blob: c08024a38ffc27855a1ed8466242d05dc465036d [file] [log] [blame]
//===-- MemoryProfileInfo.cpp - memory profile info ------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains utilities to analyze memory profile information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MemoryProfileInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/IR/Constants.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Format.h"
using namespace llvm;
using namespace llvm::memprof;
#define DEBUG_TYPE "memory-profile-info"
cl::opt<bool> MemProfReportHintedSizes(
"memprof-report-hinted-sizes", cl::init(false), cl::Hidden,
cl::desc("Report total allocation sizes of hinted allocations"));
// This is useful if we have enabled reporting of hinted sizes, and want to get
// information from the indexing step for all contexts (especially for testing),
// or have specified a value less than 100% for -memprof-cloning-cold-threshold.
LLVM_ABI cl::opt<bool> MemProfKeepAllNotColdContexts(
"memprof-keep-all-not-cold-contexts", cl::init(false), cl::Hidden,
cl::desc("Keep all non-cold contexts (increases cloning overheads)"));
cl::opt<unsigned> MinClonedColdBytePercent(
"memprof-cloning-cold-threshold", cl::init(100), cl::Hidden,
cl::desc("Min percent of cold bytes to hint alloc cold during cloning"));
// Discard non-cold contexts if they overlap with much larger cold contexts,
// specifically, if all contexts reaching a given callsite are at least this
// percent cold byte allocations. This reduces the amount of cloning required
// to expose the cold contexts when they greatly dominate non-cold contexts.
cl::opt<unsigned> MinCallsiteColdBytePercent(
"memprof-callsite-cold-threshold", cl::init(100), cl::Hidden,
cl::desc("Min percent of cold bytes at a callsite to discard non-cold "
"contexts"));
// Enable saving context size information for largest cold contexts, which can
// be used to flag contexts for more aggressive cloning and reporting.
cl::opt<unsigned> MinPercentMaxColdSize(
"memprof-min-percent-max-cold-size", cl::init(100), cl::Hidden,
cl::desc("Min percent of max cold bytes for critical cold context"));
bool llvm::memprof::metadataIncludesAllContextSizeInfo() {
return MemProfReportHintedSizes || MinClonedColdBytePercent < 100;
}
bool llvm::memprof::metadataMayIncludeContextSizeInfo() {
return metadataIncludesAllContextSizeInfo() || MinPercentMaxColdSize < 100;
}
bool llvm::memprof::recordContextSizeInfoForAnalysis() {
return metadataMayIncludeContextSizeInfo() ||
MinCallsiteColdBytePercent < 100;
}
MDNode *llvm::memprof::buildCallstackMetadata(ArrayRef<uint64_t> CallStack,
LLVMContext &Ctx) {
SmallVector<Metadata *, 8> StackVals;
StackVals.reserve(CallStack.size());
for (auto Id : CallStack) {
auto *StackValMD =
ValueAsMetadata::get(ConstantInt::get(Type::getInt64Ty(Ctx), Id));
StackVals.push_back(StackValMD);
}
return MDNode::get(Ctx, StackVals);
}
MDNode *llvm::memprof::getMIBStackNode(const MDNode *MIB) {
assert(MIB->getNumOperands() >= 2);
// The stack metadata is the first operand of each memprof MIB metadata.
return cast<MDNode>(MIB->getOperand(0));
}
AllocationType llvm::memprof::getMIBAllocType(const MDNode *MIB) {
assert(MIB->getNumOperands() >= 2);
// The allocation type is currently the second operand of each memprof
// MIB metadata. This will need to change as we add additional allocation
// types that can be applied based on the allocation profile data.
