { |
| if (Entries.count(Succ)) |
| continue; |
| if (Succ == OutliningInfo->ReturnBlock) |
| OutliningInfo->ReturnBlockPreds.push_back(E); |
| else if (Succ != OutliningInfo->NonReturnBlock) |
| return false; |
| } |
| // There should not be any outside incoming edges either: |
| if (HasNonEntryPred(E)) |
| return false; |
| } |
| return true; |
| }; |
| |
| if (!CheckAndNormalizeCandidate(OutliningInfo.get())) |
| return std::unique_ptr<FunctionOutliningInfo>(); |
| |
| // Now further growing the candidate's inlining region by |
| // peeling off dominating blocks from the outlining region: |
| while (OutliningInfo->GetNumInlinedBlocks() < MaxNumInlineBlocks) { |
| BasicBlock *Cand = OutliningInfo->NonReturnBlock; |
| if (SuccSize(Cand) != 2) |
| break; |
| |
| if (HasNonEntryPred(Cand)) |
| break; |
| |
| BasicBlock *Succ1 = *succ_begin(Cand); |
| BasicBlock *Succ2 = *(succ_begin(Cand) + 1); |
| |
| BasicBlock *ReturnBlock, *NonReturnBlock; |
| std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2); |
| if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock) |
| break; |
| |
| if (NonReturnBlock->getSinglePredecessor() != Cand) |
| break; |
| |
| // Now grow and update OutlininigInfo: |
| OutliningInfo->Entries.push_back(Cand); |
| OutliningInfo->NonReturnBlock = NonReturnBlock; |
| OutliningInfo->ReturnBlockPreds.push_back(Cand); |
| Entries.insert(Cand); |
| } |
| |
| return OutliningInfo; |
| } |
| |
| // Check if there is PGO data or user annoated branch data: |
| static bool hasProfileData(Function *F, FunctionOutliningInfo *OI) { |
| if (F->getEntryCount()) |
| return true; |
| // Now check if any of the entry block has MD_prof data: |
| for (auto *E : OI->Entries) { |
| BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator()); |
| if (!BR || BR->isUnconditional()) |
| continue; |
| uint64_t T, F; |
| if (BR->extractProfMetadata(T, F)) |
| return true; |
| } |
| return false; |
| } |
| |
| BranchProbability PartialInlinerImpl::getOutliningCallBBRelativeFreq( |
| Function *F, FunctionOutliningInfo *OI, Function *DuplicateFunction, |
| BlockFrequencyInfo *BFI, BasicBlock *OutliningCallBB) { |
| |
| auto EntryFreq = |
| BFI->getBlockFreq(&DuplicateFunction->getEntryBlock()); |
| auto OutliningCallFreq = BFI->getBlockFreq(OutliningCallBB); |
| |
| auto OutlineRegionRelFreq = |
| BranchProbability::getBranchProbability(OutliningCallFreq.getFrequency(), |
| EntryFreq.getFrequency()); |
| |
| if (hasProfileData(F, OI)) |
| return OutlineRegionRelFreq; |
| |
| // When profile data is not available, we need to be very |
| // conservative in estimating the overall savings. We need to make sure |
| // the outline region relative frequency is not below the threshold |
| // specified by the option. |
| OutlineRegionRelFreq = std::max(OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100)); |
| |
| return OutlineRegionRelFreq; |
| } |
| |
| bool PartialInlinerImpl::shouldPartialInline( |
| CallSite CS, Function *F /* Original Callee */, FunctionOutliningInfo *OI, |
| BlockFrequencyInfo *CalleeBFI, BasicBlock *OutliningCallBB, |
| int NonWeightedOutliningRcost, OptimizationRemarkEmitter &ORE) { |
| using namespace ore; |
| if (SkipCostAnalysis) |
| return true; |
| |
| Instruction *Call = CS.getInstruction(); |
| Function *Callee = CS.getCalledFunction(); |
| Function *Caller = CS.getCaller(); |
| auto &CalleeTTI = (*GetTTI)(*Callee); |
| InlineCost IC = getInlineCost(CS, getInlineParams(), CalleeTTI, |
| *GetAssumptionCache, GetBFI, PSI); |
| |
| if (IC.isAlways()) { |
| ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call) |
| << NV("Callee", F) |
| << " should always be fully inlined, not partially"); |
| return false; |
| } |
| |
| if (IC.isNever()) { |
| ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call) |
