| //===-- X86FixupVectorConstants.cpp - optimize constant generation -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file examines all full size vector constant pool loads and attempts to |
| // replace them with smaller constant pool entries, including: |
| // * Converting AVX512 memory-fold instructions to their broadcast-fold form. |
| // * Using vzload scalar loads. |
| // * Broadcasting of full width loads. |
| // * Sign/Zero extension of full width loads. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrFoldTables.h" |
| #include "X86InstrInfo.h" |
| #include "X86Subtarget.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "x86-fixup-vector-constants" |
| |
| STATISTIC(NumInstChanges, "Number of instructions changes"); |
| |
| namespace { |
| class X86FixupVectorConstantsPass : public MachineFunctionPass { |
| public: |
| static char ID; |
| |
| X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {} |
| |
| StringRef getPassName() const override { |
| return "X86 Fixup Vector Constants"; |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB, |
| MachineInstr &MI); |
| |
| // This pass runs after regalloc and doesn't support VReg operands. |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties().setNoVRegs(); |
| } |
| |
| private: |
| const X86InstrInfo *TII = nullptr; |
| const X86Subtarget *ST = nullptr; |
| const MCSchedModel *SM = nullptr; |
| }; |
| } // end anonymous namespace |
| |
| char X86FixupVectorConstantsPass::ID = 0; |
| |
| INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false) |
| |
| FunctionPass *llvm::createX86FixupVectorConstants() { |
| return new X86FixupVectorConstantsPass(); |
| } |
| |
| /// Normally, we only allow poison in vector splats. However, as this is part |
| /// of the backend, and working with the DAG representation, which currently |
| /// only natively represents undef values, we need to accept undefs here. |
| static Constant *getSplatValueAllowUndef(const ConstantVector *C) { |
| Constant *Res = nullptr; |
| for (Value *Op : C->operands()) { |
| Constant *OpC = cast<Constant>(Op); |
| if (isa<UndefValue>(OpC)) |
| continue; |
| if (!Res) |
| Res = OpC; |
| else if (Res != OpC) |
| return nullptr; |
| } |
| return Res; |
| } |
| |
| // Attempt to extract the full width of bits data from the constant. |
| static std::optional<APInt> extractConstantBits(const Constant *C) { |
| unsigned NumBits = C->getType()->getPrimitiveSizeInBits(); |
| |
| if (isa<UndefValue>(C)) |
| return APInt::getZero(NumBits); |
| |
| if (auto *CInt = dyn_cast<ConstantInt>(C)) { |
| if (isa<VectorType>(CInt->getType())) |
| return APInt::getSplat(NumBits, CInt->getValue()); |
| |
| return CInt->getValue(); |
| } |
| |
| if (auto *CFP = dyn_cast<ConstantFP>(C)) { |
| if (isa<VectorType>(CFP->getType())) |
| return APInt::getSplat(NumBits, CFP->getValue().bitcastToAPInt()); |
| |
| return CFP->getValue().bitcastToAPInt(); |
| } |
| |
| if (auto *CV = dyn_cast<ConstantVector>(C)) { |
| if (auto *CVSplat = getSplatValueAllowUndef(CV)) { |
| if (std::optional<APInt> Bits = extractConstantBits(CVSplat)) { |
| assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat"); |
| return APInt::getSplat(NumBits, *Bits); |
| } |
| } |
| |
| APInt Bits = APInt::getZero(NumBits); |
| for (unsigned I = 0, E = CV->getNumOperands(); I != E; ++I) { |
| Constant *Elt = CV->getOperand(I); |
| std::optional<APInt> SubBits = extractConstantBits(Elt); |
| if (!SubBits) |
| return std::nullopt; |
| assert(NumBits == (E * SubBits->getBitWidth()) && |
| "Illegal vector element size"); |