auto *MDS = dyn_cast<MDString>(MIB->getOperand(1));
assert(MDS);
if (MDS->getString() == "cold") {
return AllocationType::Cold;
} else if (MDS->getString() == "hot") {
return AllocationType::Hot;
}
return AllocationType::NotCold;
}
std::string llvm::memprof::getAllocTypeAttributeString(AllocationType Type) {
switch (Type) {
case AllocationType::NotCold:
return "notcold";
break;
case AllocationType::Cold:
return "cold";
break;
case AllocationType::Hot:
return "hot";
break;
default:
assert(false && "Unexpected alloc type");
}
llvm_unreachable("invalid alloc type");
}
bool llvm::memprof::hasSingleAllocType(uint8_t AllocTypes) {
const unsigned NumAllocTypes = llvm::popcount(AllocTypes);
assert(NumAllocTypes != 0);
return NumAllocTypes == 1;
}
void CallStackTrie::addCallStack(
AllocationType AllocType, ArrayRef<uint64_t> StackIds,
std::vector<ContextTotalSize> ContextSizeInfo) {
bool First = true;
CallStackTrieNode *Curr = nullptr;
for (auto StackId : StackIds) {
// If this is the first stack frame, add or update alloc node.
if (First) {
First = false;
if (Alloc) {
assert(AllocStackId == StackId);
Alloc->addAllocType(AllocType);
} else {
AllocStackId = StackId;
Alloc = new CallStackTrieNode(AllocType);
}
Curr = Alloc;
continue;
}
// Update existing caller node if it exists.
auto [Next, Inserted] = Curr->Callers.try_emplace(StackId);
if (!Inserted) {
Curr = Next->second;
Curr->addAllocType(AllocType);
continue;
}
// Otherwise add a new caller node.
auto *New = new CallStackTrieNode(AllocType);
Next->second = New;
Curr = New;
}
assert(Curr);
llvm::append_range(Curr->ContextSizeInfo, ContextSizeInfo);
}
void CallStackTrie::addCallStack(MDNode *MIB) {
MDNode *StackMD = getMIBStackNode(MIB);
assert(StackMD);
std::vector<uint64_t> CallStack;
CallStack.reserve(StackMD->getNumOperands());
for (const auto &MIBStackIter : StackMD->operands()) {
auto *StackId = mdconst::dyn_extract<ConstantInt>(MIBStackIter);
assert(StackId);
CallStack.push_back(StackId->getZExtValue());
}
std::vector<ContextTotalSize> ContextSizeInfo;
// Collect the context size information if it exists.
if (MIB->getNumOperands() > 2) {
for (unsigned I = 2; I < MIB->getNumOperands(); I++) {
MDNode *ContextSizePair = dyn_cast<MDNode>(MIB->getOperand(I));
assert(ContextSizePair->getNumOperands() == 2);
uint64_t FullStackId =
mdconst::dyn_extract<ConstantInt>(ContextSizePair->getOperand(0))
->getZExtValue();
uint64_t TotalSize =
mdconst::dyn_extract<ConstantInt>(ContextSizePair->getOperand(1))
->getZExtValue();
ContextSizeInfo.push_back({FullStackId, TotalSize});
}
}
addCallStack(getMIBAllocType(MIB), CallStack, std::move(ContextSizeInfo));
}
static MDNode *createMIBNode(LLVMContext &Ctx, ArrayRef<uint64_t> MIBCallStack,
AllocationType AllocType,
ArrayRef<ContextTotalSize> ContextSizeInfo,
const uint64_t MaxColdSize, uint64_t &TotalBytes,
uint64_t &ColdBytes) {
SmallVector<Metadata *> MIBPayload(
{buildCallstackMetadata(MIBCallStack, Ctx)});
MIBPayload.push_back(
MDString::get(Ctx, getAllocTypeAttributeString(AllocType)));
if (ContextSizeInfo.empty()) {
// The profile matcher should have provided context size info if there was a
// MinCallsiteColdBytePercent < 100. Here we check >=100 to gracefully
// handle a user-provided percent larger than 100.
assert(MinCallsiteColdBytePercent >= 100);
return MDNode::get(Ctx, MIBPayload);
}
for (const auto &[FullStackId, TotalSize] : ContextSizeInfo) {
TotalBytes += TotalSize;
bool LargeColdContext = false;
if (AllocType == AllocationType::Cold) {
ColdBytes += TotalSize;
// If we have the max cold context size from summary information and have
// requested identification of contexts above a percentage of the max, see
// if this context qualifies.
if (MaxColdSize > 0 && MinPercentMaxColdSize < 100 &&
TotalSize * 100 >= MaxColdSize * MinPercentMaxColdSize)
LargeColdContext = true;
}
// Only add the context size info as metadata if we need it in the thin
// link (currently if reporting of hinted sizes is enabled, we have
// specified a threshold for marking allocations cold after cloning, or we
// have identified this as a large cold context of interest above).
if (metadataIncludesAllContextSizeInfo() || LargeColdContext) {
auto *FullStackIdMD = ValueAsMetadata::get(
ConstantInt::get(Type::getInt64Ty(Ctx), FullStackId));
auto *TotalSizeMD = ValueAsMetadata::get(
ConstantInt::get(Type::getInt64Ty(Ctx), TotalSize));
auto *ContextSizeMD = MDNode::get(Ctx, {FullStackIdMD, TotalSizeMD});
MIBPayload.push_back(ContextSizeMD);
}
}
assert(TotalBytes > 0);
return MDNode::get(Ctx, MIBPayload);
}
void CallStackTrie::collectContextSizeInfo(
CallStackTrieNode *Node, std::vector<ContextTotalSize> &ContextSizeInfo) {
llvm::append_range(ContextSizeInfo, Node->ContextSizeInfo);
for (auto &Caller : Node->Callers)
collectContextSizeInfo(Caller.second, ContextSizeInfo);
}
void CallStackTrie::convertHotToNotCold(CallStackTrieNode *Node) {
if (Node->hasAllocType(AllocationType::Hot)) {
Node->removeAllocType(AllocationType::Hot);
Node->addAllocType(AllocationType::NotCold);
}
for (auto &Caller : Node->Callers)
convertHotToNotCold(Caller.second);
}
// Copy over some or all of NewMIBNodes to the SavedMIBNodes vector, depending
// on options that enable filtering out some NotCold contexts.
static void saveFilteredNewMIBNodes(std::vector<Metadata *> &NewMIBNodes,
std::vector<Metadata *> &SavedMIBNodes,
unsigned CallerContextLength,
uint64_t TotalBytes, uint64_t ColdBytes) {
const bool MostlyCold =
MinCallsiteColdBytePercent < 100 &&
ColdBytes * 100 >= MinCallsiteColdBytePercent * TotalBytes;
// In the simplest case, with pruning disabled, keep all the new MIB nodes.
if (MemProfKeepAllNotColdContexts && !MostlyCold) {
append_range(SavedMIBNodes, NewMIBNodes);
return;
}
auto EmitMessageForRemovedContexts = [](const MDNode *MIBMD, StringRef Tag,
StringRef Extra) {
assert(MIBMD->getNumOperands() > 2);
for (unsigned I = 2; I < MIBMD->getNumOperands(); I++) {
MDNode *ContextSizePair = dyn_cast<MDNode>(MIBMD->getOperand(I));
assert(ContextSizePair->getNumOperands() == 2);
uint64_t FullStackId =
mdconst::dyn_extract<ConstantInt>(ContextSizePair->getOperand(0))
->getZExtValue();
uint64_t TS =
mdconst::dyn_extract<ConstantInt>(ContextSizePair->getOperand(1))
->getZExtValue();
errs() << "MemProf hinting: Total size for " << Tag
<< " non-cold full allocation context hash " << FullStackId
<< Extra << ": " << TS << "\n";
}
};
// If the cold bytes at the current callsite exceed the given threshold, we
// discard all non-cold contexts so do not need any of the later pruning
// handling. We can simply copy over all the cold contexts and return early.