| << NV("Callee", F) << " not partially inlined into " |
| << NV("Caller", Caller) |
| << " because it should never be inlined (cost=never)"); |
| return false; |
| } |
| |
| if (!IC) { |
| ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call) |
| << NV("Callee", F) << " not partially inlined into " |
| << NV("Caller", Caller) << " because too costly to inline (cost=" |
| << NV("Cost", IC.getCost()) << ", threshold=" |
| << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"); |
| return false; |
| } |
| const DataLayout &DL = Caller->getParent()->getDataLayout(); |
| // The savings of eliminating the call: |
| int NonWeightedSavings = getCallsiteCost(CS, DL); |
| BlockFrequency NormWeightedSavings(NonWeightedSavings); |
| |
| auto RelativeFreq = |
| getOutliningCallBBRelativeFreq(F, OI, Callee, CalleeBFI, OutliningCallBB); |
| auto NormWeightedRcost = |
| BlockFrequency(NonWeightedOutliningRcost) * RelativeFreq; |
| |
| // Weighted saving is smaller than weighted cost, return false |
| if (NormWeightedSavings < NormWeightedRcost) { |
| ORE.emit( |
| OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh", Call) |
| << NV("Callee", F) << " not partially inlined into " |
| << NV("Caller", Caller) << " runtime overhead (overhead=" |
| << NV("Overhead", (unsigned)NormWeightedRcost.getFrequency()) |
| << ", savings=" |
| << NV("Savings", (unsigned)NormWeightedSavings.getFrequency()) << ")" |
| << " of making the outlined call is too high"); |
| |
| return false; |
| } |
| |
| ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", Call) |
| << NV("Callee", F) << " can be partially inlined into " |
| << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost()) |
| << " (threshold=" |
| << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"); |
| return true; |
| } |
| |
| // TODO: Ideally we should share Inliner's InlineCost Analysis code. |
| // For now use a simplified version. The returned 'InlineCost' will be used |
| // to esimate the size cost as well as runtime cost of the BB. |
| int PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB) { |
| int InlineCost = 0; |
| const DataLayout &DL = BB->getParent()->getParent()->getDataLayout(); |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { |
| if (isa<DbgInfoIntrinsic>(I)) |
| continue; |
| |
| if (CallInst *CI = dyn_cast<CallInst>(I)) { |
| InlineCost += getCallsiteCost(CallSite(CI), DL); |
| continue; |
| } |
| |
| if (InvokeInst *II = dyn_cast<InvokeInst>(I)) { |
| InlineCost += getCallsiteCost(CallSite(II), DL); |
| continue; |
| } |
| |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { |
| InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost; |
| continue; |
| } |
| InlineCost += InlineConstants::InstrCost; |
| } |
| return InlineCost; |
| } |
| |
| std::tuple<int, int, int> PartialInlinerImpl::computeOutliningCosts( |
| Function *F, const FunctionOutliningInfo *OI, Function *OutlinedFunction, |
| BasicBlock *OutliningCallBB) { |
| // First compute the cost of the outlined region 'OI' in the original |
| // function 'F': |
| int OutlinedRegionCost = 0; |
| for (BasicBlock &BB : *F) { |
| if (&BB != OI->ReturnBlock && |
| // Assuming Entry set is small -- do a linear search here: |
| std::find(OI->Entries.begin(), OI->Entries.end(), &BB) == |
| OI->Entries.end()) { |
| OutlinedRegionCost += computeBBInlineCost(&BB); |
| } |
| } |
| |
| // Now compute the cost of the call sequence to the outlined function |
| // 'OutlinedFunction' in BB 'OutliningCallBB': |
| int OutliningFuncCallCost = computeBBInlineCost(OutliningCallBB); |
| |
| // Now compute the cost of the extracted/outlined function itself: |
| int OutlinedFunctionCost = 0; |
| for (BasicBlock &BB : *OutlinedFunction) { |
| OutlinedFunctionCost += computeBBInlineCost(&BB); |
| } |
| |
| assert(OutlinedFunctionCost >= OutlinedRegionCost && |
| "Outlined function cost should be no less than the outlined region"); |
| int OutliningRuntimeOverhead = |
| OutliningFuncCallCost + (OutlinedFunctionCost - OutlinedRegionCost); |
| |
| return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead, |
| OutlinedRegionCost); |
| } |
| |
| // Create the callsite to profile count map which is |
| // used to update the original function's entry count, |
| // after the function is partially inlined into the callsite. |
| void PartialInlinerImpl::computeCallsiteToProfCountMap( |
| Function *DuplicateFunction, |
| DenseMap<User *, uint64_t> &CallSiteToProfCountMap) { |
| std::vector<User *> Users(DuplicateFunction->user_begin(), |
| DuplicateFunction->user_end()); |
| Function *CurrentCaller = nullptr; |
| BlockFrequencyInfo *CurrentCallerBFI = nullptr; |
| |
| auto ComputeCurrBFI = [&,this](Function *Caller) { |
| // For the old pass manager: |
| if (!GetBFI) { |
| if (CurrentCallerBFI) |
| delete CurrentCallerBFI; |
| DominatorTree DT(*Caller); |
| LoopInfo LI(DT); |
| BranchProbabilityInfo BPI(*Caller, LI); |
| CurrentCallerBFI = new BlockFrequencyInfo(*Caller, BPI, LI); |
| } else { |
| // New pass manager: |
| CurrentCallerBFI = &(*GetBFI)(*Caller); |
| } |
| }; |
| |
| for (User *User : Users) { |
| CallSite CS = getCallSite(User); |
| Function *Caller = CS.getCaller(); |
| if (CurrentCaller != Caller) { |
| CurrentCaller = Caller; |
| ComputeCurrBFI(Caller); |
| } else { |
| assert(CurrentCallerBFI && "CallerBFI is not set"); |
| } |
| BasicBlock *CallBB = CS.getInstruction()->getParent(); |
| auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB); |
| if (Count) |
| CallSiteToProfCountMap[User] = *Count; |
| else |
| CallSiteToProfCountMap[User] = 0; |
| } |
| } |
| |
| Function *PartialInlinerImpl::unswitchFunction(Function *F) { |
| |
| if (F->hasAddressTaken()) |
| return nullptr; |
| |
| // Let inliner handle it |
| if (F->hasFnAttribute(Attribute::AlwaysInline)) |
| return nullptr; |
| |
| if (F->hasFnAttribute(Attribute::NoInline)) |
| return nullptr; |
| |
| if (PSI->isFunctionEntryCold(F)) |
| return nullptr; |
| |
| if (F->user_begin() == F->user_end()) |
| return nullptr; |
| |
| std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F); |
| |
| if (!OI) |
| return nullptr; |
| |
| // Clone the function, so that we can hack away on it. |
| ValueToValueMapTy VMap; |
| Function *DuplicateFunction = CloneFunction(F, VMap); |
| BasicBlock *NewReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]); |
| BasicBlock *NewNonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]); |
| DenseSet<BasicBlock *> NewEntries; |
| for (BasicBlock *BB : OI->Entries) { |
| NewEntries.insert(cast<BasicBlock>(VMap[BB])); |
| } |
| |
| // Go ahead and update all uses to the duplicate, so that we can just |
| // use the inliner functionality when we're done hacking. |
| F->replaceAllUsesWith(DuplicateFunction); |
| |
| auto getFirstPHI = [](BasicBlock *BB) { |
| BasicBlock::iterator I = BB->begin(); |
| PHINode *FirstPhi = nullptr; |
| while (I != BB->end()) { |
| PHINode *Phi = dyn_cast<PHINode>(I); |
| if (!Phi) |
| break; |
| if (!FirstPhi) { |
| FirstPhi = Phi; |
| break; |
| } |
| } |
| return FirstPhi; |
| }; |
| // Special hackery is needed with PHI nodes that have inputs from more than |
| // one extracted block. For simplicity, just split the PHIs into a two-level |
| // sequence of PHIs, some of which will go in the extracted region, and some |
| // of which will go outside. |
| BasicBlock *PreReturn = NewReturnBlock; |
| // only split block when necessary: |
| PHINode *FirstPhi = getFirstPHI(PreReturn); |
| unsigned NumPredsFromEntries = OI->ReturnBlockPreds.size(); |
| if (FirstPhi && FirstPhi->getNumIncomingValues() > NumPredsFromEntries + 1) { |
| |
| NewReturnBlock = NewReturnBlock->splitBasicBlock( |
| NewReturnBlock->getFirstNonPHI()->getIterator()); |
| BasicBlock::iterator I = PreReturn->begin(); |
| Instruction *Ins = &NewReturnBlock->front(); |
| while (I != PreReturn->end()) { |
| PHINode *OldPhi = dyn_cast<PHINode>(I); |
| if (!OldPhi) |
| break; |
| |
| PHINode *RetPhi = |
| PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins); |
| OldPhi->replaceAllUsesWith(RetPhi); |
| Ins = NewReturnBlock->getFirstNonPHI(); |
| |
| RetPhi->addIncoming(&*I, PreReturn); |
| for (BasicBlock *E : OI->ReturnBlockPreds) { |
| BasicBlock *NewE = cast<BasicBlock>(VMap[E]); |
| RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(NewE), NewE); |
| OldPhi->removeIncomingValue(NewE); |
| } |
| ++I; |
| } |
| for (auto E : OI->ReturnBlockPreds) { |
| BasicBlock *NewE = cast<BasicBlock>(VMap[E]); |
| NewE->getTerminator()->replaceUsesOfWith(PreReturn, NewReturnBlock); |
| } |
| } |
| |
| // Returns true if the block is to be partial inlined into the caller |
| // (i.e. not to be extracted to the out of line function) |
| auto ToBeInlined = [&](BasicBlock *BB) { |
| return BB == NewReturnBlock || NewEntries.count(BB); |
| }; |
| // Gather up the blocks that we're going to extract. |
| std::vector<BasicBlock *> ToExtract; |
| ToExtract.push_back(NewNonReturnBlock); |
| for (BasicBlock &BB : *DuplicateFunction) |
| if (!ToBeInlined(&BB) && &BB != NewNonReturnBlock) |
| ToExtract.push_back(&BB); |
| |
| // The CodeExtractor needs a dominator tree. |
| DominatorTree DT; |
| DT.recalculate(*DuplicateFunction); |
| |
| // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. |
| LoopInfo LI(DT); |
| BranchProbabilityInfo BPI(*DuplicateFunction, LI); |
| BlockFrequencyInfo BFI(*DuplicateFunction, BPI, LI); |
| |
| // Extract the body of the if. |
| Function *OutlinedFunction = |
| CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false, &BFI, &BPI) |
| .extractCodeRegion(); |
| |
| bool AnyInline = |
| tryPartialInline(DuplicateFunction, F, OI.get(), OutlinedFunction, &BFI); |
| |
| // Ditch the duplicate, since we're done with it, and rewrite all remaining |
| // users (function pointers, etc.) back to the original function. |
| DuplicateFunction->replaceAllUsesWith(F); |
| DuplicateFunction->eraseFromParent(); |
| |
| if (AnyInline) |
| return OutlinedFunction; |
| |
| // Remove the function that is speculatively created: |
| if (OutlinedFunction) |
| OutlinedFunction->eraseFromParent(); |
| |
| return nullptr; |
| } |
| |
| bool PartialInlinerImpl::tryPartialInline(Function *DuplicateFunction, |
| Function *F, |
| FunctionOutliningInfo *OI, |
| Function *OutlinedFunction, |
| BlockFrequencyInfo *CalleeBFI) { |
| if (OutlinedFunction == nullptr) |
| return false; |
| |
| int NonWeightedRcost; |
| int SizeCost; |
| int OutlinedRegionSizeCost; |
| |
| auto OutliningCallBB = |
| getOneCallSiteTo(OutlinedFunction).getInstruction()->getParent(); |
| |
| std::tie(SizeCost, NonWeightedRcost, OutlinedRegionSizeCost) = |
| computeOutliningCosts(F, OI, OutlinedFunction, OutliningCallBB); |
| |
| // The call sequence to the outlined function is larger than the original |
| // outlined region size, it does not increase the chances of inlining |
| // 'F' with outlining (The inliner usies the size increase to model the |
| // the cost of inlining a callee). |
| if (!SkipCostAnalysis && OutlinedRegionSizeCost < SizeCost) { |
| OptimizationRemarkEmitter ORE(F); |
| DebugLoc DLoc; |
| BasicBlock *Block; |
| std::tie(DLoc, Block) = getOneDebugLoc(DuplicateFunction); |
| ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall", |
| DLoc, Block) |
| << ore::NV("Function", F) |
| << " not partially inlined into callers (Original Size = " |