| Bits.insertBits(*SubBits, I * SubBits->getBitWidth()); |
| } |
| return Bits; |
| } |
| |
| if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) { |
| bool IsInteger = CDS->getElementType()->isIntegerTy(); |
| bool IsFloat = CDS->getElementType()->isHalfTy() || |
| CDS->getElementType()->isBFloatTy() || |
| CDS->getElementType()->isFloatTy() || |
| CDS->getElementType()->isDoubleTy(); |
| if (IsInteger || IsFloat) { |
| APInt Bits = APInt::getZero(NumBits); |
| unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits(); |
| for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { |
| if (IsInteger) |
| Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits); |
| else |
| Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(), |
| I * EltBits); |
| } |
| return Bits; |
| } |
| } |
| |
| return std::nullopt; |
| } |
| |
| static std::optional<APInt> extractConstantBits(const Constant *C, |
| unsigned NumBits) { |
| if (std::optional<APInt> Bits = extractConstantBits(C)) |
| return Bits->zextOrTrunc(NumBits); |
| return std::nullopt; |
| } |
| |
| // Attempt to compute the splat width of bits data by normalizing the splat to |
| // remove undefs. |
| static std::optional<APInt> getSplatableConstant(const Constant *C, |
| unsigned SplatBitWidth) { |
| const Type *Ty = C->getType(); |
| assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 && |
| "Illegal splat width"); |
| |
| if (std::optional<APInt> Bits = extractConstantBits(C)) |
| if (Bits->isSplat(SplatBitWidth)) |
| return Bits->trunc(SplatBitWidth); |
| |
| // Detect general splats with undefs. |
| // TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting? |
| if (auto *CV = dyn_cast<ConstantVector>(C)) { |
| unsigned NumOps = CV->getNumOperands(); |
| unsigned NumEltsBits = Ty->getScalarSizeInBits(); |
| unsigned NumScaleOps = SplatBitWidth / NumEltsBits; |
| if ((SplatBitWidth % NumEltsBits) == 0) { |
| // Collect the elements and ensure that within the repeated splat sequence |
| // they either match or are undef. |
| SmallVector<Constant *, 16> Sequence(NumScaleOps, nullptr); |
| for (unsigned Idx = 0; Idx != NumOps; ++Idx) { |
| if (Constant *Elt = CV->getAggregateElement(Idx)) { |
| if (isa<UndefValue>(Elt)) |
| continue; |
| unsigned SplatIdx = Idx % NumScaleOps; |
| if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) { |
| Sequence[SplatIdx] = Elt; |
| continue; |
| } |
| } |
| return std::nullopt; |
| } |
| // Extract the constant bits forming the splat and insert into the bits |
| // data, leave undef as zero. |
| APInt SplatBits = APInt::getZero(SplatBitWidth); |
| for (unsigned I = 0; I != NumScaleOps; ++I) { |
| if (!Sequence[I]) |
| continue; |
| if (std::optional<APInt> Bits = extractConstantBits(Sequence[I])) { |
| SplatBits.insertBits(*Bits, I * Bits->getBitWidth()); |
| continue; |
| } |
| return std::nullopt; |
| } |
| return SplatBits; |
| } |
| } |
| |
| return std::nullopt; |
| } |
| |
| // Split raw bits into a constant vector of elements of a specific bit width. |
| // NOTE: We don't always bother converting to scalars if the vector length is 1. |
| static Constant *rebuildConstant(LLVMContext &Ctx, Type *SclTy, |
| const APInt &Bits, unsigned NumSclBits) { |
| unsigned BitWidth = Bits.getBitWidth(); |
| |
| if (NumSclBits == 8) { |
| SmallVector<uint8_t> RawBits; |
| for (unsigned I = 0; I != BitWidth; I += 8) |
| RawBits.push_back(Bits.extractBits(8, I).getZExtValue()); |
| return ConstantDataVector::get(Ctx, RawBits); |
| } |
| |
| if (NumSclBits == 16) { |
| SmallVector<uint16_t> RawBits; |
| for (unsigned I = 0; I != BitWidth; I += 16) |
| RawBits.push_back(Bits.extractBits(16, I).getZExtValue()); |
| if (SclTy->is16bitFPTy()) |
| return ConstantDataVector::getFP(SclTy, RawBits); |
| return ConstantDataVector::get(Ctx, RawBits); |
| } |
| |
| if (NumSclBits == 32) { |
| SmallVector<uint32_t> RawBits; |
| for (unsigned I = 0; I != BitWidth; I += 32) |
| RawBits.push_back(Bits.extractBits(32, I).getZExtValue()); |
| if (SclTy->isFloatTy()) |
| return ConstantDataVector::getFP(SclTy, RawBits); |
| return ConstantDataVector::get(Ctx, RawBits); |
| } |
| |
| assert(NumSclBits == 64 && "Unhandled vector element width"); |
| |
| SmallVector<uint64_t> RawBits; |
| for (unsigned I = 0; I != BitWidth; I += 64) |
| RawBits.push_back(Bits.extractBits(64, I).getZExtValue()); |
| if (SclTy->isDoubleTy()) |
| return ConstantDataVector::getFP(SclTy, RawBits); |
| return ConstantDataVector::get(Ctx, RawBits); |
| } |
| |
| // Attempt to rebuild a normalized splat vector constant of the requested splat |
| // width, built up of potentially smaller scalar values. |
| static Constant *rebuildSplatCst(const Constant *C, unsigned /*NumBits*/, |
| unsigned /*NumElts*/, unsigned SplatBitWidth) { |
| // TODO: Truncate to NumBits once ConvertToBroadcastAVX512 support this. |
| std::optional<APInt> Splat = getSplatableConstant(C, SplatBitWidth); |
| if (!Splat) |
| return nullptr; |
| |
| // Determine scalar size to use for the constant splat vector, clamping as we |
| // might have found a splat smaller than the original constant data. |
| Type *SclTy = C->getType()->getScalarType(); |
| unsigned NumSclBits = SclTy->getPrimitiveSizeInBits(); |
| NumSclBits = std::min<unsigned>(NumSclBits, SplatBitWidth); |
| |
| // Fallback to i64 / double. |
| NumSclBits = (NumSclBits == 8 || NumSclBits == 16 || NumSclBits == 32) |
| ? NumSclBits |
| : 64; |
| |
| // Extract per-element bits. |
| return rebuildConstant(C->getContext(), SclTy, *Splat, NumSclBits); |
| } |
| |
| static Constant *rebuildZeroUpperCst(const Constant *C, unsigned NumBits, |
| unsigned /*NumElts*/, |
| unsigned ScalarBitWidth) { |
| Type *SclTy = C->getType()->getScalarType(); |
| unsigned NumSclBits = SclTy->getPrimitiveSizeInBits(); |
| LLVMContext &Ctx = C->getContext(); |
| |
| if (NumBits > ScalarBitWidth) { |
| // Determine if the upper bits are all zero. |
| if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) { |
| if (Bits->countLeadingZeros() >= (NumBits - ScalarBitWidth)) { |
| // If the original constant was made of smaller elements, try to retain |
| // those types. |
| if (ScalarBitWidth > NumSclBits && (ScalarBitWidth % NumSclBits) == 0) |
| return rebuildConstant(Ctx, SclTy, *Bits, NumSclBits); |
| |
| // Fallback to raw integer bits. |
| APInt RawBits = Bits->zextOrTrunc(ScalarBitWidth); |
| return ConstantInt::get(Ctx, RawBits); |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| static Constant *rebuildExtCst(const Constant *C, bool IsSExt, |
| unsigned NumBits, unsigned NumElts, |
| unsigned SrcEltBitWidth) { |
| unsigned DstEltBitWidth = NumBits / NumElts; |
| assert((NumBits % NumElts) == 0 && (NumBits % SrcEltBitWidth) == 0 && |
| (DstEltBitWidth % SrcEltBitWidth) == 0 && |
| (DstEltBitWidth > SrcEltBitWidth) && "Illegal extension width"); |
| |
| if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) { |
| assert((Bits->getBitWidth() / DstEltBitWidth) == NumElts && |
| (Bits->getBitWidth() % DstEltBitWidth) == 0 && |
| "Unexpected constant extension"); |
| |
| // Ensure every vector element can be represented by the src bitwidth. |
| APInt TruncBits = APInt::getZero(NumElts * SrcEltBitWidth); |
| for (unsigned I = 0; I != NumElts; ++I) { |
| APInt Elt = Bits->extractBits(DstEltBitWidth, I * DstEltBitWidth); |
| if ((IsSExt && Elt.getSignificantBits() > SrcEltBitWidth) || |
| (!IsSExt && Elt.getActiveBits() > SrcEltBitWidth)) |
| return nullptr; |
| TruncBits.insertBits(Elt.trunc(SrcEltBitWidth), I * SrcEltBitWidth); |
| } |
| |
| Type *Ty = C->getType(); |
| return rebuildConstant(Ty->getContext(), Ty->getScalarType(), TruncBits, |
| SrcEltBitWidth); |
| } |
| |
| return nullptr; |
| } |
| static Constant *rebuildSExtCst(const Constant *C, unsigned NumBits, |
| unsigned NumElts, unsigned SrcEltBitWidth) { |
| return rebuildExtCst(C, true, NumBits, NumElts, SrcEltBitWidth); |
| } |
| static Constant *rebuildZExtCst(const Constant *C, unsigned NumBits, |
| unsigned NumElts, unsigned SrcEltBitWidth) { |
| return rebuildExtCst(C, false, NumBits, NumElts, SrcEltBitWidth); |
| } |
| |
| bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF, |
| MachineBasicBlock &MBB, |
| MachineInstr &MI) { |
| unsigned Opc = MI.getOpcode(); |
| MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool(); |
| bool HasSSE2 = ST->hasSSE2(); |
| bool HasSSE41 = ST->hasSSE41(); |
| bool HasAVX2 = ST->hasAVX2(); |
| bool HasDQI = ST->hasDQI(); |
| bool HasBWI = ST->hasBWI(); |
| bool HasVLX = ST->hasVLX(); |
| bool MultiDomain = ST->hasAVX512() || ST->hasNoDomainDelayMov(); |
| bool OptSize = MF.getFunction().hasOptSize(); |
| |
| struct FixupEntry { |
| int Op; |
| int NumCstElts; |
| int MemBitWidth; |
| std::function<Constant *(const Constant *, unsigned, unsigned, unsigned)> |
| RebuildConstant; |
| }; |
| |
| auto NewOpcPreferable = [&](const FixupEntry &Fixup, |
| unsigned RegBitWidth) -> bool { |
| if (SM->hasInstrSchedModel()) { |
| unsigned NewOpc = Fixup.Op; |
| auto *OldDesc = SM->getSchedClassDesc(TII->get(Opc).getSchedClass()); |
| auto *NewDesc = SM->getSchedClassDesc(TII->get(NewOpc).getSchedClass()); |
| unsigned BitsSaved = RegBitWidth - (Fixup.NumCstElts * Fixup.MemBitWidth); |
| |
| // Compare tput/lat - avoid any regressions, but allow extra cycle of |
| // latency in exchange for each 128-bit (or less) constant pool reduction |
| // (this is a very simple cost:benefit estimate - there will probably be |
| // better ways to calculate this). |
| double OldTput = MCSchedModel::getReciprocalThroughput(*ST, *OldDesc); |
| double NewTput = MCSchedModel::getReciprocalThroughput(*ST, *NewDesc); |
| if (OldTput != NewTput) |
| return NewTput < OldTput; |
| |
| int LatTol = (BitsSaved + 127) / 128; |
| int OldLat = MCSchedModel::computeInstrLatency(*ST, *OldDesc); |
| int NewLat = MCSchedModel::computeInstrLatency(*ST, *NewDesc); |
| if (OldLat != NewLat) |
| return NewLat < (OldLat + LatTol); |
| } |
| |
| // We either were unable to get tput/lat or all values were equal. |
| // Prefer the new opcode for reduced constant pool size. |
| return true; |
| }; |
| |
| auto FixupConstant = [&](ArrayRef<FixupEntry> Fixups, unsigned RegBitWidth, |
| unsigned OperandNo) { |
| #ifdef EXPENSIVE_CHECKS |
| assert(llvm::is_sorted(Fixups, |
| [](const FixupEntry &A, const FixupEntry &B) { |
| return (A.NumCstElts * A.MemBitWidth) < |
| (B.NumCstElts * B.MemBitWidth); |
| }) && |
| "Constant fixup table not sorted in ascending constant size"); |
| #endif |
| assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) && |
| "Unexpected number of operands!"); |
| if (auto *C = X86::getConstantFromPool(MI, OperandNo)) { |
| unsigned CstBitWidth = C->getType()->getPrimitiveSizeInBits(); |
| RegBitWidth = RegBitWidth ? RegBitWidth : CstBitWidth; |
