| //===- AggressiveInstCombine.cpp ------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the aggressive expression pattern combiner classes. |
| // Currently, it handles expression patterns for: |
| // * Truncate instruction |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" |
| #include "AggressiveInstCombineInternal.h" |
| #include "llvm-c/Initialization.h" |
| #include "llvm-c/Transforms/AggressiveInstCombine.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "aggressive-instcombine" |
| |
| STATISTIC(NumAnyOrAllBitsSet, "Number of any/all-bits-set patterns folded"); |
| STATISTIC(NumGuardedRotates, |
| "Number of guarded rotates transformed into funnel shifts"); |
| STATISTIC(NumGuardedFunnelShifts, |
| "Number of guarded funnel shifts transformed into funnel shifts"); |
| STATISTIC(NumPopCountRecognized, "Number of popcount idioms recognized"); |
| |
| namespace { |
| /// Contains expression pattern combiner logic. |
| /// This class provides both the logic to combine expression patterns and |
| /// combine them. It differs from InstCombiner class in that each pattern |
| /// combiner runs only once as opposed to InstCombine's multi-iteration, |
| /// which allows pattern combiner to have higher complexity than the O(1) |
| /// required by the instruction combiner. |
| class AggressiveInstCombinerLegacyPass : public FunctionPass { |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| |
| AggressiveInstCombinerLegacyPass() : FunctionPass(ID) { |
| initializeAggressiveInstCombinerLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override; |
| |
| /// Run all expression pattern optimizations on the given /p F function. |
| /// |
| /// \param F function to optimize. |
| /// \returns true if the IR is changed. |
| bool runOnFunction(Function &F) override; |
| }; |
| } // namespace |
| |
| /// Match a pattern for a bitwise funnel/rotate operation that partially guards |
| /// against undefined behavior by branching around the funnel-shift/rotation |
| /// when the shift amount is 0. |
| static bool foldGuardedFunnelShift(Instruction &I, const DominatorTree &DT) { |
| if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2) |
| return false; |
| |
| // As with the one-use checks below, this is not strictly necessary, but we |
| // are being cautious to avoid potential perf regressions on targets that |
| // do not actually have a funnel/rotate instruction (where the funnel shift |
| // would be expanded back into math/shift/logic ops). |
| if (!isPowerOf2_32(I.getType()->getScalarSizeInBits())) |
| return false; |
| |
| // Match V to funnel shift left/right and capture the source operands and |
| // shift amount. |
| auto matchFunnelShift = [](Value *V, Value *&ShVal0, Value *&ShVal1, |
| Value *&ShAmt) { |
| Value *SubAmt; |
| unsigned Width = V->getType()->getScalarSizeInBits(); |
| |
| // fshl(ShVal0, ShVal1, ShAmt) |
| // == (ShVal0 << ShAmt) | (ShVal1 >> (Width -ShAmt)) |
| if (match(V, m_OneUse(m_c_Or( |
| m_Shl(m_Value(ShVal0), m_Value(ShAmt)), |
| m_LShr(m_Value(ShVal1), |
| m_Sub(m_SpecificInt(Width), m_Value(SubAmt))))))) { |
| if (ShAmt == SubAmt) // TODO: Use m_Specific |
| return Intrinsic::fshl; |
| } |
| |
| // fshr(ShVal0, ShVal1, ShAmt) |
| // == (ShVal0 >> ShAmt) | (ShVal1 << (Width - ShAmt)) |
| if (match(V, |
| m_OneUse(m_c_Or(m_Shl(m_Value(ShVal0), m_Sub(m_SpecificInt(Width), |
| m_Value(SubAmt))), |
| m_LShr(m_Value(ShVal1), m_Value(ShAmt)))))) { |
| if (ShAmt == SubAmt) // TODO: Use m_Specific |
| return Intrinsic::fshr; |
| } |
| |
| return Intrinsic::not_intrinsic; |
| }; |
| |
| // One phi operand must be a funnel/rotate operation, and the other phi |
| // operand must be the source value of that funnel/rotate operation: |
| // phi [ rotate(RotSrc, ShAmt), FunnelBB ], [ RotSrc, GuardBB ] |
| // phi [ fshl(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal0, GuardBB ] |
| // phi [ fshr(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal1, GuardBB ] |
| PHINode &Phi = cast<PHINode>(I); |
| unsigned FunnelOp = 0, GuardOp = 1; |
| Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1); |
| Value *ShVal0, *ShVal1, *ShAmt; |
| Intrinsic::ID IID = matchFunnelShift(P0, ShVal0, ShVal1, ShAmt); |
| if (IID == Intrinsic::not_intrinsic || |
| (IID == Intrinsic::fshl && ShVal0 != P1) || |
| (IID == Intrinsic::fshr && ShVal1 != P1)) { |
| IID = matchFunnelShift(P1, ShVal0, ShVal1, ShAmt); |
| if (IID == Intrinsic::not_intrinsic || |
| (IID == Intrinsic::fshl && ShVal0 != P0) || |
| (IID == Intrinsic::fshr && ShVal1 != P0)) |
| return false; |
| assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) && |
| "Pattern must match funnel shift left or right"); |
| std::swap(FunnelOp, GuardOp); |
| } |
| |
| // The incoming block with our source operand must be the "guard" block. |
| // That must contain a cmp+branch to avoid the funnel/rotate when the shift |
| // amount is equal to 0. The other incoming block is the block with the |
| // funnel/rotate. |
| BasicBlock *GuardBB = Phi.getIncomingBlock(GuardOp); |
| BasicBlock *FunnelBB = Phi.getIncomingBlock(FunnelOp); |
| Instruction *TermI = GuardBB->getTerminator(); |
| |
| // Ensure that the shift values dominate each block. |
| if (!DT.dominates(ShVal0, TermI) || !DT.dominates(ShVal1, TermI)) |
| return false; |
| |
| ICmpInst::Predicate Pred; |
| BasicBlock *PhiBB = Phi.getParent(); |
| if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()), |
| m_SpecificBB(PhiBB), m_SpecificBB(FunnelBB)))) |
| return false; |
| |
| if (Pred != CmpInst::ICMP_EQ) |
| return false; |
| |
| IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt()); |
| |
| if (ShVal0 == ShVal1) |
| ++NumGuardedRotates; |
| else |
| ++NumGuardedFunnelShifts; |
| |
| // If this is not a rotate then the select was blocking poison from the |
| // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. |
| bool IsFshl = IID == Intrinsic::fshl; |
| if (ShVal0 != ShVal1) { |
| if (IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal1)) |
| ShVal1 = Builder.CreateFreeze(ShVal1); |
| else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal0)) |
| ShVal0 = Builder.CreateFreeze(ShVal0); |
| } |
| |
| // We matched a variation of this IR pattern: |
| // GuardBB: |
| // %cmp = icmp eq i32 %ShAmt, 0 |
| // br i1 %cmp, label %PhiBB, label %FunnelBB |
| // FunnelBB: |
| // %sub = sub i32 32, %ShAmt |
| // %shr = lshr i32 %ShVal1, %sub |
| // %shl = shl i32 %ShVal0, %ShAmt |
| // %fsh = or i32 %shr, %shl |
| // br label %PhiBB |
| // PhiBB: |
| // %cond = phi i32 [ %fsh, %FunnelBB ], [ %ShVal0, %GuardBB ] |
| // --> |
| // llvm.fshl.i32(i32 %ShVal0, i32 %ShVal1, i32 %ShAmt) |
| Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType()); |
| Phi.replaceAllUsesWith(Builder.CreateCall(F, {ShVal0, ShVal1, ShAmt})); |
| return true; |
| } |
| |
| /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and |
| /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain |
| /// of 'and' ops, then we also need to capture the fact that we saw an |
| /// "and X, 1", so that's an extra return value for that case. |
| struct MaskOps { |
| Value *Root; |
| APInt Mask; |
| bool MatchAndChain; |
| bool FoundAnd1; |
| |
| MaskOps(unsigned BitWidth, bool MatchAnds) |
| : Root(nullptr), Mask(APInt::getNullValue(BitWidth)), |
| MatchAndChain(MatchAnds), FoundAnd1(false) {} |
| }; |
| |
| /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a |
| /// chain of 'and' or 'or' instructions looking for shift ops of a common source |
| /// value. Examples: |
| /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8) |
| /// returns { X, 0x129 } |
| /// and (and (X >> 1), 1), (X >> 4) |
| /// returns { X, 0x12 } |
| static bool matchAndOrChain(Value *V, MaskOps &MOps) { |
| Value *Op0, *Op1; |
| if (MOps.MatchAndChain) { |
| // Recurse through a chain of 'and' operands. This requires an extra check |
| // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere |
| // in the chain to know that all of the high bits are cleared. |
| if (match(V, m_And(m_Value(Op0), m_One()))) { |
| MOps.FoundAnd1 = true; |
| return matchAndOrChain(Op0, MOps); |
| } |
| if (match(V, m_And(m_Value(Op0), m_Value(Op1)))) |
| return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); |
| } else { |
| // Recurse through a chain of 'or' operands. |
| if (match(V, m_Or(m_Value(Op0), m_Value(Op1)))) |
| return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); |
| } |
| |
| // We need a shift-right or a bare value representing a compare of bit 0 of |
| // the original source operand. |
| Value *Candidate; |
| const APInt *BitIndex = nullptr; |
| if (!match(V, m_LShr(m_Value(Candidate), m_APInt(BitIndex)))) |
| Candidate = V; |
| |
| // Initialize result source operand. |
| if (!MOps.Root) |
| MOps.Root = Candidate; |
| |
| // The shift constant is out-of-range? This code hasn't been simplified. |
| if (BitIndex && BitIndex->uge(MOps.Mask.getBitWidth())) |
| return false; |
| |
| // Fill in the mask bit derived from the shift constant. |
| MOps.Mask.setBit(BitIndex ? BitIndex->getZExtValue() : 0); |
| return MOps.Root == Candidate; |
| } |
| |
| /// Match patterns that correspond to "any-bits-set" and "all-bits-set". |
| /// These will include a chain of 'or' or 'and'-shifted bits from a |
| /// common source value: |
| /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0 |
| /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask |
| /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns |
| /// that differ only with a final 'not' of the result. We expect that final |
| /// 'not' to be folded with the compare that we create here (invert predicate). |
| static bool foldAnyOrAllBitsSet(Instruction &I) { |
| // The 'any-bits-set' ('or' chain) pattern is simpler to match because the |
| // final "and X, 1" instruction must be the final op in the sequence. |
| bool MatchAllBitsSet; |
| if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value()))) |
| MatchAllBitsSet = true; |
| else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One()))) |
| MatchAllBitsSet = false; |
| else |
| return false; |
| |
| MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet); |
| if (MatchAllBitsSet) { |
| if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1) |
| return false; |
| } else { |
| if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps)) |
| return false; |
| } |
| |
| // The pattern was found. Create a masked compare that replaces all of the |
| // shift and logic ops. |
| IRBuilder<> Builder(&I); |
| Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask); |
| Value *And = Builder.CreateAnd(MOps.Root, Mask); |
| Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) |
| : Builder.CreateIsNotNull(And); |
| Value *Zext = Builder.CreateZExt(Cmp, I.getType()); |
| I.replaceAllUsesWith(Zext); |
| ++NumAnyOrAllBitsSet; |
| return true; |
| } |
| |
| // Try to recognize below function as popcount intrinsic. |
| // This is the "best" algorithm from |
| // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
| // Also used in TargetLowering::expandCTPOP(). |
| // |
| // int popcount(unsigned int i) { |
| // i = i - ((i >> 1) & 0x55555555); |
| // i = (i & 0x33333333) + ((i >> 2) & 0x33333333); |
| // i = ((i + (i >> 4)) & 0x0F0F0F0F); |
| // return (i * 0x01010101) >> 24; |
| // } |
| static bool tryToRecognizePopCount(Instruction &I) { |
| if (I.getOpcode() != Instruction::LShr) |
| return false; |
| |
| Type *Ty = I.getType(); |
| if (!Ty->isIntOrIntVectorTy()) |
| return false; |
| |
| unsigned Len = Ty->getScalarSizeInBits(); |
| // FIXME: fix Len == 8 and other irregular type lengths. |
| if (!(Len <= 128 && Len > 8 && Len % 8 == 0)) |
| return false; |
| |
| APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55)); |
| APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33)); |
| APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F)); |
| APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01)); |
| APInt MaskShift = APInt(Len, Len - 8); |
| |
| Value *Op0 = I.getOperand(0); |
| Value *Op1 = I.getOperand(1); |
| Value *MulOp0; |
| // Matching "(i * 0x01010101...) >> 24". |
| if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) && |
| match(Op1, m_SpecificInt(MaskShift))) { |
| Value *ShiftOp0; |
| // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)". |
| if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)), |
| m_Deferred(ShiftOp0)), |
| m_SpecificInt(Mask0F)))) { |
| Value *AndOp0; |
| // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)". |
| if (match(ShiftOp0, |
| m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)), |
| m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)), |
| m_SpecificInt(Mask33))))) { |
| Value *Root, *SubOp1; |
| // Matching "i - ((i >> 1) & 0x55555555...)". |
| if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) && |
| match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)), |
| m_SpecificInt(Mask55)))) { |
| LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n"); |
| IRBuilder<> Builder(&I); |
| Function *Func = Intrinsic::getDeclaration( |
| I.getModule(), Intrinsic::ctpop, I.getType()); |
| I.replaceAllUsesWith(Builder.CreateCall(Func, {Root})); |
| ++NumPopCountRecognized; |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// This is the entry point for folds that could be implemented in regular |
| /// InstCombine, but they are separated because they are not expected to |
| /// occur frequently and/or have more than a constant-length pattern match. |
| static bool foldUnusualPatterns(Function &F, DominatorTree &DT) { |
| bool MadeChange = false; |
| for (BasicBlock &BB : F) { |
| // Ignore unreachable basic blocks. |
| if (!DT.isReachableFromEntry(&BB)) |
| continue; |
| // Do not delete instructions under here and invalidate the iterator. |
| // Walk the block backwards for efficiency. We're matching a chain of |
| // use->defs, so we're more likely to succeed by starting from the bottom. |
| // Also, we want to avoid matching partial patterns. |
| // TODO: It would be more efficient if we removed dead instructions |
| // iteratively in this loop rather than waiting until the end. |
| for (Instruction &I : make_range(BB.rbegin(), BB.rend())) { |
| MadeChange |= foldAnyOrAllBitsSet(I); |
| MadeChange |= foldGuardedFunnelShift(I, DT); |
| MadeChange |= tryToRecognizePopCount(I); |
| } |
| } |
| |
| // We're done with transforms, so remove dead instructions. |
| if (MadeChange) |
| for (BasicBlock &BB : F) |
| SimplifyInstructionsInBlock(&BB); |
| |
| return MadeChange; |
| } |
| |
| /// This is the entry point for all transforms. Pass manager differences are |
| /// handled in the callers of this function. |
| static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) { |
| bool MadeChange = false; |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| TruncInstCombine TIC(TLI, DL, DT); |
| MadeChange |= TIC.run(F); |
| MadeChange |= foldUnusualPatterns(F, DT); |
| return MadeChange; |
| } |
| |
| void AggressiveInstCombinerLegacyPass::getAnalysisUsage( |
| AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| AU.addPreserved<BasicAAWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| } |
| |
| bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) { |
| auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| return runImpl(F, TLI, DT); |
| } |
| |
| PreservedAnalyses AggressiveInstCombinePass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); |
| auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| if (!runImpl(F, TLI, DT)) { |
| // No changes, all analyses are preserved. |
| return PreservedAnalyses::all(); |
| } |
| // Mark all the analyses that instcombine updates as preserved. |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| PA.preserve<AAManager>(); |
| PA.preserve<GlobalsAA>(); |
| return PA; |
| } |
| |
| char AggressiveInstCombinerLegacyPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass, |
| "aggressive-instcombine", |
| "Combine pattern based expressions", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine", |
| "Combine pattern based expressions", false, false) |
| |
| // Initialization Routines |
| void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) { |
| initializeAggressiveInstCombinerLegacyPassPass(Registry); |
| } |
| |
| void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) { |
| initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R)); |
| } |
| |
| FunctionPass *llvm::createAggressiveInstCombinerPass() { |
| return new AggressiveInstCombinerLegacyPass(); |
| } |
| |
| void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) { |
| unwrap(PM)->add(createAggressiveInstCombinerPass()); |
| } |