| //===- VPlanHelpers.h - VPlan-related auxiliary helpers -------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This file contains the declarations of different VPlan-related auxiliary |
| /// helpers. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLANHELPERS_H |
| #define LLVM_TRANSFORMS_VECTORIZE_VPLANHELPERS_H |
| |
| #include "VPlanAnalysis.h" |
| #include "VPlanDominatorTree.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/DomTreeUpdater.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/Support/InstructionCost.h" |
| |
| namespace llvm { |
| |
| class AssumptionCache; |
| class BasicBlock; |
| class DominatorTree; |
| class InnerLoopVectorizer; |
| class IRBuilderBase; |
| class LoopInfo; |
| class SCEV; |
| class Type; |
| class VPBasicBlock; |
| class VPRegionBlock; |
| class VPlan; |
| class Value; |
| |
| /// Returns a calculation for the total number of elements for a given \p VF. |
| /// For fixed width vectors this value is a constant, whereas for scalable |
| /// vectors it is an expression determined at runtime. |
| Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF); |
| |
| /// Return a value for Step multiplied by VF. |
| Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, |
| int64_t Step); |
| |
| /// A helper function that returns how much we should divide the cost of a |
| /// predicated block by. Typically this is the reciprocal of the block |
| /// probability, i.e. if we return X we are assuming the predicated block will |
| /// execute once for every X iterations of the loop header so the block should |
| /// only contribute 1/X of its cost to the total cost calculation, but when |
| /// optimizing for code size it will just be 1 as code size costs don't depend |
| /// on execution probabilities. |
| /// |
| /// TODO: We should use actual block probability here, if available. Currently, |
| /// we always assume predicated blocks have a 50% chance of executing. |
| inline unsigned |
| getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind) { |
| return CostKind == TTI::TCK_CodeSize ? 1 : 2; |
| } |
| |
| /// A range of powers-of-2 vectorization factors with fixed start and |
| /// adjustable end. The range includes start and excludes end, e.g.,: |
| /// [1, 16) = {1, 2, 4, 8} |
| struct VFRange { |
| // A power of 2. |
| const ElementCount Start; |
| |
| // A power of 2. If End <= Start range is empty. |
| ElementCount End; |
| |
| bool isEmpty() const { |
| return End.getKnownMinValue() <= Start.getKnownMinValue(); |
| } |
| |
| VFRange(const ElementCount &Start, const ElementCount &End) |
| : Start(Start), End(End) { |
| assert(Start.isScalable() == End.isScalable() && |
| "Both Start and End should have the same scalable flag"); |
| assert(isPowerOf2_32(Start.getKnownMinValue()) && |
| "Expected Start to be a power of 2"); |
| assert(isPowerOf2_32(End.getKnownMinValue()) && |
| "Expected End to be a power of 2"); |
| } |
| |
| /// Iterator to iterate over vectorization factors in a VFRange. |
| class iterator |
| : public iterator_facade_base<iterator, std::forward_iterator_tag, |
| ElementCount> { |
| ElementCount VF; |
| |
| public: |
| iterator(ElementCount VF) : VF(VF) {} |
| |
| bool operator==(const iterator &Other) const { return VF == Other.VF; } |
| |
| ElementCount operator*() const { return VF; } |
| |
| iterator &operator++() { |
| VF *= 2; |
| return *this; |
| } |
| }; |
| |
| iterator begin() { return iterator(Start); } |
| iterator end() { |
| assert(isPowerOf2_32(End.getKnownMinValue())); |
| return iterator(End); |
| } |
| }; |
| |
| /// In what follows, the term "input IR" refers to code that is fed into the |
| /// vectorizer whereas the term "output IR" refers to code that is generated by |
| /// the vectorizer. |
| |
| /// VPLane provides a way to access lanes in both fixed width and scalable |
| /// vectors, where for the latter the lane index sometimes needs calculating |
| /// as a runtime expression. |
| class VPLane { |
| public: |
| /// Kind describes how to interpret Lane. |
| enum class Kind : uint8_t { |
| /// For First, Lane is the index into the first N elements of a |
| /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>. |
| First, |
| /// For ScalableLast, Lane is the offset from the start of the last |
| /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For |
| /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of |
| /// 1 corresponds to `((vscale - 1) * N) + 1`, etc. |
| ScalableLast |
| }; |
| |
| private: |
| /// in [0..VF) |
| unsigned Lane; |
| |
| /// Indicates how the Lane should be interpreted, as described above. |
| Kind LaneKind = Kind::First; |
| |
| public: |
| VPLane(unsigned Lane) : Lane(Lane) {} |
| VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {} |
| |
| static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); } |
| |
| static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset) { |
| assert(Offset > 0 && Offset <= VF.getKnownMinValue() && |
| "trying to extract with invalid offset"); |
| unsigned LaneOffset = VF.getKnownMinValue() - Offset; |
| Kind LaneKind; |
| if (VF.isScalable()) |
| // In this case 'LaneOffset' refers to the offset from the start of the |
| // last subvector with VF.getKnownMinValue() elements. |
| LaneKind = VPLane::Kind::ScalableLast; |
| else |
| LaneKind = VPLane::Kind::First; |
| return VPLane(LaneOffset, LaneKind); |
| } |
| |
| static VPLane getLastLaneForVF(const ElementCount &VF) { |
| return getLaneFromEnd(VF, 1); |
| } |
| |
| /// Returns a compile-time known value for the lane index and asserts if the |
| /// lane can only be calculated at runtime. |
| unsigned getKnownLane() const { |
| assert(LaneKind == Kind::First && |
| "can only get known lane from the beginning"); |
| return Lane; |
| } |
| |
| /// Returns an expression describing the lane index that can be used at |
| /// runtime. |
| Value *getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const; |
| |
| /// Returns the Kind of lane offset. |
| Kind getKind() const { return LaneKind; } |
| |
| /// Returns true if this is the first lane of the whole vector. |
| bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; } |
| |
| /// Maps the lane to a cache index based on \p VF. |
| unsigned mapToCacheIndex(const ElementCount &VF) const { |
| switch (LaneKind) { |
| case VPLane::Kind::ScalableLast: |
| assert(VF.isScalable() && Lane < VF.getKnownMinValue() && |
| "ScalableLast can only be used with scalable VFs"); |
| return VF.getKnownMinValue() + Lane; |
| default: |
| assert(Lane < VF.getKnownMinValue() && |
| "Cannot extract lane larger than VF"); |
| return Lane; |
| } |
| } |
| }; |
| |
| /// VPTransformState holds information passed down when "executing" a VPlan, |
| /// needed for generating the output IR. |
| struct VPTransformState { |
| VPTransformState(const TargetTransformInfo *TTI, ElementCount VF, |
| LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, |
| IRBuilderBase &Builder, VPlan *Plan, Loop *CurrentParentLoop, |
| Type *CanonicalIVTy); |
| /// Target Transform Info. |
| const TargetTransformInfo *TTI; |
| |
| /// The chosen Vectorization Factor of the loop being vectorized. |
| ElementCount VF; |
| |
| /// Hold the index to generate specific scalar instructions. Null indicates |
| /// that all instances are to be generated, using either scalar or vector |
| /// instructions. |
| std::optional<VPLane> Lane; |
| |
| struct DataState { |
| // Each value from the original loop, when vectorized, is represented by a |
| // vector value in the map. |
| DenseMap<const VPValue *, Value *> VPV2Vector; |
| |
| DenseMap<const VPValue *, SmallVector<Value *, 4>> VPV2Scalars; |
| } Data; |
| |
| /// Get the generated vector Value for a given VPValue \p Def if \p IsScalar |
| /// is false, otherwise return the generated scalar. \See set. |
| Value *get(const VPValue *Def, bool IsScalar = false); |
| |
| /// Get the generated Value for a given VPValue and given Part and Lane. |
| Value *get(const VPValue *Def, const VPLane &Lane); |
| |
| bool hasVectorValue(const VPValue *Def) { |
| return Data.VPV2Vector.contains(Def); |
| } |
| |
| bool hasScalarValue(const VPValue *Def, VPLane Lane) { |
| auto I = Data.VPV2Scalars.find(Def); |
| if (I == Data.VPV2Scalars.end()) |
| return false; |
| unsigned CacheIdx = Lane.mapToCacheIndex(VF); |
| return CacheIdx < I->second.size() && I->second[CacheIdx]; |
| } |
| |
| /// Set the generated vector Value for a given VPValue, if \p |
| /// IsScalar is false. If \p IsScalar is true, set the scalar in lane 0. |
| void set(const VPValue *Def, Value *V, bool IsScalar = false) { |
| if (IsScalar) { |
| set(Def, V, VPLane(0)); |
| return; |
| } |
| assert((VF.isScalar() || isVectorizedTy(V->getType())) && |
| "scalar values must be stored as (0, 0)"); |
| Data.VPV2Vector[Def] = V; |
| } |
| |
| /// Reset an existing vector value for \p Def and a given \p Part. |
| void reset(const VPValue *Def, Value *V) { |
| assert(Data.VPV2Vector.contains(Def) && "need to overwrite existing value"); |
| Data.VPV2Vector[Def] = V; |
| } |
| |
| /// Set the generated scalar \p V for \p Def and the given \p Lane. |
| void set(const VPValue *Def, Value *V, const VPLane &Lane) { |
| auto &Scalars = Data.VPV2Scalars[Def]; |
| unsigned CacheIdx = Lane.mapToCacheIndex(VF); |
| if (Scalars.size() <= CacheIdx) |
| Scalars.resize(CacheIdx + 1); |
| assert(!Scalars[CacheIdx] && "should overwrite existing value"); |
| Scalars[CacheIdx] = V; |
| } |
| |
| /// Reset an existing scalar value for \p Def and a given \p Lane. |
| void reset(const VPValue *Def, Value *V, const VPLane &Lane) { |
| auto Iter = Data.VPV2Scalars.find(Def); |
| assert(Iter != Data.VPV2Scalars.end() && |
| "need to overwrite existing value"); |
| unsigned CacheIdx = Lane.mapToCacheIndex(VF); |
| assert(CacheIdx < Iter->second.size() && |
| "need to overwrite existing value"); |
| Iter->second[CacheIdx] = V; |
| } |
| |
| /// Set the debug location in the builder using the debug location \p DL. |
| void setDebugLocFrom(DebugLoc DL); |
| |
| /// Insert the scalar value of \p Def at \p Lane into \p Lane of \p WideValue |
| /// and return the resulting value. |
| Value *packScalarIntoVectorizedValue(const VPValue *Def, Value *WideValue, |
| const VPLane &Lane); |
| |
| /// Hold state information used when constructing the CFG of the output IR, |
| /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. |
| struct CFGState { |
| /// The previous VPBasicBlock visited. Initially set to null. |
| VPBasicBlock *PrevVPBB = nullptr; |
| |
| /// The previous IR BasicBlock created or used. Initially set to the new |
| /// header BasicBlock. |
| BasicBlock *PrevBB = nullptr; |
| |
| /// The last IR BasicBlock in the output IR. Set to the exit block of the |
| /// vector loop. |
| BasicBlock *ExitBB = nullptr; |
| |
| /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case |
| /// of replication, maps the BasicBlock of the last replica created. |
| SmallDenseMap<const VPBasicBlock *, BasicBlock *> VPBB2IRBB; |
| |
| /// Updater for the DominatorTree. |
| DomTreeUpdater DTU; |
| |
| CFGState(DominatorTree *DT) |
| : DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy) {} |
| } CFG; |
| |
| /// Hold a pointer to LoopInfo to register new basic blocks in the loop. |
| LoopInfo *LI; |
| |
| /// Hold a pointer to AssumptionCache to register new assumptions after |
| /// replicating assume calls. |
| AssumptionCache *AC; |
| |
| /// Hold a reference to the IRBuilder used to generate output IR code. |
| IRBuilderBase &Builder; |
| |
| /// Pointer to the VPlan code is generated for. |
| VPlan *Plan; |
| |
| /// The parent loop object for the current scope, or nullptr. |
| Loop *CurrentParentLoop = nullptr; |
| |
| /// VPlan-based type analysis. |
| VPTypeAnalysis TypeAnalysis; |
| |
| /// VPlan-based dominator tree. |
| VPDominatorTree VPDT; |
| }; |
| |
| /// Struct to hold various analysis needed for cost computations. |
| struct VPCostContext { |
| const TargetTransformInfo &TTI; |
| const TargetLibraryInfo &TLI; |
| VPTypeAnalysis Types; |
| LLVMContext &LLVMCtx; |
| LoopVectorizationCostModel &CM; |
| SmallPtrSet<Instruction *, 8> SkipCostComputation; |
| TargetTransformInfo::TargetCostKind CostKind; |
| |
| VPCostContext(const TargetTransformInfo &TTI, const TargetLibraryInfo &TLI, |
| Type *CanIVTy, LoopVectorizationCostModel &CM, |
| TargetTransformInfo::TargetCostKind CostKind) |
| : TTI(TTI), TLI(TLI), Types(CanIVTy), LLVMCtx(CanIVTy->getContext()), |
| CM(CM), CostKind(CostKind) {} |
| |
| /// Return the cost for \p UI with \p VF using the legacy cost model as |
| /// fallback until computing the cost of all recipes migrates to VPlan. |
| InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const; |
| |
| /// Return true if the cost for \p UI shouldn't be computed, e.g. because it |
| /// has already been pre-computed. |
| bool skipCostComputation(Instruction *UI, bool IsVector) const; |
| |
| /// Returns the OperandInfo for \p V, if it is a live-in. |
| TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const; |
| |
| /// Return true if \p I is considered uniform-after-vectorization in the |
| /// legacy cost model for \p VF. Only used to check for additional VPlan |
| /// simplifications. |
| bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const; |
| }; |
| |
| /// This class can be used to assign names to VPValues. For VPValues without |
| /// underlying value, assign consecutive numbers and use those as names (wrapped |
| /// in vp<>). Otherwise, use the name from the underlying value (wrapped in |
| /// ir<>), appending a .V version number if there are multiple uses of the same |
| /// name. Allows querying names for VPValues for printing, similar to the |
| /// ModuleSlotTracker for IR values. |
| class VPSlotTracker { |
| /// Keep track of versioned names assigned to VPValues with underlying IR |
| /// values. |
| DenseMap<const VPValue *, std::string> VPValue2Name; |
| /// Keep track of the next number to use to version the base name. |
| StringMap<unsigned> BaseName2Version; |
| |
| /// Number to assign to the next VPValue without underlying value. |
| unsigned NextSlot = 0; |
| |
| void assignName(const VPValue *V); |
| void assignNames(const VPlan &Plan); |
| void assignNames(const VPBasicBlock *VPBB); |
| |
| public: |
| VPSlotTracker(const VPlan *Plan = nullptr) { |
| if (Plan) |
| assignNames(*Plan); |
| } |
| |
| /// Returns the name assigned to \p V, if there is one, otherwise try to |
| /// construct one from the underlying value, if there's one; else return |
| /// <badref>. |
| std::string getOrCreateName(const VPValue *V) const; |
| }; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// VPlanPrinter prints a given VPlan to a given output stream. The printing is |
| /// indented and follows the dot format. |
| class VPlanPrinter { |
| raw_ostream &OS; |
| const VPlan &Plan; |
| unsigned Depth = 0; |
| unsigned TabWidth = 2; |
| std::string Indent; |
| unsigned BID = 0; |
| SmallDenseMap<const VPBlockBase *, unsigned> BlockID; |
| |
| VPSlotTracker SlotTracker; |
| |
| /// Handle indentation. |
| void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } |
| |
| /// Print a given \p Block of the Plan. |
| void dumpBlock(const VPBlockBase *Block); |
| |
| /// Print the information related to the CFG edges going out of a given |
| /// \p Block, followed by printing the successor blocks themselves. |
| void dumpEdges(const VPBlockBase *Block); |
| |
| /// Print a given \p BasicBlock, including its VPRecipes, followed by printing |
| /// its successor blocks. |
| void dumpBasicBlock(const VPBasicBlock *BasicBlock); |
| |
| /// Print a given \p Region of the Plan. |
| void dumpRegion(const VPRegionBlock *Region); |
| |
| unsigned getOrCreateBID(const VPBlockBase *Block) { |
| return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; |
| } |
| |
| Twine getOrCreateName(const VPBlockBase *Block); |
| |
| Twine getUID(const VPBlockBase *Block); |
| |
| /// Print the information related to a CFG edge between two VPBlockBases. |
| void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, |
| const Twine &Label); |
| |
| public: |
| VPlanPrinter(raw_ostream &O, const VPlan &P) |
| : OS(O), Plan(P), SlotTracker(&P) {} |
| |
| LLVM_DUMP_METHOD void dump(); |
| }; |
| #endif |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |