| //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The LowerSwitch transformation rewrites switch instructions with a sequence |
| // of branches, which allows targets to get away with not implementing the |
| // switch instruction until it is convenient. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/LowerSwitch.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/LazyValueInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "lower-switch" |
| |
| namespace { |
| |
| struct IntRange { |
| int64_t Low, High; |
| }; |
| |
| } // end anonymous namespace |
| |
| namespace { |
| // Return true iff R is covered by Ranges. |
| bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) { |
| // Note: Ranges must be sorted, non-overlapping and non-adjacent. |
| |
| // Find the first range whose High field is >= R.High, |
| // then check if the Low field is <= R.Low. If so, we |
| // have a Range that covers R. |
| auto I = llvm::lower_bound( |
| Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; }); |
| return I != Ranges.end() && I->Low <= R.Low; |
| } |
| |
| struct CaseRange { |
| ConstantInt *Low; |
| ConstantInt *High; |
| BasicBlock *BB; |
| |
| CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) |
| : Low(low), High(high), BB(bb) {} |
| }; |
| |
| using CaseVector = std::vector<CaseRange>; |
| using CaseItr = std::vector<CaseRange>::iterator; |
| |
| /// The comparison function for sorting the switch case values in the vector. |
| /// WARNING: Case ranges should be disjoint! |
| struct CaseCmp { |
| bool operator()(const CaseRange &C1, const CaseRange &C2) { |
| const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low); |
| const ConstantInt *CI2 = cast<const ConstantInt>(C2.High); |
| return CI1->getValue().slt(CI2->getValue()); |
| } |
| }; |
| |
| /// Used for debugging purposes. |
| LLVM_ATTRIBUTE_USED |
| raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) { |
| O << "["; |
| |
| for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) { |
| O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]"; |
| if (++B != E) |
| O << ", "; |
| } |
| |
| return O << "]"; |
| } |
| |
| /// Update the first occurrence of the "switch statement" BB in the PHI |
| /// node with the "new" BB. The other occurrences will: |
| /// |
| /// 1) Be updated by subsequent calls to this function. Switch statements may |
| /// have more than one outcoming edge into the same BB if they all have the same |
| /// value. When the switch statement is converted these incoming edges are now |
| /// coming from multiple BBs. |
| /// 2) Removed if subsequent incoming values now share the same case, i.e., |
| /// multiple outcome edges are condensed into one. This is necessary to keep the |
| /// number of phi values equal to the number of branches to SuccBB. |
| void FixPhis( |
| BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, |
| const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) { |
| for (BasicBlock::iterator I = SuccBB->begin(), |
| IE = SuccBB->getFirstNonPHI()->getIterator(); |
| I != IE; ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| |
| // Only update the first occurrence. |
| unsigned Idx = 0, E = PN->getNumIncomingValues(); |
| unsigned LocalNumMergedCases = NumMergedCases; |
| for (; Idx != E; ++Idx) { |
| if (PN->getIncomingBlock(Idx) == OrigBB) { |
| PN->setIncomingBlock(Idx, NewBB); |
| break; |
| } |
| } |
| |
| // Remove additional occurrences coming from condensed cases and keep the |
| // number of incoming values equal to the number of branches to SuccBB. |
| SmallVector<unsigned, 8> Indices; |
| for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx) |
| if (PN->getIncomingBlock(Idx) == OrigBB) { |
| Indices.push_back(Idx); |
| LocalNumMergedCases--; |
| } |
| // Remove incoming values in the reverse order to prevent invalidating |
| // *successive* index. |
| for (unsigned III : llvm::reverse(Indices)) |
| PN->removeIncomingValue(III); |
| } |
| } |
| |
| /// Create a new leaf block for the binary lookup tree. It checks if the |
| /// switch's value == the case's value. If not, then it jumps to the default |
| /// branch. At this point in the tree, the value can't be another valid case |
| /// value, so the jump to the "default" branch is warranted. |
| BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound, |
| ConstantInt *UpperBound, BasicBlock *OrigBlock, |
| BasicBlock *Default) { |
| Function *F = OrigBlock->getParent(); |
| BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); |
| F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf); |
| |
| // Emit comparison |
| ICmpInst *Comp = nullptr; |
| if (Leaf.Low == Leaf.High) { |
| // Make the seteq instruction... |
| Comp = |
| new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf"); |
| } else { |
| // Make range comparison |
| if (Leaf.Low == LowerBound) { |
| // Val >= Min && Val <= Hi --> Val <= Hi |
| Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, |
| "SwitchLeaf"); |
| } else if (Leaf.High == UpperBound) { |
| // Val <= Max && Val >= Lo --> Val >= Lo |
| Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low, |
| "SwitchLeaf"); |
| } else if (Leaf.Low->isZero()) { |
| // Val >= 0 && Val <= Hi --> Val <=u Hi |
| Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, |
| "SwitchLeaf"); |
| } else { |
| // Emit V-Lo <=u Hi-Lo |
| Constant *NegLo = ConstantExpr::getNeg(Leaf.Low); |
| Instruction *Add = BinaryOperator::CreateAdd( |
| Val, NegLo, Val->getName() + ".off", NewLeaf); |
| Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); |
| Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, |
| "SwitchLeaf"); |
| } |
| } |
| |
| // Make the conditional branch... |
| BasicBlock *Succ = Leaf.BB; |
| BranchInst::Create(Succ, Default, Comp, NewLeaf); |
| |
| // If there were any PHI nodes in this successor, rewrite one entry |
| // from OrigBlock to come from NewLeaf. |
| for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| // Remove all but one incoming entries from the cluster |
| uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue(); |
| for (uint64_t j = 0; j < Range; ++j) { |
| PN->removeIncomingValue(OrigBlock); |
| } |
| |
| int BlockIdx = PN->getBasicBlockIndex(OrigBlock); |
| assert(BlockIdx != -1 && "Switch didn't go to this successor??"); |
| PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); |
| } |
| |
| return NewLeaf; |
| } |
| |
| /// Convert the switch statement into a binary lookup of the case values. |
| /// The function recursively builds this tree. LowerBound and UpperBound are |
| /// used to keep track of the bounds for Val that have already been checked by |
| /// a block emitted by one of the previous calls to switchConvert in the call |
| /// stack. |
| BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, |
| ConstantInt *UpperBound, Value *Val, |
| BasicBlock *Predecessor, BasicBlock *OrigBlock, |
| BasicBlock *Default, |
| const std::vector<IntRange> &UnreachableRanges) { |
| assert(LowerBound && UpperBound && "Bounds must be initialized"); |
| unsigned Size = End - Begin; |
| |
| if (Size == 1) { |
| // Check if the Case Range is perfectly squeezed in between |
| // already checked Upper and Lower bounds. If it is then we can avoid |
| // emitting the code that checks if the value actually falls in the range |
| // because the bounds already tell us so. |
| if (Begin->Low == LowerBound && Begin->High == UpperBound) { |
| unsigned NumMergedCases = 0; |
| NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue(); |
| FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); |
| return Begin->BB; |
| } |
| return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock, |
| Default); |
| } |
| |
| unsigned Mid = Size / 2; |
| std::vector<CaseRange> LHS(Begin, Begin + Mid); |
| LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n"); |
| std::vector<CaseRange> RHS(Begin + Mid, End); |
| LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n"); |
| |
| CaseRange &Pivot = *(Begin + Mid); |
| LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", " |
| << Pivot.High->getValue() << "]\n"); |
| |
| // NewLowerBound here should never be the integer minimal value. |
| // This is because it is computed from a case range that is never |
| // the smallest, so there is always a case range that has at least |
| // a smaller value. |
| ConstantInt *NewLowerBound = Pivot.Low; |
| |
| // Because NewLowerBound is never the smallest representable integer |
| // it is safe here to subtract one. |
| ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), |
| NewLowerBound->getValue() - 1); |
| |
| if (!UnreachableRanges.empty()) { |
| // Check if the gap between LHS's highest and NewLowerBound is unreachable. |
| int64_t GapLow = LHS.back().High->getSExtValue() + 1; |
| int64_t GapHigh = NewLowerBound->getSExtValue() - 1; |
| IntRange Gap = { GapLow, GapHigh }; |
| if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges)) |
| NewUpperBound = LHS.back().High; |
| } |
| |
| LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", " |
| << NewUpperBound->getSExtValue() << "]\n" |
| << "RHS Bounds ==> [" << NewLowerBound->getSExtValue() |
| << ", " << UpperBound->getSExtValue() << "]\n"); |
| |
| // Create a new node that checks if the value is < pivot. Go to the |
| // left branch if it is and right branch if not. |
| Function* F = OrigBlock->getParent(); |
| BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); |
| |
| ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, |
| Val, Pivot.Low, "Pivot"); |
| |
| BasicBlock *LBranch = |
| SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val, |
| NewNode, OrigBlock, Default, UnreachableRanges); |
| BasicBlock *RBranch = |
| SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val, |
| NewNode, OrigBlock, Default, UnreachableRanges); |
| |
| F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode); |
| NewNode->getInstList().push_back(Comp); |
| |
| BranchInst::Create(LBranch, RBranch, Comp, NewNode); |
| return NewNode; |
| } |
| |
| /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases. |
| /// \post \p Cases wouldn't contain references to \p SI's default BB. |
| /// \returns Number of \p SI's cases that do not reference \p SI's default BB. |
| unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) { |
| unsigned NumSimpleCases = 0; |
| |
| // Start with "simple" cases |
| for (auto Case : SI->cases()) { |
| if (Case.getCaseSuccessor() == SI->getDefaultDest()) |
| continue; |
| Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(), |
| Case.getCaseSuccessor())); |
| ++NumSimpleCases; |
| } |
| |
| llvm::sort(Cases, CaseCmp()); |
| |
| // Merge case into clusters |
| if (Cases.size() >= 2) { |
| CaseItr I = Cases.begin(); |
| for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { |
| int64_t nextValue = J->Low->getSExtValue(); |
| int64_t currentValue = I->High->getSExtValue(); |
| BasicBlock* nextBB = J->BB; |
| BasicBlock* currentBB = I->BB; |
| |
| // If the two neighboring cases go to the same destination, merge them |
| // into a single case. |
| assert(nextValue > currentValue && "Cases should be strictly ascending"); |
| if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { |
| I->High = J->High; |
| // FIXME: Combine branch weights. |
| } else if (++I != J) { |
| *I = *J; |
| } |
| } |
| Cases.erase(std::next(I), Cases.end()); |
| } |
| |
| return NumSimpleCases; |
| } |
| |
| /// Replace the specified switch instruction with a sequence of chained if-then |
| /// insts in a balanced binary search. |
| void ProcessSwitchInst(SwitchInst *SI, |
| SmallPtrSetImpl<BasicBlock *> &DeleteList, |
| AssumptionCache *AC, LazyValueInfo *LVI) { |
| BasicBlock *OrigBlock = SI->getParent(); |
| Function *F = OrigBlock->getParent(); |
| Value *Val = SI->getCondition(); // The value we are switching on... |
| BasicBlock* Default = SI->getDefaultDest(); |
| |
| // Don't handle unreachable blocks. If there are successors with phis, this |
| // would leave them behind with missing predecessors. |
| if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) || |
| OrigBlock->getSinglePredecessor() == OrigBlock) { |
| DeleteList.insert(OrigBlock); |
| return; |
| } |
| |
| // Prepare cases vector. |
| CaseVector Cases; |
| const unsigned NumSimpleCases = Clusterify(Cases, SI); |
| LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() |
| << ". Total non-default cases: " << NumSimpleCases |
| << "\nCase clusters: " << Cases << "\n"); |
| |
| // If there is only the default destination, just branch. |