| << ore::NV("OutlinedRegionOriginalSize", OutlinedRegionSizeCost) |
| << ", Size of call sequence to outlined function = " |
| << ore::NV("NewSize", SizeCost) << ")"); |
| return false; |
| } |
| |
| assert(F->user_begin() == F->user_end() && |
| "F's users should all be replaced!"); |
| std::vector<User *> Users(DuplicateFunction->user_begin(), |
| DuplicateFunction->user_end()); |
| |
| DenseMap<User *, uint64_t> CallSiteToProfCountMap; |
| if (F->getEntryCount()) |
| computeCallsiteToProfCountMap(DuplicateFunction, CallSiteToProfCountMap); |
| |
| auto CalleeEntryCount = F->getEntryCount(); |
| uint64_t CalleeEntryCountV = (CalleeEntryCount ? *CalleeEntryCount : 0); |
| bool AnyInline = false; |
| for (User *User : Users) { |
| CallSite CS = getCallSite(User); |
| |
| if (IsLimitReached()) |
| continue; |
| |
| OptimizationRemarkEmitter ORE(CS.getCaller()); |
| |
| if (!shouldPartialInline(CS, F, OI, CalleeBFI, OutliningCallBB, |
| NonWeightedRcost, ORE)) |
| continue; |
| |
| ORE.emit( |
| OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", CS.getInstruction()) |
| << ore::NV("Callee", F) << " partially inlined into " |
| << ore::NV("Caller", CS.getCaller())); |
| |
| InlineFunctionInfo IFI(nullptr, GetAssumptionCache, PSI); |
| InlineFunction(CS, IFI); |
| |
| // Now update the entry count: |
| if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) { |
| uint64_t CallSiteCount = CallSiteToProfCountMap[User]; |
| CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount); |
| } |
| |
| AnyInline = true; |
| NumPartialInlining++; |
| // Update the stats |
| NumPartialInlined++; |
| } |
| |
| if (AnyInline && CalleeEntryCount) |
| F->setEntryCount(CalleeEntryCountV); |
| |
| return AnyInline; |
| } |
| |
| bool PartialInlinerImpl::run(Module &M) { |
| if (DisablePartialInlining) |
| return false; |
| |
| std::vector<Function *> Worklist; |
| Worklist.reserve(M.size()); |
| for (Function &F : M) |
| if (!F.use_empty() && !F.isDeclaration()) |
| Worklist.push_back(&F); |
| |
| bool Changed = false; |
| while (!Worklist.empty()) { |
| Function *CurrFunc = Worklist.back(); |
| Worklist.pop_back(); |
| |
| if (CurrFunc->use_empty()) |
| continue; |
| |
| bool Recursive = false; |
| for (User *U : CurrFunc->users()) |
| if (Instruction *I = dyn_cast<Instruction>(U)) |
| if (I->getParent()->getParent() == CurrFunc) { |
| Recursive = true; |
| break; |
| } |
| if (Recursive) |
| continue; |
| |
| if (Function *NewFunc = unswitchFunction(CurrFunc)) { |
| Worklist.push_back(NewFunc); |
| Changed = true; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| char PartialInlinerLegacyPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner", |
| "Partial Inliner", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner", |
| "Partial Inliner", false, false) |
| |
| ModulePass *llvm::createPartialInliningPass() { |
| return new PartialInlinerLegacyPass(); |
| } |
| |
| PreservedAnalyses PartialInlinerPass::run(Module &M, |
| ModuleAnalysisManager &AM) { |
| auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| |
| std::function<AssumptionCache &(Function &)> GetAssumptionCache = |
| [&FAM](Function &F) -> AssumptionCache & { |
| return FAM.getResult<AssumptionAnalysis>(F); |
| }; |
| |
| std::function<BlockFrequencyInfo &(Function &)> GetBFI = |
| [&FAM](Function &F) -> BlockFrequencyInfo & { |
| return FAM.getResult<BlockFrequencyAnalysis>(F); |
| }; |
| |
| std::function<TargetTransformInfo &(Function &)> GetTTI = |
| [&FAM](Function &F) -> TargetTransformInfo & { |
| return FAM.getResult<TargetIRAnalysis>(F); |
| }; |
| |
| ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); |
| |
| if (PartialInlinerImpl(&GetAssumptionCache, &GetTTI, {GetBFI}, PSI).run(M)) |
| return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |