blob: 63b8db7916a03148d6bd96a03525b8949785dba5 [file] [log] [blame]
//===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
/// \file
/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
/// analysis.
/// Unlike other Sanitizer tools, this tool is not designed to detect a specific
/// class of bugs on its own. Instead, it provides a generic dynamic data flow
/// analysis framework to be used by clients to help detect application-specific
/// issues within their own code.
/// The analysis is based on automatic propagation of data flow labels (also
/// known as taint labels) through a program as it performs computation.
/// There are two possible memory layouts. In the first one, each byte of
/// application memory is backed by a shadow memory byte. The shadow byte can
/// represent up to 8 labels. To enable this you must specify the
/// -dfsan-fast-8-labels flag. On Linux/x86_64, memory is then laid out as
/// follows:
/// +--------------------+ 0x800000000000 (top of memory)
/// | application memory |
/// +--------------------+ 0x700000008000 (kAppAddr)
/// | |
/// | unused |
/// | |
/// +--------------------+ 0x300200000000 (kUnusedAddr)
/// | union table |
/// +--------------------+ 0x300000000000 (kUnionTableAddr)
/// | origin |
/// +--------------------+ 0x200000008000 (kOriginAddr)
/// | shadow memory |
/// +--------------------+ 0x100000008000 (kShadowAddr)
/// | unused |
/// +--------------------+ 0x000000010000
/// | reserved by kernel |
/// +--------------------+ 0x000000000000
/// In the second memory layout, each byte of application memory is backed by
/// two bytes of shadow memory which hold the label. That means we can represent
/// either 16 labels (with -dfsan-fast-16-labels flag) or 2^16 labels (on the
/// default legacy mode) per byte. On Linux/x86_64, memory is then laid out as
/// follows:
/// +--------------------+ 0x800000000000 (top of memory)
/// | application memory |
/// +--------------------+ 0x700000008000 (kAppAddr)
/// | |
/// | unused |
/// | |
/// +--------------------+ 0x300200000000 (kUnusedAddr)
/// | union table |
/// +--------------------+ 0x300000000000 (kUnionTableAddr)
/// | origin |
/// +--------------------+ 0x200000008000 (kOriginAddr)
/// | shadow memory |
/// +--------------------+ 0x000000010000 (kShadowAddr)
/// | reserved by kernel |
/// +--------------------+ 0x000000000000
/// To derive a shadow memory address from an application memory address,
/// bits 44-46 are cleared to bring the address into the range
/// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
/// account for the double byte representation of shadow labels and move the
/// address into the shadow memory range. See the function
/// DataFlowSanitizer::getShadowAddress below.
/// For more information, please refer to the design document:
#include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SpecialCaseList.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
// This must be consistent with ShadowWidthBits.
static const Align ShadowTLSAlignment = Align(2);
static const Align MinOriginAlignment = Align(4);
// The size of TLS variables. These constants must be kept in sync with the ones
// in dfsan.cpp.
static const unsigned ArgTLSSize = 800;
static const unsigned RetvalTLSSize = 800;
// External symbol to be used when generating the shadow address for
// architectures with multiple VMAs. Instead of using a constant integer
// the runtime will set the external mask based on the VMA range.
const char DFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask";
// The -dfsan-preserve-alignment flag controls whether this pass assumes that
// alignment requirements provided by the input IR are correct. For example,
// if the input IR contains a load with alignment 8, this flag will cause
// the shadow load to have alignment 16. This flag is disabled by default as
// we have unfortunately encountered too much code (including Clang itself;
// see PR14291) which performs misaligned access.
static cl::opt<bool> ClPreserveAlignment(
cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
// The ABI list files control how shadow parameters are passed. The pass treats
// every function labelled "uninstrumented" in the ABI list file as conforming
// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
// additional annotations for those functions, a call to one of those functions
// will produce a warning message, as the labelling behaviour of the function is
// unknown. The other supported annotations are "functional" and "discard",
// which are described below under DataFlowSanitizer::WrapperKind.
static cl::list<std::string> ClABIListFiles(
cl::desc("File listing native ABI functions and how the pass treats them"),
// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
// functions (see DataFlowSanitizer::InstrumentedABI below).
static cl::opt<bool>
cl::desc("Use the argument ABI rather than the TLS ABI"),
// Controls whether the pass includes or ignores the labels of pointers in load
// instructions.
static cl::opt<bool> ClCombinePointerLabelsOnLoad(
cl::desc("Combine the label of the pointer with the label of the data when "
"loading from memory."),
cl::Hidden, cl::init(true));
// Controls whether the pass includes or ignores the labels of pointers in
// stores instructions.
static cl::opt<bool> ClCombinePointerLabelsOnStore(
cl::desc("Combine the label of the pointer with the label of the data when "
"storing in memory."),
cl::Hidden, cl::init(false));
static cl::opt<bool> ClDebugNonzeroLabels(
cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
"load or return with a nonzero label"),
// Experimental feature that inserts callbacks for certain data events.
// Currently callbacks are only inserted for loads, stores, memory transfers
// (i.e. memcpy and memmove), and comparisons.
// If this flag is set to true, the user must provide definitions for the
// following callback functions:
// void __dfsan_load_callback(dfsan_label Label, void* addr);
// void __dfsan_store_callback(dfsan_label Label, void* addr);
// void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
// void __dfsan_cmp_callback(dfsan_label CombinedLabel);
static cl::opt<bool> ClEventCallbacks(
cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
cl::Hidden, cl::init(false));
// Use a distinct bit for each base label, enabling faster unions with less
// instrumentation. Limits the max number of base labels to 16.
static cl::opt<bool> ClFast16Labels(
cl::desc("Use more efficient instrumentation, limiting the number of "
"labels to 16."),
cl::Hidden, cl::init(false));
// Use a distinct bit for each base label, enabling faster unions with less
// instrumentation. Limits the max number of base labels to 8.
static cl::opt<bool> ClFast8Labels(
cl::desc("Use more efficient instrumentation, limiting the number of "
"labels to 8."),
cl::Hidden, cl::init(false));
// Controls whether the pass tracks the control flow of select instructions.
static cl::opt<bool> ClTrackSelectControlFlow(
cl::desc("Propagate labels from condition values of select instructions "
"to results."),
cl::Hidden, cl::init(true));
// TODO: This default value follows MSan. DFSan may use a different value.
static cl::opt<int> ClInstrumentWithCallThreshold(
cl::desc("If the function being instrumented requires more than "
"this number of origin stores, use callbacks instead of "
"inline checks (-1 means never use callbacks)."),
cl::Hidden, cl::init(3500));
// Controls how to track origins.
// * 0: do not track origins.
// * 1: track origins at memory store operations.
// * 2: TODO: track origins at memory store operations and callsites.
static cl::opt<int> ClTrackOrigins("dfsan-track-origins",
cl::desc("Track origins of labels"),
cl::Hidden, cl::init(0));
static StringRef getGlobalTypeString(const GlobalValue &G) {
// Types of GlobalVariables are always pointer types.
Type *GType = G.getValueType();
// For now we support excluding struct types only.
if (StructType *SGType = dyn_cast<StructType>(GType)) {
if (!SGType->isLiteral())
return SGType->getName();
return "<unknown type>";
namespace {
class DFSanABIList {
std::unique_ptr<SpecialCaseList> SCL;
DFSanABIList() = default;
void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
/// Returns whether either this function or its source file are listed in the
/// given category.
bool isIn(const Function &F, StringRef Category) const {
return isIn(*F.getParent(), Category) ||
SCL->inSection("dataflow", "fun", F.getName(), Category);
/// Returns whether this global alias is listed in the given category.
/// If GA aliases a function, the alias's name is matched as a function name
/// would be. Similarly, aliases of globals are matched like globals.
bool isIn(const GlobalAlias &GA, StringRef Category) const {
if (isIn(*GA.getParent(), Category))
return true;
if (isa<FunctionType>(GA.getValueType()))
return SCL->inSection("dataflow", "fun", GA.getName(), Category);
return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
SCL->inSection("dataflow", "type", getGlobalTypeString(GA),
/// Returns whether this module is listed in the given category.
bool isIn(const Module &M, StringRef Category) const {
return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
/// TransformedFunction is used to express the result of transforming one
/// function type into another. This struct is immutable. It holds metadata
/// useful for updating calls of the old function to the new type.
struct TransformedFunction {
TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType,
std::vector<unsigned> ArgumentIndexMapping)
: OriginalType(OriginalType), TransformedType(TransformedType),
ArgumentIndexMapping(ArgumentIndexMapping) {}
// Disallow copies.
TransformedFunction(const TransformedFunction &) = delete;
TransformedFunction &operator=(const TransformedFunction &) = delete;
// Allow moves.
TransformedFunction(TransformedFunction &&) = default;
TransformedFunction &operator=(TransformedFunction &&) = default;
/// Type of the function before the transformation.
FunctionType *OriginalType;
/// Type of the function after the transformation.
FunctionType *TransformedType;
/// Transforming a function may change the position of arguments. This
/// member records the mapping from each argument's old position to its new
/// position. Argument positions are zero-indexed. If the transformation
/// from F to F' made the first argument of F into the third argument of F',
/// then ArgumentIndexMapping[0] will equal 2.
std::vector<unsigned> ArgumentIndexMapping;
/// Given function attributes from a call site for the original function,
/// return function attributes appropriate for a call to the transformed
/// function.
transformFunctionAttributes(const TransformedFunction &TransformedFunction,
LLVMContext &Ctx, AttributeList CallSiteAttrs) {
// Construct a vector of AttributeSet for each function argument.
std::vector<llvm::AttributeSet> ArgumentAttributes(
// Copy attributes from the parameter of the original function to the
// transformed version. 'ArgumentIndexMapping' holds the mapping from
// old argument position to new.
for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size();
I < IE; ++I) {
unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I];
ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(I);
// Copy annotations on varargs arguments.
for (unsigned I = TransformedFunction.OriginalType->getNumParams(),
IE = CallSiteAttrs.getNumAttrSets();
I < IE; ++I) {
return AttributeList::get(Ctx, CallSiteAttrs.getFnAttributes(),
class DataFlowSanitizer {
friend struct DFSanFunction;
friend class DFSanVisitor;
enum {
OriginWidthBits = 32,
OriginWidthBytes = OriginWidthBits / 8
/// Which ABI should be used for instrumented functions?
enum InstrumentedABI {
/// Argument and return value labels are passed through additional
/// arguments and by modifying the return type.
/// Argument and return value labels are passed through TLS variables
/// __dfsan_arg_tls and __dfsan_retval_tls.
/// How should calls to uninstrumented functions be handled?
enum WrapperKind {
/// This function is present in an uninstrumented form but we don't know
/// how it should be handled. Print a warning and call the function anyway.
/// Don't label the return value.
/// This function does not write to (user-accessible) memory, and its return
/// value is unlabelled.
/// This function does not write to (user-accessible) memory, and the label
/// of its return value is the union of the label of its arguments.
/// Instead of calling the function, a custom wrapper __dfsw_F is called,
/// where F is the name of the function. This function may wrap the
/// original function or provide its own implementation. This is similar to
/// the IA_Args ABI, except that IA_Args uses a struct return type to
/// pass the return value shadow in a register, while WK_Custom uses an
/// extra pointer argument to return the shadow. This allows the wrapped
/// form of the function type to be expressed in C.
unsigned ShadowWidthBits;
unsigned ShadowWidthBytes;
Module *Mod;
LLVMContext *Ctx;
Type *Int8Ptr;
IntegerType *OriginTy;
PointerType *OriginPtrTy;
ConstantInt *OriginBase;
ConstantInt *ZeroOrigin;
/// The shadow type for all primitive types and vector types.
IntegerType *PrimitiveShadowTy;
PointerType *PrimitiveShadowPtrTy;
IntegerType *IntptrTy;
ConstantInt *ZeroPrimitiveShadow;
ConstantInt *ShadowPtrMask;
ConstantInt *ShadowPtrMul;
Constant *ArgTLS;
ArrayType *ArgOriginTLSTy;
Constant *ArgOriginTLS;
Constant *RetvalTLS;
Constant *RetvalOriginTLS;
Constant *ExternalShadowMask;
FunctionType *DFSanUnionFnTy;
FunctionType *DFSanUnionLoadFnTy;
FunctionType *DFSanLoadLabelAndOriginFnTy;
FunctionType *DFSanUnimplementedFnTy;
FunctionType *DFSanSetLabelFnTy;
FunctionType *DFSanNonzeroLabelFnTy;
FunctionType *DFSanVarargWrapperFnTy;
FunctionType *DFSanCmpCallbackFnTy;
FunctionType *DFSanLoadStoreCallbackFnTy;
FunctionType *DFSanMemTransferCallbackFnTy;
FunctionType *DFSanChainOriginFnTy;
FunctionType *DFSanMemOriginTransferFnTy;
FunctionType *DFSanMaybeStoreOriginFnTy;
FunctionCallee DFSanUnionFn;
FunctionCallee DFSanCheckedUnionFn;
FunctionCallee DFSanUnionLoadFn;
FunctionCallee DFSanUnionLoadFastLabelsFn;
FunctionCallee DFSanLoadLabelAndOriginFn;
FunctionCallee DFSanUnimplementedFn;
FunctionCallee DFSanSetLabelFn;
FunctionCallee DFSanNonzeroLabelFn;
FunctionCallee DFSanVarargWrapperFn;
FunctionCallee DFSanLoadCallbackFn;
FunctionCallee DFSanStoreCallbackFn;
FunctionCallee DFSanMemTransferCallbackFn;
FunctionCallee DFSanCmpCallbackFn;
FunctionCallee DFSanChainOriginFn;
FunctionCallee DFSanMemOriginTransferFn;
FunctionCallee DFSanMaybeStoreOriginFn;
SmallPtrSet<Value *, 16> DFSanRuntimeFunctions;
MDNode *ColdCallWeights;
MDNode *OriginStoreWeights;
DenseMap<Value *, Function *> UnwrappedFnMap;
AttrBuilder ReadOnlyNoneAttrs;
bool DFSanRuntimeShadowMask = false;
Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB);
Value *getShadowAddress(Value *Addr, Instruction *Pos);
Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset);
std::pair<Value *, Value *>
getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos);
bool isInstrumented(const Function *F);
bool isInstrumented(const GlobalAlias *GA);
FunctionType *getArgsFunctionType(FunctionType *T);
FunctionType *getTrampolineFunctionType(FunctionType *T);
TransformedFunction getCustomFunctionType(FunctionType *T);
InstrumentedABI getInstrumentedABI();
WrapperKind getWrapperKind(Function *F);
void addGlobalNamePrefix(GlobalValue *GV);
Function *buildWrapperFunction(Function *F, StringRef NewFName,
GlobalValue::LinkageTypes NewFLink,
FunctionType *NewFT);
Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
void initializeCallbackFunctions(Module &M);
void initializeRuntimeFunctions(Module &M);
void injectMetadataGlobals(Module &M);
bool init(Module &M);
/// Returns whether fast8 or fast16 mode has been specified.
bool hasFastLabelsEnabled();
/// Returns whether the pass tracks origins. Support only fast16 mode in TLS
/// ABI mode.
bool shouldTrackOrigins();
/// Returns whether the pass tracks labels for struct fields and array
/// indices. Support only fast16 mode in TLS ABI mode.
bool shouldTrackFieldsAndIndices();
/// Returns a zero constant with the shadow type of OrigTy.
/// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
/// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
/// getZeroShadow(other type) = i16(0)
/// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices
/// returns false.
Constant *getZeroShadow(Type *OrigTy);
/// Returns a zero constant with the shadow type of V's type.
Constant *getZeroShadow(Value *V);
/// Checks if V is a zero shadow.
bool isZeroShadow(Value *V);
/// Returns the shadow type of OrigTy.
/// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
/// getShadowTy([n x T]) = [n x getShadowTy(T)]
/// getShadowTy(other type) = i16
/// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices
/// returns false.
Type *getShadowTy(Type *OrigTy);
/// Returns the shadow type of of V's type.
Type *getShadowTy(Value *V);
const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes;
DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
bool runImpl(Module &M);
struct DFSanFunction {
DataFlowSanitizer &DFS;
Function *F;
DominatorTree DT;
DataFlowSanitizer::InstrumentedABI IA;
bool IsNativeABI;
AllocaInst *LabelReturnAlloca = nullptr;
AllocaInst *OriginReturnAlloca = nullptr;
DenseMap<Value *, Value *> ValShadowMap;
DenseMap<Value *, Value *> ValOriginMap;
DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap;
struct PHIFixupElement {
PHINode *Phi;
PHINode *ShadowPhi;
PHINode *OriginPhi;
std::vector<PHIFixupElement> PHIFixups;
DenseSet<Instruction *> SkipInsts;
std::vector<Value *> NonZeroChecks;
bool AvoidNewBlocks;
struct CachedShadow {
BasicBlock *Block; // The block where Shadow is defined.
Value *Shadow;
/// Maps a value to its latest shadow value in terms of domination tree.
DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
/// Maps a value to its latest collapsed shadow value it was converted to in
/// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
/// used at a post process where CFG blocks are split. So it does not cache
/// BasicBlock like CachedShadows, but uses domination between values.
DenseMap<Value *, Value *> CachedCollapsedShadows;
DenseMap<Value *, std::set<Value *>> ShadowElements;
DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
: DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
// FIXME: Need to track down the register allocator issue which causes poor
// performance in pathological cases with large numbers of basic blocks.
AvoidNewBlocks = F->size() > 1000;
/// Computes the shadow address for a given function argument.
/// Shadow = ArgTLS+ArgOffset.
Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
/// Computes the shadow address for a return value.
Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
/// Computes the origin address for a given function argument.
/// Origin = ArgOriginTLS[ArgNo].
Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB);
/// Computes the origin address for a return value.
Value *getRetvalOriginTLS();
Value *getOrigin(Value *V);
void setOrigin(Instruction *I, Value *Origin);
/// Generates IR to compute the origin of the last operand with a taint label.
Value *combineOperandOrigins(Instruction *Inst);
/// Before the instruction Pos, generates IR to compute the last origin with a
/// taint label. Labels and origins are from vectors Shadows and Origins
/// correspondingly. The generated IR is like
/// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0
/// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be
/// zeros with other bitwidths.
Value *combineOrigins(const std::vector<Value *> &Shadows,
const std::vector<Value *> &Origins, Instruction *Pos,
ConstantInt *Zero = nullptr);
Value *getShadow(Value *V);
void setShadow(Instruction *I, Value *Shadow);
/// Generates IR to compute the union of the two given shadows, inserting it
/// before Pos. The combined value is with primitive type.
Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
/// Combines the shadow values of V1 and V2, then converts the combined value
/// with primitive type into a shadow value with the original type T.
Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
Instruction *Pos);
Value *combineOperandShadows(Instruction *Inst);
std::pair<Value *, Value *> loadShadowOrigin(Value *ShadowAddr, uint64_t Size,
Align InstAlignment,
Instruction *Pos);
void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
Align InstAlignment, Value *PrimitiveShadow,
Value *Origin, Instruction *Pos);
/// Applies PrimitiveShadow to all primitive subtypes of T, returning
/// the expanded shadow value.
/// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
/// EFP([n x T], PS) = [n x EFP(T,PS)]
/// EFP(other types, PS) = PS
Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
Instruction *Pos);
/// Collapses Shadow into a single primitive shadow value, unioning all
/// primitive shadow values in the process. Returns the final primitive
/// shadow value.
/// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
/// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
/// CTP(other types, PS) = PS
Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign,
Instruction *Pos);
Align getShadowAlign(Align InstAlignment);
/// Collapses the shadow with aggregate type into a single primitive shadow
/// value.
template <class AggregateType>
Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
IRBuilder<> &IRB);
Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
/// Returns the shadow value of an argument A.
Value *getShadowForTLSArgument(Argument *A);
/// The fast path of loading shadow in legacy mode.
Value *loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size,
Align ShadowAlign, Instruction *Pos);
/// The fast path of loading shadow in fast-16-label mode.
std::pair<Value *, Value *>
loadFast16ShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size,
Align ShadowAlign, Align OriginAlign, Value *FirstOrigin,
Instruction *Pos);
Align getOriginAlign(Align InstAlignment);
/// Because 4 contiguous bytes share one 4-byte origin, the most accurate load
/// is __dfsan_load_label_and_origin. This function returns the union of all
/// labels and the origin of the first taint label. However this is an
/// additional call with many instructions. To ensure common cases are fast,
/// checks if it is possible to load labels and origins without using the
/// callback function.
bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment);
/// Returns a chain at the current stack with previous origin V.
Value *updateOrigin(Value *V, IRBuilder<> &IRB);
/// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns
/// Origin otherwise.
Value *originToIntptr(IRBuilder<> &IRB, Value *Origin);
/// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr +
/// Size).
void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr,
uint64_t StoreOriginSize, Align Alignment);
/// Stores Origin in terms of its Shadow value.
/// * Do not write origins for zero shadows because we do not trace origins
/// for untainted sinks.
/// * Use __dfsan_maybe_store_origin if there are too many origin store
/// instrumentations.
void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow,
Value *Origin, Value *StoreOriginAddr, Align InstAlignment);
/// Convert a scalar value to an i1 by comparing with 0.
Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "");
bool shouldInstrumentWithCall();
int NumOriginStores = 0;
class DFSanVisitor : public InstVisitor<DFSanVisitor> {
DFSanFunction &DFSF;
DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
const DataLayout &getDataLayout() const {
return DFSF.F->getParent()->getDataLayout();
// Combines shadow values and origins for all of I's operands.
void visitInstOperands(Instruction &I);
void visitUnaryOperator(UnaryOperator &UO);
void visitBinaryOperator(BinaryOperator &BO);
void visitCastInst(CastInst &CI);
void visitCmpInst(CmpInst &CI);
void visitGetElementPtrInst(GetElementPtrInst &GEPI);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void visitAtomicRMWInst(AtomicRMWInst &I);
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
void visitReturnInst(ReturnInst &RI);
void visitCallBase(CallBase &CB);
void visitPHINode(PHINode &PN);
void visitExtractElementInst(ExtractElementInst &I);
void visitInsertElementInst(InsertElementInst &I);
void visitShuffleVectorInst(ShuffleVectorInst &I);
void visitExtractValueInst(ExtractValueInst &I);
void visitInsertValueInst(InsertValueInst &I);
void visitAllocaInst(AllocaInst &I);
void visitSelectInst(SelectInst &I);
void visitMemSetInst(MemSetInst &I);
void visitMemTransferInst(MemTransferInst &I);
void visitCASOrRMW(Align InstAlignment, Instruction &I);
// Returns false when this is an invoke of a custom function.
bool visitWrappedCallBase(Function &F, CallBase &CB);
// Combines origins for all of I's operands.
void visitInstOperandOrigins(Instruction &I);
void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
IRBuilder<> &IRB);
void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
IRBuilder<> &IRB);
} // end anonymous namespace
const std::vector<std::string> &ABIListFiles) {
if (ClFast8Labels && ClFast16Labels) {
"cannot set both -dfsan-fast-8-labels and -dfsan-fast-16-labels");
ShadowWidthBits = ClFast8Labels ? 8 : 16;
ShadowWidthBytes = ShadowWidthBits / 8;
std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
llvm::append_range(AllABIListFiles, ClABIListFiles);
// FIXME: should we propagate vfs::FileSystem to this constructor?
SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
ArgTypes.append(T->getNumParams(), PrimitiveShadowTy);
if (T->isVarArg())
Type *RetType = T->getReturnType();
if (!RetType->isVoidTy())
RetType = StructType::get(RetType, PrimitiveShadowTy);
return FunctionType::get(RetType, ArgTypes, T->isVarArg());
FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
SmallVector<Type *, 4> ArgTypes;
ArgTypes.append(T->param_begin(), T->param_end());
ArgTypes.append(T->getNumParams(), PrimitiveShadowTy);
Type *RetType = T->getReturnType();
if (!RetType->isVoidTy())
if (shouldTrackOrigins()) {
ArgTypes.append(T->getNumParams(), OriginTy);
if (!RetType->isVoidTy())
return FunctionType::get(T->getReturnType(), ArgTypes, false);
TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
SmallVector<Type *, 4> ArgTypes;
// Some parameters of the custom function being constructed are
// parameters of T. Record the mapping from parameters of T to
// parameters of the custom function, so that parameter attributes
// at call sites can be updated.
std::vector<unsigned> ArgumentIndexMapping;
for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) {
Type *ParamType = T->getParamType(I);
FunctionType *FT;
if (isa<PointerType>(ParamType) &&
(FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) {
} else {
for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
if (T->isVarArg())
Type *RetType = T->getReturnType();
if (!RetType->isVoidTy())
if (shouldTrackOrigins()) {
for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
if (T->isVarArg())
if (!RetType->isVoidTy())
return TransformedFunction(
T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
bool DataFlowSanitizer::isZeroShadow(Value *V) {
if (!shouldTrackFieldsAndIndices())
return ZeroPrimitiveShadow == V;
Type *T = V->getType();
if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
return CI->isZero();
return false;
return isa<ConstantAggregateZero>(V);
bool DataFlowSanitizer::hasFastLabelsEnabled() {
static const bool HasFastLabelsEnabled = ClFast8Labels || ClFast16Labels;
return HasFastLabelsEnabled;
bool DataFlowSanitizer::shouldTrackOrigins() {
static const bool ShouldTrackOrigins =
ClTrackOrigins && getInstrumentedABI() == DataFlowSanitizer::IA_TLS &&
return ShouldTrackOrigins;
bool DataFlowSanitizer::shouldTrackFieldsAndIndices() {
return getInstrumentedABI() == DataFlowSanitizer::IA_TLS &&
Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
if (!shouldTrackFieldsAndIndices())
return ZeroPrimitiveShadow;
if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
return ZeroPrimitiveShadow;
Type *ShadowTy = getShadowTy(OrigTy);
return ConstantAggregateZero::get(ShadowTy);
Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
return getZeroShadow(V->getType());
static Value *expandFromPrimitiveShadowRecursive(
Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
Value *PrimitiveShadow, IRBuilder<> &IRB) {
if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
Shadow = expandFromPrimitiveShadowRecursive(
Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
return Shadow;
if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
Shadow = expandFromPrimitiveShadowRecursive(
Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
return Shadow;
llvm_unreachable("Unexpected shadow type");
bool DFSanFunction::shouldInstrumentWithCall() {
return ClInstrumentWithCallThreshold >= 0 &&
NumOriginStores >= ClInstrumentWithCallThreshold;
Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
Instruction *Pos) {
Type *ShadowTy = DFS.getShadowTy(T);
if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
return PrimitiveShadow;
if (DFS.isZeroShadow(PrimitiveShadow))
return DFS.getZeroShadow(ShadowTy);
IRBuilder<> IRB(Pos);
SmallVector<unsigned, 4> Indices;
Value *Shadow = UndefValue::get(ShadowTy);
Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
PrimitiveShadow, IRB);
// Caches the primitive shadow value that built the shadow value.
CachedCollapsedShadows[Shadow] = PrimitiveShadow;
return Shadow;
template <class AggregateType>
Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
IRBuilder<> &IRB) {
if (!AT->getNumElements())
return DFS.ZeroPrimitiveShadow;
Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
return Aggregator;
Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
IRBuilder<> &IRB) {
Type *ShadowTy = Shadow->getType();
if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
return Shadow;
if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
return collapseAggregateShadow<>(AT, Shadow, IRB);
if (StructType *ST = dyn_cast<StructType>(ShadowTy))
return collapseAggregateShadow<>(ST, Shadow, IRB);
llvm_unreachable("Unexpected shadow type");
Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
Instruction *Pos) {
Type *ShadowTy = Shadow->getType();
if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
return Shadow;
// Checks if the cached collapsed shadow value dominates Pos.
Value *&CS = CachedCollapsedShadows[Shadow];
if (CS && DT.dominates(CS, Pos))
return CS;
IRBuilder<> IRB(Pos);
Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
// Caches the converted primitive shadow value.
CS = PrimitiveShadow;
return PrimitiveShadow;
Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
if (!shouldTrackFieldsAndIndices())
return PrimitiveShadowTy;
if (!OrigTy->isSized())
return PrimitiveShadowTy;
if (isa<IntegerType>(OrigTy))
return PrimitiveShadowTy;
if (isa<VectorType>(OrigTy))
return PrimitiveShadowTy;
if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
return ArrayType::get(getShadowTy(AT->getElementType()),
if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
SmallVector<Type *, 4> Elements;
for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
return StructType::get(*Ctx, Elements);
return PrimitiveShadowTy;
Type *DataFlowSanitizer::getShadowTy(Value *V) {
return getShadowTy(V->getType());
bool DataFlowSanitizer::init(Module &M) {
Triple TargetTriple(M.getTargetTriple());
const DataLayout &DL = M.getDataLayout();
Mod = &M;
Ctx = &M.getContext();
Int8Ptr = Type::getInt8PtrTy(*Ctx);
OriginTy = IntegerType::get(*Ctx, OriginWidthBits);
OriginPtrTy = PointerType::getUnqual(OriginTy);
PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
IntptrTy = DL.getIntPtrType(*Ctx);
ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes);
OriginBase = ConstantInt::get(IntptrTy, 0x200000000000LL);
ZeroOrigin = ConstantInt::getSigned(OriginTy, 0);
switch (TargetTriple.getArch()) {
case Triple::x86_64:
ShadowPtrMask = ClFast8Labels
? ConstantInt::getSigned(IntptrTy, ~0x600000000000LL)
: ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
case Triple::mips64:
case Triple::mips64el:
ShadowPtrMask = ClFast8Labels
? ConstantInt::getSigned(IntptrTy, ~0xE000000000LL)
: ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
case Triple::aarch64:
case Triple::aarch64_be:
// AArch64 supports multiple VMAs and the shadow mask is set at runtime.
DFSanRuntimeShadowMask = true;
report_fatal_error("unsupported triple");
Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy};
DFSanUnionFnTy =
FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false);
Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy};
DFSanLoadLabelAndOriginFnTy =
FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs,
DFSanUnimplementedFnTy = FunctionType::get(
Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy,
Type::getInt8PtrTy(*Ctx), IntptrTy};
DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
DFSanSetLabelArgs, /*isVarArg=*/false);
DFSanNonzeroLabelFnTy =
FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
DFSanVarargWrapperFnTy = FunctionType::get(
Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
DFSanCmpCallbackFnTy =
FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
DFSanChainOriginFnTy =
FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false);
Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits),
Int8Ptr, IntptrTy, OriginTy};
DFSanMaybeStoreOriginFnTy = FunctionType::get(
Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false);
Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
DFSanMemOriginTransferFnTy = FunctionType::get(
Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false);
Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
DFSanLoadStoreCallbackFnTy =
FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
DFSanMemTransferCallbackFnTy =
FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
return true;
bool DataFlowSanitizer::isInstrumented(const Function *F) {
return !ABIList.isIn(*F, "uninstrumented");
bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
return !ABIList.isIn(*GA, "uninstrumented");
DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
return ClArgsABI ? IA_Args : IA_TLS;
DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
if (ABIList.isIn(*F, "functional"))
return WK_Functional;
if (ABIList.isIn(*F, "discard"))
return WK_Discard;
if (ABIList.isIn(*F, "custom"))
return WK_Custom;
return WK_Warning;
void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
std::string GVName = std::string(GV->getName()), Prefix = "dfs$";
GV->setName(Prefix + GVName);
// Try to change the name of the function in module inline asm. We only do
// this for specific asm directives, currently only ".symver", to try to avoid
// corrupting asm which happens to contain the symbol name as a substring.
// Note that the substitution for .symver assumes that the versioned symbol
// also has an instrumented name.
std::string Asm = GV->getParent()->getModuleInlineAsm();
std::string SearchStr = ".symver " + GVName + ",";
size_t Pos = Asm.find(SearchStr);
if (Pos != std::string::npos) {
Asm.replace(Pos, SearchStr.size(),
".symver " + Prefix + GVName + "," + Prefix);
Function *
DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
GlobalValue::LinkageTypes NewFLink,
FunctionType *NewFT) {
FunctionType *FT = F->getFunctionType();
Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
NewFName, F->getParent());
BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
if (F->isVarArg()) {
IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
new UnreachableInst(*Ctx, BB);
} else {
auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin());
std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams());
CallInst *CI = CallInst::Create(F, Args, "", BB);
if (FT->getReturnType()->isVoidTy())
ReturnInst::Create(*Ctx, BB);
ReturnInst::Create(*Ctx, CI, BB);
return NewF;
Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
StringRef FName) {
FunctionType *FTT = getTrampolineFunctionType(FT);
FunctionCallee C = Mod->getOrInsertFunction(FName, FTT);
Function *F = dyn_cast<Function>(C.getCallee());
if (F && F->isDeclaration()) {
BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
std::vector<Value *> Args;
Function::arg_iterator AI = F->arg_begin() + 1;
for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB);
Type *RetType = FT->getReturnType();
ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB)
: ReturnInst::Create(*Ctx, CI, BB);
// F is called by a wrapped custom function with primitive shadows. So
// its arguments and return value need conversion.
DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI;
for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) {
Value *Shadow =
DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI);
DFSF.ValShadowMap[&*ValAI] = Shadow;
Function::arg_iterator RetShadowAI = ShadowAI;
const bool ShouldTrackOrigins = shouldTrackOrigins();
if (ShouldTrackOrigins) {
ValAI = F->arg_begin();
Function::arg_iterator OriginAI = ShadowAI;
if (!RetType->isVoidTy())
for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) {
DFSF.ValOriginMap[&*ValAI] = &*OriginAI;
if (!RetType->isVoidTy()) {
Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(
DFSF.getShadow(RI->getReturnValue()), RI);
new StoreInst(PrimitiveShadow, &*RetShadowAI, RI);
if (ShouldTrackOrigins) {
Value *Origin = DFSF.getOrigin(RI->getReturnValue());
new StoreInst(Origin, &*std::prev(F->arg_end()), RI);
return cast<Constant>(C.getCallee());
// Initialize DataFlowSanitizer runtime functions and declare them in the module
void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
AttributeList AL;
AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
DFSanUnionFn =
Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL);
AttributeList AL;
AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
DFSanCheckedUnionFn =
Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL);
AttributeList AL;
AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
DFSanUnionLoadFn =
Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
AttributeList AL;
AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
DFSanUnionLoadFastLabelsFn = Mod->getOrInsertFunction(
"__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL);
AttributeList AL;
AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction(
"__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL);
DFSanUnimplementedFn =
Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
AttributeList AL;
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
DFSanSetLabelFn =
Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
DFSanNonzeroLabelFn =
Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
AttributeList AL;
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin",
DFSanChainOriginFnTy, AL);
DFSanMemOriginTransferFn = Mod->getOrInsertFunction(
"__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy);
AttributeList AL;
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction(
"__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL);
// Initializes event callback functions and declare them in the module
void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback",
DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback",
DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
"__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
DFSanCmpCallbackFn =
Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy);
void DataFlowSanitizer::injectMetadataGlobals(Module &M) {
// These variables can be used:
// - by the runtime (to discover what the shadow width was, during
// compilation)
// - in testing (to avoid hardcoding the shadow width and type but instead
// extract them by pattern matching)
Type *IntTy = Type::getInt32Ty(*Ctx);
(void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] {
return new GlobalVariable(
M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage,
ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits");
(void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] {
return new GlobalVariable(M, IntTy, /*isConstant=*/true,
ConstantInt::get(IntTy, ShadowWidthBytes),
bool DataFlowSanitizer::runImpl(Module &M) {
if (ABIList.isIn(M, "skip"))
return false;
const unsigned InitialGlobalSize = M.global_size();
const unsigned InitialModuleSize = M.size();
bool Changed = false;
auto GetOrInsertGlobal = [this, &Changed](StringRef Name,
Type *Ty) -> Constant * {
Constant *C = Mod->getOrInsertGlobal(Name, Ty);
if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
return C;
// These globals must be kept in sync with the ones in dfsan.cpp.
ArgTLS =
ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8));
RetvalTLS = GetOrInsertGlobal(
ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8));
ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS);
ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy);
RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy);
(void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] {
Changed = true;
return new GlobalVariable(
M, OriginTy, true, GlobalValue::WeakODRLinkage,
ConstantInt::getSigned(OriginTy, shouldTrackOrigins()),
ExternalShadowMask =
Mod->getOrInsertGlobal(DFSanExternShadowPtrMask, IntptrTy);
std::vector<Function *> FnsToInstrument;
SmallPtrSet<Function *, 2> FnsWithNativeABI;
for (Function &F : M)
if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F))
// Give function aliases prefixes when necessary, and build wrappers where the
// instrumentedness is inconsistent.
for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end();
AI != AE;) {
GlobalAlias *GA = &*AI;
// Don't stop on weak. We assume people aren't playing games with the
// instrumentedness of overridden weak aliases.
auto *F = dyn_cast<Function>(GA->getBaseObject());
if (!F)
bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
if (GAInst && FInst) {
} else if (GAInst != FInst) {
// Non-instrumented alias of an instrumented function, or vice versa.
// Replace the alias with a native-ABI wrapper of the aliasee. The pass
// below will take care of instrumenting it.
Function *NewF =
buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
// First, change the ABI of every function in the module. ABI-listed
// functions keep their original ABI and get a wrapper function.
for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(),
FE = FnsToInstrument.end();
FI != FE; ++FI) {
Function &F = **FI;
FunctionType *FT = F.getFunctionType();
bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
if (isInstrumented(&F)) {
// Instrumented functions get a 'dfs$' prefix. This allows us to more
// easily identify cases of mismatching ABIs.
if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
FunctionType *NewFT = getArgsFunctionType(FT);
Function *NewF = Function::Create(NewFT, F.getLinkage(),
F.getAddressSpace(), "", &M);
for (Function::arg_iterator FArg = F.arg_begin(),
NewFArg = NewF->arg_begin(),
FArgEnd = F.arg_end();
FArg != FArgEnd; ++FArg, ++NewFArg) {
NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
UI != UE;) {
BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
if (BA) {
BlockAddress::get(NewF, BA->getBasicBlock()));
delete BA;
ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
*FI = NewF;
} else {
} else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
// Build a wrapper function for F. The wrapper simply calls F, and is
// added to FnsToInstrument so that any instrumentation according to its
// WrapperKind is done in the second pass below.
FunctionType *NewFT =
getInstrumentedABI() == IA_Args ? getArgsFunctionType(FT) : FT;
// If the function being wrapped has local linkage, then preserve the
// function's linkage in the wrapper function.
GlobalValue::LinkageTypes WrapperLinkage =
F.hasLocalLinkage() ? F.getLinkage()
: GlobalValue::LinkOnceODRLinkage;
Function *NewF = buildWrapperFunction(
(shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) +
WrapperLinkage, NewFT);
if (getInstrumentedABI() == IA_TLS)
NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
Value *WrappedFnCst =
ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
UnwrappedFnMap[WrappedFnCst] = &F;
*FI = NewF;
if (!F.isDeclaration()) {
// This function is probably defining an interposition of an
// uninstrumented function and hence needs to keep the original ABI.
// But any functions it may call need to use the instrumented ABI, so
// we instrument it in a mode which preserves the original ABI.
// This code needs to rebuild the iterators, as they may be invalidated
// by the push_back, taking care that the new range does not include
// any functions added by this code.
size_t N = FI - FnsToInstrument.begin(),
Count = FE - FnsToInstrument.begin();
FI = FnsToInstrument.begin() + N;
FE = FnsToInstrument.begin() + Count;
// Hopefully, nobody will try to indirectly call a vararg
// function... yet.
} else if (FT->isVarArg()) {
UnwrappedFnMap[&F] = &F;
*FI = nullptr;
for (Function *F : FnsToInstrument) {
if (!F || F->isDeclaration())
DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F));
// DFSanVisitor may create new basic blocks, which confuses df_iterator.
// Build a copy of the list before iterating over it.
SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock()));
for (BasicBlock *BB : BBList) {
Instruction *Inst = &BB->front();
while (true) {
// DFSanVisitor may split the current basic block, changing the current
// instruction's next pointer and moving the next instruction to the
// tail block from which we should continue.
Instruction *Next = Inst->getNextNode();
// DFSanVisitor may delete Inst, so keep track of whether it was a
// terminator.
bool IsTerminator = Inst->isTerminator();
if (!DFSF.SkipInsts.count(Inst))
if (IsTerminator)
Inst = Next;
// We will not necessarily be able to compute the shadow for every phi node
// until we have visited every block. Therefore, the code that handles phi
// nodes adds them to the PHIFixups list so that they can be properly
// handled here.
for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) {
for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N;
++Val) {
Val, DFSF.getShadow(P.Phi->getIncomingValue(Val)));
if (P.OriginPhi)
Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val)));
// -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
// places (i.e. instructions in basic blocks we haven't even begun visiting
// yet). To make our life easier, do this work in a pass after the main
// instrumentation.
if (ClDebugNonzeroLabels) {
for (Value *V : DFSF.NonZeroChecks) {
Instruction *Pos;
if (Instruction *I = dyn_cast<Instruction>(V))
Pos = I->getNextNode();
Pos = &DFSF.F->getEntryBlock().front();
while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
Pos = Pos->getNextNode();
IRBuilder<> IRB(Pos);
Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
Value *Ne =
IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
IRBuilder<> ThenIRB(BI);
ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
return Changed || !FnsToInstrument.empty() ||
M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
if (ArgOffset)
Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
return IRB.CreatePointerCast(
DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; }
Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) {
return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo,
Value *DFSanFunction::getOrigin(Value *V) {
if (!isa<Argument>(V) && !isa<Instruction>(V))
return DFS.ZeroOrigin;
Value *&Origin = ValOriginMap[V];
if (!Origin) {
if (Argument *A = dyn_cast<Argument>(V)) {
if (IsNativeABI)
return DFS.ZeroOrigin;
switch (IA) {
case DataFlowSanitizer::IA_TLS: {
if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) {
Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin();
IRBuilder<> IRB(ArgOriginTLSPos);
Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB);
Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr);
} else {
// Overflow
Origin = DFS.ZeroOrigin;
case DataFlowSanitizer::IA_Args: {
Origin = DFS.ZeroOrigin;
} else {
Origin = DFS.ZeroOrigin;
return Origin;
void DFSanFunction::setOrigin(Instruction *I, Value *Origin) {
if (!DFS.shouldTrackOrigins())
assert(Origin->getType() == DFS.OriginTy);
ValOriginMap[I] = Origin;
Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
unsigned ArgOffset = 0;
const DataLayout &DL = F->getParent()->getDataLayout();
for (auto &FArg : F->args()) {
if (!FArg.getType()->isSized()) {
if (A == &FArg)
unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
if (A != &FArg) {
ArgOffset += alignTo(Size, ShadowTLSAlignment);
if (ArgOffset > ArgTLSSize)
break; // ArgTLS overflows, uses a zero shadow.
if (ArgOffset + Size > ArgTLSSize)
break; // ArgTLS overflows, uses a zero shadow.
Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
IRBuilder<> IRB(ArgTLSPos);
Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
return DFS.getZeroShadow(A);
Value *DFSanFunction::getShadow(Value *V) {
if (!isa<Argument>(V) && !isa<Instruction>(V))
return DFS.getZeroShadow(V);
Value *&Shadow = ValShadowMap[V];
if (!Shadow) {
if (Argument *A = dyn_cast<Argument>(V)) {
if (IsNativeABI)
return DFS.getZeroShadow(V);
switch (IA) {
case DataFlowSanitizer::IA_TLS: {
Shadow = getShadowForTLSArgument(A);
case DataFlowSanitizer::IA_Args: {
unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
Function::arg_iterator Arg = F->arg_begin();
std::advance(Arg, ArgIdx);
Shadow = &*Arg;
assert(Shadow->getType() == DFS.PrimitiveShadowTy);
} else {
Shadow = DFS.getZeroShadow(V);
return Shadow;
void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
assert(DFS.shouldTrackFieldsAndIndices() ||
Shadow->getType() == DFS.PrimitiveShadowTy);
ValShadowMap[I] = Shadow;
Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) {
// Returns Addr & shadow_mask
assert(Addr != RetvalTLS && "Reinstrumenting?");
Value *ShadowPtrMaskValue;
if (DFSanRuntimeShadowMask)
ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
ShadowPtrMaskValue = ShadowPtrMask;
return IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy));
std::pair<Value *, Value *>
DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment,
Instruction *Pos) {
// Returns ((Addr & shadow_mask) + origin_base) & ~4UL
IRBuilder<> IRB(Pos);
Value *ShadowOffset = getShadowOffset(Addr, IRB);
Value *ShadowPtr = getShadowAddress(Addr, Pos, ShadowOffset);
Value *OriginPtr = nullptr;
if (shouldTrackOrigins()) {
Value *OriginLong = IRB.CreateAdd(ShadowOffset, OriginBase);
const Align Alignment = llvm::assumeAligned(InstAlignment.value());
// When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB.
// So Mask is unnecessary.
if (Alignment < MinOriginAlignment) {
uint64_t Mask = MinOriginAlignment.value() - 1;
OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask));
OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy);
return {ShadowPtr, OriginPtr};
Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos,
Value *ShadowOffset) {
IRBuilder<> IRB(Pos);
if (!ShadowPtrMul->isOne())
ShadowOffset = IRB.CreateMul(ShadowOffset, ShadowPtrMul);
return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy);
Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
// Returns (Addr & shadow_mask) x 2
IRBuilder<> IRB(Pos);
Value *ShadowOffset = getShadowOffset(Addr, IRB);
return getShadowAddress(Addr, Pos, ShadowOffset);
Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
Instruction *Pos) {
Value *PrimitiveValue = combineShadows(V1, V2, Pos);
return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
// Generates IR to compute the union of the two given shadows, inserting it
// before Pos. The combined value is with primitive type.
Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
if (DFS.isZeroShadow(V1))
return collapseToPrimitiveShadow(V2, Pos);
if (DFS.isZeroShadow(V2))
return collapseToPrimitiveShadow(V1, Pos);
if (V1 == V2)
return collapseToPrimitiveShadow(V1, Pos);
auto V1Elems = ShadowElements.find(V1);
auto V2Elems = ShadowElements.find(V2);
if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
V2Elems->second.begin(), V2Elems->second.end())) {
return collapseToPrimitiveShadow(V1, Pos);
if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
V1Elems->second.begin(), V1Elems->second.end())) {
return collapseToPrimitiveShadow(V2, Pos);
} else if (V1Elems != ShadowElements.end()) {
if (V1Elems->second.count(V2))
return collapseToPrimitiveShadow(V1, Pos);
} else if (V2Elems != ShadowElements.end()) {
if (V2Elems->second.count(V1))
return collapseToPrimitiveShadow(V2, Pos);
auto Key = std::make_pair(V1, V2);
if (V1 > V2)
std::swap(Key.first, Key.second);
CachedShadow &CCS = CachedShadows[Key];
if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
return CCS.Shadow;
// Converts inputs shadows to shadows with primitive types.
Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
IRBuilder<> IRB(Pos);
if (DFS.hasFastLabelsEnabled()) {
CCS.Block = Pos->getParent();
CCS.Shadow = IRB.CreateOr(PV1, PV2);
} else if (AvoidNewBlocks) {
CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2});
Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
Call->addParamAttr(0, Attribute::ZExt);
Call->addParamAttr(1, Attribute::ZExt);
CCS.Block = Pos->getParent();
CCS.Shadow = Call;
} else {
BasicBlock *Head = Pos->getParent();
Value *Ne = IRB.CreateICmpNE(PV1, PV2);
BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
IRBuilder<> ThenIRB(BI);
CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2});
Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
Call->addParamAttr(0, Attribute::ZExt);
Call->addParamAttr(1, Attribute::ZExt);
BasicBlock *Tail = BI->getSuccessor(0);
PHINode *Phi =
PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front());
Phi->addIncoming(Call, Call->getParent());
Phi->addIncoming(PV1, Head);
CCS.Block = Tail;
CCS.Shadow = Phi;
std::set<Value *> UnionElems;
if (V1Elems != ShadowElements.end()) {
UnionElems = V1Elems->second;
} else {
if (V2Elems != ShadowElements.end()) {
UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
} else {
ShadowElements[CCS.Shadow] = std::move(UnionElems);
return CCS.Shadow;
// A convenience function which folds the shadows of each of the operands
// of the provided instruction Inst, inserting the IR before Inst. Returns
// the computed union Value.
Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
if (Inst->getNumOperands() == 0)
return DFS.getZeroShadow(Inst);
Value *Shadow = getShadow(Inst->getOperand(0));
for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I)
Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst);
return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
void DFSanVisitor::visitInstOperands(Instruction &I) {
Value *CombinedShadow = DFSF.combineOperandShadows(&I);
DFSF.setShadow(&I, CombinedShadow);
Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows,
const std::vector<Value *> &Origins,
Instruction *Pos, ConstantInt *Zero) {
assert(Shadows.size() == Origins.size());
size_t Size = Origins.size();
if (Size == 0)
return DFS.ZeroOrigin;
Value *Origin = nullptr;
if (!Zero)
Zero = DFS.ZeroPrimitiveShadow;
for (size_t I = 0; I != Size; ++I) {
Value *OpOrigin = Origins[I];
Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin);
if (ConstOpOrigin && ConstOpOrigin->isNullValue())
if (!Origin) {
Origin = OpOrigin;
Value *OpShadow = Shadows[I];
Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos);
IRBuilder<> IRB(Pos);
Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero);
Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
return Origin ? Origin : DFS.ZeroOrigin;
Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) {
size_t Size = Inst->getNumOperands();
std::vector<Value *> Shadows(Size);
std::vector<Value *> Origins(Size);
for (unsigned I = 0; I != Size; ++I) {
Shadows[I] = getShadow(Inst->getOperand(I));
Origins[I] = getOrigin(Inst->getOperand(I));
return combineOrigins(Shadows, Origins, Inst);
void DFSanVisitor::visitInstOperandOrigins(Instruction &I) {
if (!DFSF.DFS.shouldTrackOrigins())
Value *CombinedOrigin = DFSF.combineOperandOrigins(&I);
DFSF.setOrigin(&I, CombinedOrigin);
Align DFSanFunction::getShadowAlign(Align InstAlignment) {
const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1);
return Align(Alignment.value() * DFS.ShadowWidthBytes);
Align DFSanFunction::getOriginAlign(Align InstAlignment) {
const Align Alignment = llvm::assumeAligned(InstAlignment.value());
return Align(std::max(MinOriginAlignment, Alignment));
bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size,
Align InstAlignment) {
assert(Size != 0);
// * if Size == 1, it is sufficient to load its origin aligned at 4.
// * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to
// load its origin aligned at 4. If not, although origins may be lost, it
// should not happen very often.
// * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When
// Size % 4 == 0, it is more efficient to load origins without callbacks.
// * Otherwise we use __dfsan_load_label_and_origin.
// This should ensure that common cases run efficiently.
if (Size <= 2)
return false;
const Align Alignment = llvm::assumeAligned(InstAlignment.value());
if (Alignment >= MinOriginAlignment &&
Size % (64 / DFS.ShadowWidthBits) == 0)
return false;
return true;
std::pair<Value *, Value *> DFSanFunction::loadFast16ShadowFast(
Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign,
Align OriginAlign, Value *FirstOrigin, Instruction *Pos) {
const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
assert(Size >= 4 && "Not large enough load size for fast path!");
// Used for origin tracking.
std::vector<Value *> Shadows;
std::vector<Value *> Origins;
// Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20)
// but this function is only used in a subset of cases that make it possible
// to optimize the instrumentation.
// Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow
// per byte) is either:
// - a multiple of 8 (common)
// - equal to 4 (only for load32 in fast-8 mode)
// For the second case, we can fit the wide shadow in a 32-bit integer. In all
// other cases, we use a 64-bit integer to hold the wide shadow.
Type *WideShadowTy =
ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
IRBuilder<> IRB(Pos);
Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo());
Value *CombinedWideShadow =
IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
if (ShouldTrackOrigins) {
// First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly;
// then OR individual shadows within the combined WideShadow by binary ORing.
// This is fewer instructions than ORing shadows individually, since it
// needs logN shift/or instructions (N being the bytes of the combined wide
// shadow).
unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
ByteOfs += BytesPerWideShadow) {
WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr,
ConstantInt::get(DFS.IntptrTy, 1));
Value *NextWideShadow =
IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
if (ShouldTrackOrigins) {
OriginAddr = IRB.CreateGEP(DFS.OriginTy, OriginAddr,
ConstantInt::get(DFS.IntptrTy, 1));
IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign));
for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits;
Width >>= 1) {
Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy),
? combineOrigins(Shadows, Origins, Pos,
ConstantInt::getSigned(IRB.getInt64Ty(), 0))
: DFS.ZeroOrigin};
Value *DFSanFunction::loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size,
Align ShadowAlign,
Instruction *Pos) {
// Fast path for the common case where each byte has identical shadow: load
// shadow 64 (or 32) bits at a time, fall out to a __dfsan_union_load call if
// any shadow is non-equal.
BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
IRBuilder<> FallbackIRB(FallbackBB);
CallInst *FallbackCall = FallbackIRB.CreateCall(
DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
assert(Size >= 4 && "Not large enough load size for fast path!");
// Same as in loadFast16AShadowsFast. In the case of load32, we can fit the
// wide shadow in a 32-bit integer instead.
Type *WideShadowTy =
ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
// Compare each of the shadows stored in the loaded 64 bits to each other,
// by computing (WideShadow rotl ShadowWidthBits) == WideShadow.
IRBuilder<> IRB(Pos);
unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo());
Value *WideShadow =
IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy);
Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits);
Value *ShrShadow =
IRB.CreateLShr(WideShadow, WideShadowBitWidth - DFS.ShadowWidthBits);
Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
BasicBlock *Head = Pos->getParent();
BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
if (DomTreeNode *OldNode = DT.getNode(Head)) {
std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
for (auto *Child : Children)
DT.changeImmediateDominator(Child, NewNode);
// In the following code LastBr will refer to the previous basic block's
// conditional branch instruction, whose true successor is fixed up to point
// to the next block during the loop below or to the tail after the final
// iteration.
BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
ReplaceInstWithInst(Head->getTerminator(), LastBr);
DT.addNewBlock(FallbackBB, Head);
const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
ByteOfs += BytesPerWideShadow) {
BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
DT.addNewBlock(NextBB, LastBr->getParent());
IRBuilder<> NextIRB(NextBB);
WideAddr = NextIRB.CreateGEP(WideShadowTy, WideAddr,
ConstantInt::get(DFS.IntptrTy, 1));
Value *NextWideShadow =
NextIRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
LastBr->setSuccessor(0, NextBB);
LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
LastBr->setSuccessor(0, Tail);
PHINode *Shadow =
PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front());
Shadow->addIncoming(FallbackCall, FallbackBB);
Shadow->addIncoming(TruncShadow, LastBr->getParent());
return Shadow;
// Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
// Addr has alignment Align, and take the union of each of those shadows. The
// returned shadow always has primitive type.
std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr,
uint64_t Size,
Align InstAlignment,
Instruction *Pos) {
const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
// Non-escaped loads.
if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
const auto SI = AllocaShadowMap.find(AI);
if (SI != AllocaShadowMap.end()) {
IRBuilder<> IRB(Pos);
Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second);
const auto OI = AllocaOriginMap.find(AI);
assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end());
return {ShadowLI, ShouldTrackOrigins
? IRB.CreateLoad(DFS.OriginTy, OI->second)
: nullptr};
// Load from constant addresses.
SmallVector<const Value *, 2> Objs;
getUnderlyingObjects(Addr, Objs);
bool AllConstants = true;
for (const Value *Obj : Objs) {
if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
AllConstants = false;
if (AllConstants)
return {DFS.ZeroPrimitiveShadow,
ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
if (Size == 0)
return {DFS.ZeroPrimitiveShadow,
ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
// Use callback to load if this is not an optimizable case for origin
// tracking.
if (ShouldTrackOrigins &&
useCallbackLoadLabelAndOrigin(Size, InstAlignment)) {
IRBuilder<> IRB(Pos);
CallInst *Call =
{IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
ConstantInt::get(DFS.IntptrTy, Size)});
Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits),
IRB.CreateTrunc(Call, DFS.OriginTy)};
// Other cases that support loading shadows or origins in a fast way.
Value *ShadowAddr, *OriginAddr;
std::tie(ShadowAddr, OriginAddr) =
DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
const Align ShadowAlign = getShadowAlign(InstAlignment);
const Align OriginAlign = getOriginAlign(InstAlignment);
Value *Origin = nullptr;
if (ShouldTrackOrigins) {
IRBuilder<> IRB(Pos);
Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign);
// When the byte size is small enough, we can load the shadow directly with
// just a few instructions.
switch (Size) {
case 1: {
LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
return {LI, Origin};
case 2: {
IRBuilder<> IRB(Pos);
Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
ConstantInt::get(DFS.IntptrTy, 1));
Value *Load =
IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign);
Value *Load1 =
IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign);
return {combineShadows(Load, Load1, Pos), Origin};
uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
bool HasSizeForFastPath = ShadowSize % 8 == 0 || ShadowSize == 4;
bool HasFastLabelsEnabled = DFS.hasFastLabelsEnabled();
if (HasFastLabelsEnabled && HasSizeForFastPath)
return loadFast16ShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign,
OriginAlign, Origin, Pos);
if (!AvoidNewBlocks && HasSizeForFastPath)
return {loadLegacyShadowFast(ShadowAddr, Size, ShadowAlign, Pos), Origin};
IRBuilder<> IRB(Pos);
FunctionCallee &UnionLoadFn = HasFastLabelsEnabled
? DFS.DFSanUnionLoadFastLabelsFn
: DFS.DFSanUnionLoadFn;
CallInst *FallbackCall = IRB.CreateCall(
UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
return {FallbackCall, Origin};
static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) {
switch (AO) {
case AtomicOrdering::NotAtomic:
return AtomicOrdering::NotAtomic;
case AtomicOrdering::Unordered:
case AtomicOrdering::Monotonic:
case AtomicOrdering::Acquire:
return AtomicOrdering::Acquire;
case AtomicOrdering::Release:
case AtomicOrdering::AcquireRelease:
return AtomicOrdering::AcquireRelease;
case AtomicOrdering::SequentiallyConsistent:
return AtomicOrdering::SequentiallyConsistent;
llvm_unreachable("Unknown ordering");
void DFSanVisitor::visitLoadInst(LoadInst &LI) {
auto &DL = LI.getModule()->getDataLayout();
uint64_t Size = DL.getTypeStoreSize(LI.getType());
if (Size == 0) {
DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin);
// When an application load is atomic, increase atomic ordering between
// atomic application loads and stores to ensure happen-before order; load
// shadow data after application data; store zero shadow data before
// application data. This ensure shadow loads return either labels of the
// initial application data or zeros.
if (LI.isAtomic())
Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI;
std::vector<Value *> Shadows;
std::vector<Value *> Origins;
Value *PrimitiveShadow, *Origin;
std::tie(PrimitiveShadow, Origin) =
DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos);
const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
if (ShouldTrackOrigins) {
if (ClCombinePointerLabelsOnLoad) {
Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos);
if (ShouldTrackOrigins) {
if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
Value *Shadow =
DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos);
DFSF.setShadow(&LI, Shadow);
if (ShouldTrackOrigins) {
DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos));
if (ClEventCallbacks) {
IRBuilder<> IRB(Pos);
Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(),