if (MostlyCold) {
auto NewColdMIBNodes =
make_filter_range(NewMIBNodes, [&](const Metadata *M) {
auto MIBMD = cast<MDNode>(M);
// Only append cold contexts.
if (getMIBAllocType(MIBMD) == AllocationType::Cold)
return true;
if (MemProfReportHintedSizes) {
const float PercentCold = ColdBytes * 100.0 / TotalBytes;
std::string PercentStr;
llvm::raw_string_ostream OS(PercentStr);
OS << format(" for %5.2f%% cold bytes", PercentCold);
EmitMessageForRemovedContexts(MIBMD, "discarded", OS.str());
}
return false;
});
for (auto *M : NewColdMIBNodes)
SavedMIBNodes.push_back(M);
return;
}
// Prune unneeded NotCold contexts, taking advantage of the fact
// that we later will only clone Cold contexts, as NotCold is the allocation
// default. We only need to keep as metadata the NotCold contexts that
// overlap the longest with Cold allocations, so that we know how deeply we
// need to clone. For example, assume we add the following contexts to the
// trie:
// 1 3 (notcold)
// 1 2 4 (cold)
// 1 2 5 (notcold)
// 1 2 6 (notcold)
// the trie looks like:
// 1
// / \
// 2 3
// /|\
// 4 5 6
//
// It is sufficient to prune all but one not-cold contexts (either 1,2,5 or
// 1,2,6, we arbitrarily keep the first one we encounter which will be
// 1,2,5).
//
// To do this pruning, we first check if there were any not-cold
// contexts kept for a deeper caller, which will have a context length larger
// than the CallerContextLength being handled here (i.e. kept by a deeper
// recursion step). If so, none of the not-cold MIB nodes added for the
// immediate callers need to be kept. If not, we keep the first (created
// for the immediate caller) not-cold MIB node.
bool LongerNotColdContextKept = false;
for (auto *MIB : NewMIBNodes) {
auto MIBMD = cast<MDNode>(MIB);
if (getMIBAllocType(MIBMD) == AllocationType::Cold)
continue;
MDNode *StackMD = getMIBStackNode(MIBMD);
assert(StackMD);
if (StackMD->getNumOperands() > CallerContextLength) {
LongerNotColdContextKept = true;
break;
}
}
// Don't need to emit any for the immediate caller if we already have
// longer overlapping contexts;
bool KeepFirstNewNotCold = !LongerNotColdContextKept;
auto NewColdMIBNodes = make_filter_range(NewMIBNodes, [&](const Metadata *M) {
auto MIBMD = cast<MDNode>(M);
// Only keep cold contexts and first (longest non-cold context).
if (getMIBAllocType(MIBMD) != AllocationType::Cold) {
MDNode *StackMD = getMIBStackNode(MIBMD);
assert(StackMD);
// Keep any already kept for longer contexts.
if (StackMD->getNumOperands() > CallerContextLength)
return true;
// Otherwise keep the first one added by the immediate caller if there
// were no longer contexts.
if (KeepFirstNewNotCold) {
KeepFirstNewNotCold = false;
return true;
}
if (MemProfReportHintedSizes)
EmitMessageForRemovedContexts(MIBMD, "pruned", "");
return false;
}
return true;
});
for (auto *M : NewColdMIBNodes)
SavedMIBNodes.push_back(M);
}
// Recursive helper to trim contexts and create metadata nodes.
// Caller should have pushed Node's loc to MIBCallStack. Doing this in the
// caller makes it simpler to handle the many early returns in this method.
// Updates the total and cold profiled bytes in the subtrie rooted at this node.
bool CallStackTrie::buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx,
std::vector<uint64_t> &MIBCallStack,
std::vector<Metadata *> &MIBNodes,
bool CalleeHasAmbiguousCallerContext,
uint64_t &TotalBytes, uint64_t &ColdBytes) {
// Trim context below the first node in a prefix with a single alloc type.
// Add an MIB record for the current call stack prefix.
if (hasSingleAllocType(Node->AllocTypes)) {
std::vector<ContextTotalSize> ContextSizeInfo;
collectContextSizeInfo(Node, ContextSizeInfo);
MIBNodes.push_back(
createMIBNode(Ctx, MIBCallStack, (AllocationType)Node->AllocTypes,
ContextSizeInfo, MaxColdSize, TotalBytes, ColdBytes));
return true;
}
// We don't have a single allocation for all the contexts sharing this prefix,
// so recursively descend into callers in trie.
if (!Node->Callers.empty()) {
bool NodeHasAmbiguousCallerContext = Node->Callers.size() > 1;
bool AddedMIBNodesForAllCallerContexts = true;
// Accumulate all new MIB nodes by the recursive calls below into a vector
// that will later be filtered before adding to the caller's MIBNodes
// vector.
std::vector<Metadata *> NewMIBNodes;
// Determine the total and cold byte counts for all callers, then add to the
// caller's counts further below.
uint64_t CallerTotalBytes = 0;
uint64_t CallerColdBytes = 0;
for (auto &Caller : Node->Callers) {
MIBCallStack.push_back(Caller.first);
AddedMIBNodesForAllCallerContexts &= buildMIBNodes(
Caller.second, Ctx, MIBCallStack, NewMIBNodes,
NodeHasAmbiguousCallerContext, CallerTotalBytes, CallerColdBytes);
// Remove Caller.
MIBCallStack.pop_back();
}
// Pass in the stack length of the MIB nodes added for the immediate caller,
// which is the current stack length plus 1.
saveFilteredNewMIBNodes(NewMIBNodes, MIBNodes, MIBCallStack.size() + 1,
CallerTotalBytes, CallerColdBytes);
TotalBytes += CallerTotalBytes;
ColdBytes += CallerColdBytes;
if (AddedMIBNodesForAllCallerContexts)
return true;
// We expect that the callers should be forced to add MIBs to disambiguate
// the context in this case (see below).
assert(!NodeHasAmbiguousCallerContext);
}
// If we reached here, then this node does not have a single allocation type,
// and we didn't add metadata for a longer call stack prefix including any of
// Node's callers. That means we never hit a single allocation type along all
// call stacks with this prefix. This can happen due to recursion collapsing
// or the stack being deeper than tracked by the profiler runtime, leading to
// contexts with different allocation types being merged. In that case, we
// trim the context just below the deepest context split, which is this
// node if the callee has an ambiguous caller context (multiple callers),
// since the recursive calls above returned false. Conservatively give it
// non-cold allocation type.
if (!CalleeHasAmbiguousCallerContext)
return false;
std::vector<ContextTotalSize> ContextSizeInfo;
collectContextSizeInfo(Node, ContextSizeInfo);
MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack, AllocationType::NotCold,
ContextSizeInfo, MaxColdSize, TotalBytes,
ColdBytes));
return true;
}
void CallStackTrie::addSingleAllocTypeAttribute(CallBase *CI, AllocationType AT,
StringRef Descriptor) {
auto AllocTypeString = getAllocTypeAttributeString(AT);
auto A = llvm::Attribute::get(CI->getContext(), "memprof", AllocTypeString);
CI->addFnAttr(A);
if (MemProfReportHintedSizes) {
std::vector<ContextTotalSize> ContextSizeInfo;
collectContextSizeInfo(Alloc, ContextSizeInfo);
for (const auto &[FullStackId, TotalSize] : ContextSizeInfo) {
errs() << "MemProf hinting: Total size for full allocation context hash "
<< FullStackId << " and " << Descriptor << " alloc type "
<< getAllocTypeAttributeString(AT) << ": " << TotalSize << "\n";
}
}
if (ORE)
ORE->emit(OptimizationRemark(DEBUG_TYPE, "MemprofAttribute", CI)
<< ore::NV("AllocationCall", CI) << " in function "
<< ore::NV("Caller", CI->getFunction())
<< " marked with memprof allocation attribute "
<< ore::NV("Attribute", AllocTypeString));
}
// Build and attach the minimal necessary MIB metadata. If the alloc has a
// single allocation type, add a function attribute instead. Returns true if
// memprof metadata attached, false if not (attribute added).
bool CallStackTrie::buildAndAttachMIBMetadata(CallBase *CI) {
if (hasSingleAllocType(Alloc->AllocTypes)) {
addSingleAllocTypeAttribute(CI, (AllocationType)Alloc->AllocTypes,
"single");
return false;
}
// If there were any hot allocation contexts, the Alloc trie node would have
// the Hot type set. If so, because we don't currently support cloning for hot
// contexts, they should be converted to NotCold. This happens in the cloning
// support anyway, however, doing this now enables more aggressive context
// trimming when building the MIB metadata (and possibly may make the
// allocation have a single NotCold allocation type), greatly reducing
// overheads in bitcode, cloning memory and cloning time.
if (Alloc->hasAllocType(AllocationType::Hot)) {
convertHotToNotCold(Alloc);
// Check whether we now have a single alloc type.
if (hasSingleAllocType(Alloc->AllocTypes)) {
addSingleAllocTypeAttribute(CI, (AllocationType)Alloc->AllocTypes,
"single");
return false;
}
}
auto &Ctx = CI->getContext();
std::vector<uint64_t> MIBCallStack;
MIBCallStack.push_back(AllocStackId);
std::vector<Metadata *> MIBNodes;
uint64_t TotalBytes = 0;
uint64_t ColdBytes = 0;
assert(!Alloc->Callers.empty() && "addCallStack has not been called yet");
// The CalleeHasAmbiguousCallerContext flag is meant to say whether the
// callee of the given node has more than one caller. Here the node being
// passed in is the alloc and it has no callees. So it's false.
if (buildMIBNodes(Alloc, Ctx, MIBCallStack, MIBNodes,
/*CalleeHasAmbiguousCallerContext=*/false, TotalBytes,
ColdBytes)) {
assert(MIBCallStack.size() == 1 &&
"Should only be left with Alloc's location in stack");
CI->setMetadata(LLVMContext::MD_memprof, MDNode::get(Ctx, MIBNodes));
return true;
}
// If there exists corner case that CallStackTrie has one chain to leaf
// and all node in the chain have multi alloc type, conservatively give
// it non-cold allocation type.
// FIXME: Avoid this case before memory profile created. Alternatively, select
// hint based on fraction cold.
addSingleAllocTypeAttribute(CI, AllocationType::NotCold, "indistinguishable");
return false;
}
template <>
CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::CallStackIterator(
const MDNode *N, bool End)
: N(N) {
if (!N)
return;
Iter = End ? N->op_end() : N->op_begin();
}
template <>
uint64_t
CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::operator*() {
assert(Iter != N->op_end());
ConstantInt *StackIdCInt = mdconst::dyn_extract<ConstantInt>(*Iter);
assert(StackIdCInt);
return StackIdCInt->getZExtValue();
}
template <> uint64_t CallStack<MDNode, MDNode::op_iterator>::back() const {
assert(N);
return mdconst::dyn_extract<ConstantInt>(N->operands().back())
->getZExtValue();
}
MDNode *MDNode::getMergedMemProfMetadata(MDNode *A, MDNode *B) {
// TODO: Support more sophisticated merging, such as selecting the one with
// more bytes allocated, or implement support for carrying multiple allocation
// leaf contexts. For now, keep the first one.
if (A)
return A;
return B;
}
MDNode *MDNode::getMergedCallsiteMetadata(MDNode *A, MDNode *B) {
// TODO: Support more sophisticated merging, which will require support for
// carrying multiple contexts. For now, keep the first one.
if (A)
return A;
return B;
}