| if (Cases.empty()) { |
| BranchInst::Create(Default, OrigBlock); |
| // Remove all the references from Default's PHIs to OrigBlock, but one. |
| FixPhis(Default, OrigBlock, OrigBlock); |
| SI->eraseFromParent(); |
| return; |
| } |
| |
| ConstantInt *LowerBound = nullptr; |
| ConstantInt *UpperBound = nullptr; |
| bool DefaultIsUnreachableFromSwitch = false; |
| |
| if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { |
| // Make the bounds tightly fitted around the case value range, because we |
| // know that the value passed to the switch must be exactly one of the case |
| // values. |
| LowerBound = Cases.front().Low; |
| UpperBound = Cases.back().High; |
| DefaultIsUnreachableFromSwitch = true; |
| } else { |
| // Constraining the range of the value being switched over helps eliminating |
| // unreachable BBs and minimizing the number of `add` instructions |
| // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after |
| // LowerSwitch isn't as good, and also much more expensive in terms of |
| // compile time for the following reasons: |
| // 1. it processes many kinds of instructions, not just switches; |
| // 2. even if limited to icmp instructions only, it will have to process |
| // roughly C icmp's per switch, where C is the number of cases in the |
| // switch, while LowerSwitch only needs to call LVI once per switch. |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI); |
| // TODO Shouldn't this create a signed range? |
| ConstantRange KnownBitsRange = |
| ConstantRange::fromKnownBits(Known, /*IsSigned=*/false); |
| const ConstantRange LVIRange = LVI->getConstantRange(Val, SI); |
| ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange); |
| // We delegate removal of unreachable non-default cases to other passes. In |
| // the unlikely event that some of them survived, we just conservatively |
| // maintain the invariant that all the cases lie between the bounds. This |
| // may, however, still render the default case effectively unreachable. |
| APInt Low = Cases.front().Low->getValue(); |
| APInt High = Cases.back().High->getValue(); |
| APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low); |
| APInt Max = APIntOps::smax(ValRange.getSignedMax(), High); |
| |
| LowerBound = ConstantInt::get(SI->getContext(), Min); |
| UpperBound = ConstantInt::get(SI->getContext(), Max); |
| DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max); |
| } |
| |
| std::vector<IntRange> UnreachableRanges; |
| |
| if (DefaultIsUnreachableFromSwitch) { |
| DenseMap<BasicBlock *, unsigned> Popularity; |
| unsigned MaxPop = 0; |
| BasicBlock *PopSucc = nullptr; |
| |
| IntRange R = {std::numeric_limits<int64_t>::min(), |
| std::numeric_limits<int64_t>::max()}; |
| UnreachableRanges.push_back(R); |
| for (const auto &I : Cases) { |
| int64_t Low = I.Low->getSExtValue(); |
| int64_t High = I.High->getSExtValue(); |
| |
| IntRange &LastRange = UnreachableRanges.back(); |
| if (LastRange.Low == Low) { |
| // There is nothing left of the previous range. |
| UnreachableRanges.pop_back(); |
| } else { |
| // Terminate the previous range. |
| assert(Low > LastRange.Low); |
| LastRange.High = Low - 1; |
| } |
| if (High != std::numeric_limits<int64_t>::max()) { |
| IntRange R = { High + 1, std::numeric_limits<int64_t>::max() }; |
| UnreachableRanges.push_back(R); |
| } |
| |
| // Count popularity. |
| int64_t N = High - Low + 1; |
| unsigned &Pop = Popularity[I.BB]; |
| if ((Pop += N) > MaxPop) { |
| MaxPop = Pop; |
| PopSucc = I.BB; |
| } |
| } |
| #ifndef NDEBUG |
| /* UnreachableRanges should be sorted and the ranges non-adjacent. */ |
| for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); |
| I != E; ++I) { |
| assert(I->Low <= I->High); |
| auto Next = I + 1; |
| if (Next != E) { |
| assert(Next->Low > I->High); |
| } |
| } |
| #endif |
| |
| // As the default block in the switch is unreachable, update the PHI nodes |
| // (remove all of the references to the default block) to reflect this. |
| const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases; |
| for (unsigned I = 0; I < NumDefaultEdges; ++I) |
| Default->removePredecessor(OrigBlock); |
| |
| // Use the most popular block as the new default, reducing the number of |
| // cases. |
| assert(MaxPop > 0 && PopSucc); |
| Default = PopSucc; |
| llvm::erase_if(Cases, |
| [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }); |
| |
| // If there are no cases left, just branch. |
| if (Cases.empty()) { |
| BranchInst::Create(Default, OrigBlock); |
| SI->eraseFromParent(); |
| // As all the cases have been replaced with a single branch, only keep |
| // one entry in the PHI nodes. |
| for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I) |
| PopSucc->removePredecessor(OrigBlock); |
| return; |
| } |
| |
| // If the condition was a PHI node with the switch block as a predecessor |
| // removing predecessors may have caused the condition to be erased. |
| // Getting the condition value again here protects against that. |
| Val = SI->getCondition(); |
| } |
| |
| // Create a new, empty default block so that the new hierarchy of |
| // if-then statements go to this and the PHI nodes are happy. |
| BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault"); |
| F->getBasicBlockList().insert(Default->getIterator(), NewDefault); |
| BranchInst::Create(Default, NewDefault); |
| |
| BasicBlock *SwitchBlock = |
| SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, |
| OrigBlock, OrigBlock, NewDefault, UnreachableRanges); |
| |
| // If there are entries in any PHI nodes for the default edge, make sure |
| // to update them as well. |
| FixPhis(Default, OrigBlock, NewDefault); |
| |
| // Branch to our shiny new if-then stuff... |
| BranchInst::Create(SwitchBlock, OrigBlock); |
| |
| // We are now done with the switch instruction, delete it. |
| BasicBlock *OldDefault = SI->getDefaultDest(); |
| OrigBlock->getInstList().erase(SI); |
| |
| // If the Default block has no more predecessors just add it to DeleteList. |
| if (pred_empty(OldDefault)) |
| DeleteList.insert(OldDefault); |
| } |
| |
| bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) { |
| bool Changed = false; |
| SmallPtrSet<BasicBlock *, 8> DeleteList; |
| |
| for (Function::iterator I = F.begin(), E = F.end(); I != E;) { |
| BasicBlock *Cur = |
| &*I++; // Advance over block so we don't traverse new blocks |
| |
| // If the block is a dead Default block that will be deleted later, don't |
| // waste time processing it. |
| if (DeleteList.count(Cur)) |
| continue; |
| |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) { |
| Changed = true; |
| ProcessSwitchInst(SI, DeleteList, AC, LVI); |
| } |
| } |
| |
| for (BasicBlock *BB : DeleteList) { |
| LVI->eraseBlock(BB); |
| DeleteDeadBlock(BB); |
| } |
| |
| return Changed; |
| } |
| |
| /// Replace all SwitchInst instructions with chained branch instructions. |
| class LowerSwitchLegacyPass : public FunctionPass { |
| public: |
| // Pass identification, replacement for typeid |
| static char ID; |
| |
| LowerSwitchLegacyPass() : FunctionPass(ID) { |
| initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<LazyValueInfoWrapperPass>(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char LowerSwitchLegacyPass::ID = 0; |
| |
| // Publicly exposed interface to pass... |
| char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID; |
| |
| INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch", |
| "Lower SwitchInst's to branches", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) |
| INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch", |
| "Lower SwitchInst's to branches", false, false) |
| |
| // createLowerSwitchPass - Interface to this file... |
| FunctionPass *llvm::createLowerSwitchPass() { |
| return new LowerSwitchLegacyPass(); |
| } |
| |
| bool LowerSwitchLegacyPass::runOnFunction(Function &F) { |
| LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); |
| auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>(); |
| AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr; |
| return LowerSwitch(F, LVI, AC); |
| } |
| |
| PreservedAnalyses LowerSwitchPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F); |
| AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F); |
| return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none() |
| : PreservedAnalyses::all(); |
| } |