| //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass statically checks for common and easily-identified constructs |
| // which produce undefined or likely unintended behavior in LLVM IR. |
| // |
| // It is not a guarantee of correctness, in two ways. First, it isn't |
| // comprehensive. There are checks which could be done statically which are |
| // not yet implemented. Some of these are indicated by TODO comments, but |
| // those aren't comprehensive either. Second, many conditions cannot be |
| // checked statically. This pass does no dynamic instrumentation, so it |
| // can't check for all possible problems. |
| // |
| // Another limitation is that it assumes all code will be executed. A store |
| // through a null pointer in a basic block which is never reached is harmless, |
| // but this pass will warn about it anyway. This is the main reason why most |
| // of these checks live here instead of in the Verifier pass. |
| // |
| // Optimization passes may make conditions that this pass checks for more or |
| // less obvious. If an optimization pass appears to be introducing a warning, |
| // it may be that the optimization pass is merely exposing an existing |
| // condition in the code. |
| // |
| // This code may be run before instcombine. In many cases, instcombine checks |
| // for the same kinds of things and turns instructions with undefined behavior |
| // into unreachable (or equivalent). Because of this, this pass makes some |
| // effort to look through bitcasts and so on. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Lint.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/Passes.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <string> |
| |
| using namespace llvm; |
| |
| namespace { |
| namespace MemRef { |
| static const unsigned Read = 1; |
| static const unsigned Write = 2; |
| static const unsigned Callee = 4; |
| static const unsigned Branchee = 8; |
| } // end namespace MemRef |
| |
| class Lint : public InstVisitor<Lint> { |
| friend class InstVisitor<Lint>; |
| |
| void visitFunction(Function &F); |
| |
| void visitCallBase(CallBase &CB); |
| void visitMemoryReference(Instruction &I, const MemoryLocation &Loc, |
| MaybeAlign Alignment, Type *Ty, unsigned Flags); |
| void visitEHBeginCatch(IntrinsicInst *II); |
| void visitEHEndCatch(IntrinsicInst *II); |
| |
| void visitReturnInst(ReturnInst &I); |
| void visitLoadInst(LoadInst &I); |
| void visitStoreInst(StoreInst &I); |
| void visitXor(BinaryOperator &I); |
| void visitSub(BinaryOperator &I); |
| void visitLShr(BinaryOperator &I); |
| void visitAShr(BinaryOperator &I); |
| void visitShl(BinaryOperator &I); |
| void visitSDiv(BinaryOperator &I); |
| void visitUDiv(BinaryOperator &I); |
| void visitSRem(BinaryOperator &I); |
| void visitURem(BinaryOperator &I); |
| void visitAllocaInst(AllocaInst &I); |
| void visitVAArgInst(VAArgInst &I); |
| void visitIndirectBrInst(IndirectBrInst &I); |
| void visitExtractElementInst(ExtractElementInst &I); |
| void visitInsertElementInst(InsertElementInst &I); |
| void visitUnreachableInst(UnreachableInst &I); |
| |
| Value *findValue(Value *V, bool OffsetOk) const; |
| Value *findValueImpl(Value *V, bool OffsetOk, |
| SmallPtrSetImpl<Value *> &Visited) const; |
| |
| public: |
| Module *Mod; |
| const DataLayout *DL; |
| AliasAnalysis *AA; |
| AssumptionCache *AC; |
| DominatorTree *DT; |
| TargetLibraryInfo *TLI; |
| |
| std::string Messages; |
| raw_string_ostream MessagesStr; |
| |
| Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA, |
| AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI) |
| : Mod(Mod), DL(DL), AA(AA), AC(AC), DT(DT), TLI(TLI), |
| MessagesStr(Messages) {} |
| |
| void WriteValues(ArrayRef<const Value *> Vs) { |
| for (const Value *V : Vs) { |
| if (!V) |
| continue; |
| if (isa<Instruction>(V)) { |
| MessagesStr << *V << '\n'; |
| } else { |
| V->printAsOperand(MessagesStr, true, Mod); |
| MessagesStr << '\n'; |
| } |
| } |
| } |
| |
| /// A check failed, so printout out the condition and the message. |
| /// |
| /// This provides a nice place to put a breakpoint if you want to see why |
| /// something is not correct. |
| void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; } |
| |
| /// A check failed (with values to print). |
| /// |
| /// This calls the Message-only version so that the above is easier to set |
| /// a breakpoint on. |
| template <typename T1, typename... Ts> |
| void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { |
| CheckFailed(Message); |
| WriteValues({V1, Vs...}); |
| } |
| }; |
| } // end anonymous namespace |
| |
| // Assert - We know that cond should be true, if not print an error message. |
| #define Assert(C, ...) \ |
| do { \ |
| if (!(C)) { \ |
| CheckFailed(__VA_ARGS__); \ |
| return; \ |
| } \ |
| } while (false) |
| |
| void Lint::visitFunction(Function &F) { |
| // This isn't undefined behavior, it's just a little unusual, and it's a |
| // fairly common mistake to neglect to name a function. |
| Assert(F.hasName() || F.hasLocalLinkage(), |
| "Unusual: Unnamed function with non-local linkage", &F); |
| |
| // TODO: Check for irreducible control flow. |
| } |
| |
| void Lint::visitCallBase(CallBase &I) { |
| Value *Callee = I.getCalledOperand(); |
| |
| visitMemoryReference(I, MemoryLocation::getAfter(Callee), None, nullptr, |
| MemRef::Callee); |
| |
| if (Function *F = dyn_cast<Function>(findValue(Callee, |
| /*OffsetOk=*/false))) { |
| Assert(I.getCallingConv() == F->getCallingConv(), |
| "Undefined behavior: Caller and callee calling convention differ", |
| &I); |
| |
| FunctionType *FT = F->getFunctionType(); |
| unsigned NumActualArgs = I.arg_size(); |
| |
| Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs |
| : FT->getNumParams() == NumActualArgs, |
| "Undefined behavior: Call argument count mismatches callee " |
| "argument count", |
| &I); |
| |
| Assert(FT->getReturnType() == I.getType(), |
| "Undefined behavior: Call return type mismatches " |
| "callee return type", |
| &I); |
| |
| // Check argument types (in case the callee was casted) and attributes. |
| // TODO: Verify that caller and callee attributes are compatible. |
| Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end(); |
| auto AI = I.arg_begin(), AE = I.arg_end(); |
| for (; AI != AE; ++AI) { |
| Value *Actual = *AI; |
| if (PI != PE) { |
| Argument *Formal = &*PI++; |
| Assert(Formal->getType() == Actual->getType(), |
| "Undefined behavior: Call argument type mismatches " |
| "callee parameter type", |
| &I); |
| |
| // Check that noalias arguments don't alias other arguments. This is |
| // not fully precise because we don't know the sizes of the dereferenced |
| // memory regions. |
| if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) { |
| AttributeList PAL = I.getAttributes(); |
| unsigned ArgNo = 0; |
| for (auto BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) { |
| // Skip ByVal arguments since they will be memcpy'd to the callee's |
| // stack so we're not really passing the pointer anyway. |
| if (PAL.hasParamAttribute(ArgNo, Attribute::ByVal)) |
| continue; |
| // If both arguments are readonly, they have no dependence. |
| if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo)) |
| continue; |
| if (AI != BI && (*BI)->getType()->isPointerTy()) { |
| AliasResult Result = AA->alias(*AI, *BI); |
| Assert(Result != AliasResult::MustAlias && |
| Result != AliasResult::PartialAlias, |
| "Unusual: noalias argument aliases another argument", &I); |
| } |
| } |
| } |
| |
| // Check that an sret argument points to valid memory. |
| if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) { |
| Type *Ty = Formal->getParamStructRetType(); |
| MemoryLocation Loc( |
| Actual, LocationSize::precise(DL->getTypeStoreSize(Ty))); |
| visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty, |
| MemRef::Read | MemRef::Write); |
| } |
| } |
| } |
| } |
| |
| if (const auto *CI = dyn_cast<CallInst>(&I)) { |
| if (CI->isTailCall()) { |
| const AttributeList &PAL = CI->getAttributes(); |
| unsigned ArgNo = 0; |
| for (Value *Arg : I.args()) { |
| // Skip ByVal arguments since they will be memcpy'd to the callee's |
| // stack anyway. |
| if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal)) |
| continue; |
| Value *Obj = findValue(Arg, /*OffsetOk=*/true); |
| Assert(!isa<AllocaInst>(Obj), |
| "Undefined behavior: Call with \"tail\" keyword references " |
| "alloca", |
| &I); |
| } |
| } |
| } |
| |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) |
| switch (II->getIntrinsicID()) { |
| default: |
| break; |
| |
| // TODO: Check more intrinsics |
| |
| case Intrinsic::memcpy: { |
| MemCpyInst *MCI = cast<MemCpyInst>(&I); |
| visitMemoryReference(I, MemoryLocation::getForDest(MCI), |
| MCI->getDestAlign(), nullptr, MemRef::Write); |
| visitMemoryReference(I, MemoryLocation::getForSource(MCI), |
| MCI->getSourceAlign(), nullptr, MemRef::Read); |
| |
| // Check that the memcpy arguments don't overlap. The AliasAnalysis API |
| // isn't expressive enough for what we really want to do. Known partial |
| // overlap is not distinguished from the case where nothing is known. |
| auto Size = LocationSize::afterPointer(); |
| if (const ConstantInt *Len = |
| dyn_cast<ConstantInt>(findValue(MCI->getLength(), |
| /*OffsetOk=*/false))) |
| if (Len->getValue().isIntN(32)) |
| Size = LocationSize::precise(Len->getValue().getZExtValue()); |
| Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != |
| AliasResult::MustAlias, |
| "Undefined behavior: memcpy source and destination overlap", &I); |
| break; |
| } |
| case Intrinsic::memcpy_inline: { |
| MemCpyInlineInst *MCII = cast<MemCpyInlineInst>(&I); |
| const uint64_t Size = MCII->getLength()->getValue().getLimitedValue(); |
| visitMemoryReference(I, MemoryLocation::getForDest(MCII), |
| MCII->getDestAlign(), nullptr, MemRef::Write); |
| visitMemoryReference(I, MemoryLocation::getForSource(MCII), |
| MCII->getSourceAlign(), nullptr, MemRef::Read); |
| |
| // Check that the memcpy arguments don't overlap. The AliasAnalysis API |
| // isn't expressive enough for what we really want to do. Known partial |
| // overlap is not distinguished from the case where nothing is known. |
| const LocationSize LS = LocationSize::precise(Size); |
| Assert(AA->alias(MCII->getSource(), LS, MCII->getDest(), LS) != |
| AliasResult::MustAlias, |
| "Undefined behavior: memcpy source and destination overlap", &I); |
| break; |
| } |
| case Intrinsic::memmove: { |
| MemMoveInst *MMI = cast<MemMoveInst>(&I); |
| visitMemoryReference(I, MemoryLocation::getForDest(MMI), |
| MMI->getDestAlign(), nullptr, MemRef::Write); |
| visitMemoryReference(I, MemoryLocation::getForSource(MMI), |
| MMI->getSourceAlign(), nullptr, MemRef::Read); |
| break; |
| } |
| case Intrinsic::memset: { |
| MemSetInst *MSI = cast<MemSetInst>(&I); |
| visitMemoryReference(I, MemoryLocation::getForDest(MSI), |
| MSI->getDestAlign(), nullptr, MemRef::Write); |
| break; |
| } |
| |
| case Intrinsic::vastart: |
| Assert(I.getParent()->getParent()->isVarArg(), |
| "Undefined behavior: va_start called in a non-varargs function", |
| &I); |
| |
| visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None, |
| nullptr, MemRef::Read | MemRef::Write); |
| break; |
| case Intrinsic::vacopy: |
| visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None, |
| nullptr, MemRef::Write); |
| visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI), None, |
| nullptr, MemRef::Read); |
| break; |
| case Intrinsic::vaend: |
| visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None, |
| nullptr, MemRef::Read | MemRef::Write); |
| break; |
| |
| case Intrinsic::stackrestore: |
| // Stackrestore doesn't read or write memory, but it sets the |
| // stack pointer, which the compiler may read from or write to |
| // at any time, so check it for both readability and writeability. |
| visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None, |
| nullptr, MemRef::Read | MemRef::Write); |
| break; |
| case Intrinsic::get_active_lane_mask: |
| if (auto *TripCount = dyn_cast<ConstantInt>(I.getArgOperand(1))) |
| Assert(!TripCount->isZero(), "get_active_lane_mask: operand #2 " |
| "must be greater than 0", &I); |
| break; |
| } |
| } |
| |
| void Lint::visitReturnInst(ReturnInst &I) { |
| Function *F = I.getParent()->getParent(); |
| Assert(!F->doesNotReturn(), |
| "Unusual: Return statement in function with noreturn attribute", &I); |
| |
| if (Value *V = I.getReturnValue()) { |
| Value *Obj = findValue(V, /*OffsetOk=*/true); |
| Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I); |
| } |
| } |
| |
| // TODO: Check that the reference is in bounds. |
| // TODO: Check readnone/readonly function attributes. |
| void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc, |
| MaybeAlign Align, Type *Ty, unsigned Flags) { |
| // If no memory is being referenced, it doesn't matter if the pointer |
| // is valid. |
| if (Loc.Size.isZero()) |
| return; |
| |
| Value *Ptr = const_cast<Value *>(Loc.Ptr); |
| Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true); |
| Assert(!isa<ConstantPointerNull>(UnderlyingObject), |
| "Undefined behavior: Null pointer dereference", &I); |
| Assert(!isa<UndefValue>(UnderlyingObject), |
| "Undefined behavior: Undef pointer dereference", &I); |
| Assert(!isa<ConstantInt>(UnderlyingObject) || |
| !cast<ConstantInt>(UnderlyingObject)->isMinusOne(), |
| "Unusual: All-ones pointer dereference", &I); |
| Assert(!isa<ConstantInt>(UnderlyingObject) || |
| !cast<ConstantInt>(UnderlyingObject)->isOne(), |
| "Unusual: Address one pointer dereference", &I); |
| |
| if (Flags & MemRef::Write) { |
| if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject)) |
| Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory", |
| &I); |
| Assert(!isa<Function>(UnderlyingObject) && |
| !isa<BlockAddress>(UnderlyingObject), |
| "Undefined behavior: Write to text section", &I); |
| } |
| if (Flags & MemRef::Read) { |
| Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body", |
| &I); |
| Assert(!isa<BlockAddress>(UnderlyingObject), |
| "Undefined behavior: Load from block address", &I); |
| } |
| if (Flags & MemRef::Callee) { |
| Assert(!isa<BlockAddress>(UnderlyingObject), |
| "Undefined behavior: Call to block address", &I); |
| } |
| if (Flags & MemRef::Branchee) { |
| Assert(!isa<Constant>(UnderlyingObject) || |
| isa<BlockAddress>(UnderlyingObject), |
| "Undefined behavior: Branch to non-blockaddress", &I); |
| } |
| |
| // Check for buffer overflows and misalignment. |
| // Only handles memory references that read/write something simple like an |
| // alloca instruction or a global variable. |
| int64_t Offset = 0; |
| if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) { |
| // OK, so the access is to a constant offset from Ptr. Check that Ptr is |
| // something we can handle and if so extract the size of this base object |
| // along with its alignment. |
| uint64_t BaseSize = MemoryLocation::UnknownSize; |
| MaybeAlign BaseAlign; |
| |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { |
| Type *ATy = AI->getAllocatedType(); |
| if (!AI->isArrayAllocation() && ATy->isSized()) |
| BaseSize = DL->getTypeAllocSize(ATy); |
| BaseAlign = AI->getAlign(); |
| } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { |
| // If the global may be defined differently in another compilation unit |
| // then don't warn about funky memory accesses. |
| if (GV->hasDefinitiveInitializer()) { |
| Type *GTy = GV->getValueType(); |
| if (GTy->isSized()) |
| BaseSize = DL->getTypeAllocSize(GTy); |
| BaseAlign = GV->getAlign(); |
| if (!BaseAlign && GTy->isSized()) |
| BaseAlign = DL->getABITypeAlign(GTy); |
| } |
| } |
| |
| // Accesses from before the start or after the end of the object are not |
| // defined. |
| Assert(!Loc.Size.hasValue() || BaseSize == MemoryLocation::UnknownSize || |
| (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize), |
| "Undefined behavior: Buffer overflow", &I); |
| |
| // Accesses that say that the memory is more aligned than it is are not |
| // defined. |
| if (!Align && Ty && Ty->isSized()) |
| Align = DL->getABITypeAlign(Ty); |
| if (BaseAlign && Align) |
| Assert(*Align <= commonAlignment(*BaseAlign, Offset), |
| "Undefined behavior: Memory reference address is misaligned", &I); |
| } |
| } |
| |
| void Lint::visitLoadInst(LoadInst &I) { |
| visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(), |
| MemRef::Read); |
| } |
| |
| void Lint::visitStoreInst(StoreInst &I) { |
| visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), |
| I.getOperand(0)->getType(), MemRef::Write); |
| } |
| |
| void Lint::visitXor(BinaryOperator &I) { |
| Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), |
| "Undefined result: xor(undef, undef)", &I); |
| } |
| |
| void Lint::visitSub(BinaryOperator &I) { |
| Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), |
| "Undefined result: sub(undef, undef)", &I); |
| } |
| |
| void Lint::visitLShr(BinaryOperator &I) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1), |
| /*OffsetOk=*/false))) |
| Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), |
| "Undefined result: Shift count out of range", &I); |
| } |
| |
| void Lint::visitAShr(BinaryOperator &I) { |
| if (ConstantInt *CI = |
| dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) |
| Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), |
| "Undefined result: Shift count out of range", &I); |
| } |
| |
| void Lint::visitShl(BinaryOperator &I) { |
| if (ConstantInt *CI = |
| dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) |
| Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), |
| "Undefined result: Shift count out of range", &I); |
| } |
| |
| static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, |
| AssumptionCache *AC) { |
| // Assume undef could be zero. |
| if (isa<UndefValue>(V)) |
| return true; |
| |
| VectorType *VecTy = dyn_cast<VectorType>(V->getType()); |
| if (!VecTy) { |
| KnownBits Known = |
| computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT); |
| return Known.isZero(); |
| } |
| |
| // Per-component check doesn't work with zeroinitializer |
| Constant *C = dyn_cast<Constant>(V); |
| if (!C) |
| return false; |
| |
| if (C->isZeroValue()) |
| return true; |
| |
| // For a vector, KnownZero will only be true if all values are zero, so check |
| // this per component |
| for (unsigned I = 0, N = cast<FixedVectorType>(VecTy)->getNumElements(); |
| I != N; ++I) { |
| Constant *Elem = C->getAggregateElement(I); |
| if (isa<UndefValue>(Elem)) |
| return true; |
| |
| KnownBits Known = computeKnownBits(Elem, DL); |
| if (Known.isZero()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void Lint::visitSDiv(BinaryOperator &I) { |
| Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), |
| "Undefined behavior: Division by zero", &I); |
| } |
| |
| void Lint::visitUDiv(BinaryOperator &I) { |
| Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), |
| "Undefined behavior: Division by zero", &I); |
| } |
| |
| void Lint::visitSRem(BinaryOperator &I) { |
| Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), |
| "Undefined behavior: Division by zero", &I); |
| } |
| |
| void Lint::visitURem(BinaryOperator &I) { |
| Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), |
| "Undefined behavior: Division by zero", &I); |
| } |
| |
| void Lint::visitAllocaInst(AllocaInst &I) { |
| if (isa<ConstantInt>(I.getArraySize())) |
| // This isn't undefined behavior, it's just an obvious pessimization. |
| Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), |
| "Pessimization: Static alloca outside of entry block", &I); |
| |
| // TODO: Check for an unusual size (MSB set?) |
| } |
| |
| void Lint::visitVAArgInst(VAArgInst &I) { |
| visitMemoryReference(I, MemoryLocation::get(&I), None, nullptr, |
| MemRef::Read | MemRef::Write); |
| } |
| |
| void Lint::visitIndirectBrInst(IndirectBrInst &I) { |
| visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()), None, |
| nullptr, MemRef::Branchee); |
| |
| Assert(I.getNumDestinations() != 0, |
| "Undefined behavior: indirectbr with no destinations", &I); |
| } |
| |
| void Lint::visitExtractElementInst(ExtractElementInst &I) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(), |
| /*OffsetOk=*/false))) |
| Assert( |
| CI->getValue().ult( |
| cast<FixedVectorType>(I.getVectorOperandType())->getNumElements()), |
| "Undefined result: extractelement index out of range", &I); |
| } |
| |
| void Lint::visitInsertElementInst(InsertElementInst &I) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2), |
| /*OffsetOk=*/false))) |
| Assert(CI->getValue().ult( |
| cast<FixedVectorType>(I.getType())->getNumElements()), |
| "Undefined result: insertelement index out of range", &I); |
| } |
| |
| void Lint::visitUnreachableInst(UnreachableInst &I) { |
| // This isn't undefined behavior, it's merely suspicious. |
| Assert(&I == &I.getParent()->front() || |
| std::prev(I.getIterator())->mayHaveSideEffects(), |
| "Unusual: unreachable immediately preceded by instruction without " |
| "side effects", |
| &I); |
| } |
| |
| /// findValue - Look through bitcasts and simple memory reference patterns |
| /// to identify an equivalent, but more informative, value. If OffsetOk |
| /// is true, look through getelementptrs with non-zero offsets too. |
| /// |
| /// Most analysis passes don't require this logic, because instcombine |
| /// will simplify most of these kinds of things away. But it's a goal of |
| /// this Lint pass to be useful even on non-optimized IR. |
| Value *Lint::findValue(Value *V, bool OffsetOk) const { |
| SmallPtrSet<Value *, 4> Visited; |
| return findValueImpl(V, OffsetOk, Visited); |
| } |
| |
| /// findValueImpl - Implementation helper for findValue. |
| Value *Lint::findValueImpl(Value *V, bool OffsetOk, |
| SmallPtrSetImpl<Value *> &Visited) const { |
| // Detect self-referential values. |
| if (!Visited.insert(V).second) |
| return UndefValue::get(V->getType()); |
| |
| // TODO: Look through sext or zext cast, when the result is known to |
| // be interpreted as signed or unsigned, respectively. |
| // TODO: Look through eliminable cast pairs. |
| // TODO: Look through calls with unique return values. |
| // TODO: Look through vector insert/extract/shuffle. |
| V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts(); |
| if (LoadInst *L = dyn_cast<LoadInst>(V)) { |
| BasicBlock::iterator BBI = L->getIterator(); |
| BasicBlock *BB = L->getParent(); |
| SmallPtrSet<BasicBlock *, 4> VisitedBlocks; |
| for (;;) { |
| if (!VisitedBlocks.insert(BB).second) |
| break; |
| if (Value *U = |
| FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA)) |
| return findValueImpl(U, OffsetOk, Visited); |
| if (BBI != BB->begin()) |
| break; |
| BB = BB->getUniquePredecessor(); |
| if (!BB) |
| break; |
| BBI = BB->end(); |
| } |
| } else if (PHINode *PN = dyn_cast<PHINode>(V)) { |
| if (Value *W = PN->hasConstantValue()) |
| return findValueImpl(W, OffsetOk, Visited); |
| } else if (CastInst *CI = dyn_cast<CastInst>(V)) { |
| if (CI->isNoopCast(*DL)) |
| return findValueImpl(CI->getOperand(0), OffsetOk, Visited); |
| } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) { |
| if (Value *W = |
| FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices())) |
| if (W != V) |
| return findValueImpl(W, OffsetOk, Visited); |
| } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { |
| // Same as above, but for ConstantExpr instead of Instruction. |
| if (Instruction::isCast(CE->getOpcode())) { |
| if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()), |
| CE->getOperand(0)->getType(), CE->getType(), |
| *DL)) |
| return findValueImpl(CE->getOperand(0), OffsetOk, Visited); |
| } else if (CE->getOpcode() == Instruction::ExtractValue) { |
| ArrayRef<unsigned> Indices = CE->getIndices(); |
| if (Value *W = FindInsertedValue(CE->getOperand(0), Indices)) |
| if (W != V) |
| return findValueImpl(W, OffsetOk, Visited); |
| } |
| } |
| |
| // As a last resort, try SimplifyInstruction or constant folding. |
| if (Instruction *Inst = dyn_cast<Instruction>(V)) { |
| if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC})) |
| return findValueImpl(W, OffsetOk, Visited); |
| } else if (auto *C = dyn_cast<Constant>(V)) { |
| Value *W = ConstantFoldConstant(C, *DL, TLI); |
| if (W != V) |
| return findValueImpl(W, OffsetOk, Visited); |
| } |
| |
| return V; |
| } |
| |
| PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) { |
| auto *Mod = F.getParent(); |
| auto *DL = &F.getParent()->getDataLayout(); |
| auto *AA = &AM.getResult<AAManager>(F); |
| auto *AC = &AM.getResult<AssumptionAnalysis>(F); |
| auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); |
| auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F); |
| Lint L(Mod, DL, AA, AC, DT, TLI); |
| L.visit(F); |
| dbgs() << L.MessagesStr.str(); |
| return PreservedAnalyses::all(); |
| } |
| |
| class LintLegacyPass : public FunctionPass { |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| LintLegacyPass() : FunctionPass(ID) { |
| initializeLintLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| } |
| void print(raw_ostream &O, const Module *M) const override {} |
| }; |
| |
| char LintLegacyPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(LintLegacyPass, "lint", "Statically lint-checks LLVM IR", |
| false, true) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_END(LintLegacyPass, "lint", "Statically lint-checks LLVM IR", |
| false, true) |
| |
| bool LintLegacyPass::runOnFunction(Function &F) { |
| auto *Mod = F.getParent(); |
| auto *DL = &F.getParent()->getDataLayout(); |
| auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| Lint L(Mod, DL, AA, AC, DT, TLI); |
| L.visit(F); |
| dbgs() << L.MessagesStr.str(); |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implement the public interfaces to this file... |
| //===----------------------------------------------------------------------===// |
| |
| FunctionPass *llvm::createLintLegacyPassPass() { return new LintLegacyPass(); } |
| |
| /// lintFunction - Check a function for errors, printing messages on stderr. |
| /// |
| void llvm::lintFunction(const Function &f) { |
| Function &F = const_cast<Function &>(f); |
| assert(!F.isDeclaration() && "Cannot lint external functions"); |
| |
| legacy::FunctionPassManager FPM(F.getParent()); |
| auto *V = new LintLegacyPass(); |
| FPM.add(V); |
| FPM.run(F); |
| } |
| |
| /// lintModule - Check a module for errors, printing messages on stderr. |
| /// |
| void llvm::lintModule(const Module &M) { |
| legacy::PassManager PM; |
| auto *V = new LintLegacyPass(); |
| PM.add(V); |
| PM.run(const_cast<Module &>(M)); |
| } |