| for (const FixupEntry &Fixup : Fixups) { |
| // Always uses the smallest possible constant load with opt/minsize, |
| // otherwise use the smallest instruction that doesn't affect |
| // performance. |
| // TODO: If constant has been hoisted from loop, use smallest constant. |
| if (Fixup.Op && (OptSize || NewOpcPreferable(Fixup, RegBitWidth))) { |
| // Construct a suitable constant and adjust the MI to use the new |
| // constant pool entry. |
| if (Constant *NewCst = Fixup.RebuildConstant( |
| C, RegBitWidth, Fixup.NumCstElts, Fixup.MemBitWidth)) { |
| unsigned NewCPI = |
| CP->getConstantPoolIndex(NewCst, Align(Fixup.MemBitWidth / 8)); |
| MI.setDesc(TII->get(Fixup.Op)); |
| MI.getOperand(OperandNo + X86::AddrDisp).setIndex(NewCPI); |
| return true; |
| } |
| } |
| } |
| } |
| return false; |
| }; |
| |
| // Attempt to detect a suitable vzload/broadcast/vextload from increasing |
| // constant bitwidths. Prefer vzload/broadcast/vextload for same bitwidth: |
| // - vzload shouldn't ever need a shuffle port to zero the upper elements and |
| // the fp/int domain versions are equally available so we don't introduce a |
| // domain crossing penalty. |
| // - broadcast sometimes need a shuffle port (especially for 8/16-bit |
| // variants), AVX1 only has fp domain broadcasts but AVX2+ have good fp/int |
| // domain equivalents. |
| // - vextload always needs a shuffle port and is only ever int domain. |
| switch (Opc) { |
| /* FP Loads */ |
| case X86::MOVAPDrm: |
| case X86::MOVAPSrm: |
| case X86::MOVUPDrm: |
| case X86::MOVUPSrm: { |
| // TODO: SSE3 MOVDDUP Handling |
| FixupEntry Fixups[] = { |
| {X86::MOVSSrm, 1, 32, rebuildZeroUpperCst}, |
| {HasSSE2 ? X86::MOVSDrm : 0, 1, 64, rebuildZeroUpperCst}}; |
| return FixupConstant(Fixups, 128, 1); |
| } |
| case X86::VMOVAPDrm: |
| case X86::VMOVAPSrm: |
| case X86::VMOVUPDrm: |
| case X86::VMOVUPSrm: { |
| FixupEntry Fixups[] = { |
| {MultiDomain ? X86::VPMOVSXBQrm : 0, 2, 8, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXBQrm : 0, 2, 8, rebuildZExtCst}, |
| {X86::VMOVSSrm, 1, 32, rebuildZeroUpperCst}, |
| {X86::VBROADCASTSSrm, 1, 32, rebuildSplatCst}, |
| {MultiDomain ? X86::VPMOVSXBDrm : 0, 4, 8, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXBDrm : 0, 4, 8, rebuildZExtCst}, |
| {MultiDomain ? X86::VPMOVSXWQrm : 0, 2, 16, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXWQrm : 0, 2, 16, rebuildZExtCst}, |
| {X86::VMOVSDrm, 1, 64, rebuildZeroUpperCst}, |
| {X86::VMOVDDUPrm, 1, 64, rebuildSplatCst}, |
| {MultiDomain ? X86::VPMOVSXWDrm : 0, 4, 16, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXWDrm : 0, 4, 16, rebuildZExtCst}, |
| {MultiDomain ? X86::VPMOVSXDQrm : 0, 2, 32, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXDQrm : 0, 2, 32, rebuildZExtCst}}; |
| return FixupConstant(Fixups, 128, 1); |
| } |
| case X86::VMOVAPDYrm: |
| case X86::VMOVAPSYrm: |
| case X86::VMOVUPDYrm: |
| case X86::VMOVUPSYrm: { |
| FixupEntry Fixups[] = { |
| {X86::VBROADCASTSSYrm, 1, 32, rebuildSplatCst}, |
| {HasAVX2 && MultiDomain ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst}, |
| {HasAVX2 && MultiDomain ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst}, |
| {X86::VBROADCASTSDYrm, 1, 64, rebuildSplatCst}, |
| {HasAVX2 && MultiDomain ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst}, |
| {HasAVX2 && MultiDomain ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst}, |
| {HasAVX2 && MultiDomain ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst}, |
| {HasAVX2 && MultiDomain ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst}, |
| {X86::VBROADCASTF128rm, 1, 128, rebuildSplatCst}, |
| {HasAVX2 && MultiDomain ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst}, |
| {HasAVX2 && MultiDomain ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst}, |
| {HasAVX2 && MultiDomain ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst}, |
| {HasAVX2 && MultiDomain ? X86::VPMOVZXDQYrm : 0, 4, 32, |
| rebuildZExtCst}}; |
| return FixupConstant(Fixups, 256, 1); |
| } |
| case X86::VMOVAPDZ128rm: |
| case X86::VMOVAPSZ128rm: |
| case X86::VMOVUPDZ128rm: |
| case X86::VMOVUPSZ128rm: { |
| FixupEntry Fixups[] = { |
| {MultiDomain ? X86::VPMOVSXBQZ128rm : 0, 2, 8, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXBQZ128rm : 0, 2, 8, rebuildZExtCst}, |
| {X86::VMOVSSZrm, 1, 32, rebuildZeroUpperCst}, |
| {X86::VBROADCASTSSZ128rm, 1, 32, rebuildSplatCst}, |
| {MultiDomain ? X86::VPMOVSXBDZ128rm : 0, 4, 8, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXBDZ128rm : 0, 4, 8, rebuildZExtCst}, |
| {MultiDomain ? X86::VPMOVSXWQZ128rm : 0, 2, 16, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXWQZ128rm : 0, 2, 16, rebuildZExtCst}, |
| {X86::VMOVSDZrm, 1, 64, rebuildZeroUpperCst}, |
| {X86::VMOVDDUPZ128rm, 1, 64, rebuildSplatCst}, |
| {MultiDomain ? X86::VPMOVSXWDZ128rm : 0, 4, 16, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXWDZ128rm : 0, 4, 16, rebuildZExtCst}, |
| {MultiDomain ? X86::VPMOVSXDQZ128rm : 0, 2, 32, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXDQZ128rm : 0, 2, 32, rebuildZExtCst}}; |
| return FixupConstant(Fixups, 128, 1); |
| } |
| case X86::VMOVAPDZ256rm: |
| case X86::VMOVAPSZ256rm: |
| case X86::VMOVUPDZ256rm: |
| case X86::VMOVUPSZ256rm: { |
| FixupEntry Fixups[] = { |
| {X86::VBROADCASTSSZ256rm, 1, 32, rebuildSplatCst}, |
| {MultiDomain ? X86::VPMOVSXBQZ256rm : 0, 4, 8, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXBQZ256rm : 0, 4, 8, rebuildZExtCst}, |
| {X86::VBROADCASTSDZ256rm, 1, 64, rebuildSplatCst}, |
| {MultiDomain ? X86::VPMOVSXBDZ256rm : 0, 8, 8, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXBDZ256rm : 0, 8, 8, rebuildZExtCst}, |
| {MultiDomain ? X86::VPMOVSXWQZ256rm : 0, 4, 16, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXWQZ256rm : 0, 4, 16, rebuildZExtCst}, |
| {X86::VBROADCASTF32X4Z256rm, 1, 128, rebuildSplatCst}, |
| {MultiDomain ? X86::VPMOVSXWDZ256rm : 0, 8, 16, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXWDZ256rm : 0, 8, 16, rebuildZExtCst}, |
| {MultiDomain ? X86::VPMOVSXDQZ256rm : 0, 4, 32, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXDQZ256rm : 0, 4, 32, rebuildZExtCst}}; |
| return FixupConstant(Fixups, 256, 1); |
| } |
| case X86::VMOVAPDZrm: |
| case X86::VMOVAPSZrm: |
| case X86::VMOVUPDZrm: |
| case X86::VMOVUPSZrm: { |
| FixupEntry Fixups[] = { |
| {X86::VBROADCASTSSZrm, 1, 32, rebuildSplatCst}, |
| {X86::VBROADCASTSDZrm, 1, 64, rebuildSplatCst}, |
| {MultiDomain ? X86::VPMOVSXBQZrm : 0, 8, 8, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXBQZrm : 0, 8, 8, rebuildZExtCst}, |
| {X86::VBROADCASTF32X4Zrm, 1, 128, rebuildSplatCst}, |
| {MultiDomain ? X86::VPMOVSXBDZrm : 0, 16, 8, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXBDZrm : 0, 16, 8, rebuildZExtCst}, |
| {MultiDomain ? X86::VPMOVSXWQZrm : 0, 8, 16, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXWQZrm : 0, 8, 16, rebuildZExtCst}, |
| {X86::VBROADCASTF64X4Zrm, 1, 256, rebuildSplatCst}, |
| {MultiDomain ? X86::VPMOVSXWDZrm : 0, 16, 16, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXWDZrm : 0, 16, 16, rebuildZExtCst}, |
| {MultiDomain ? X86::VPMOVSXDQZrm : 0, 8, 32, rebuildSExtCst}, |
| {MultiDomain ? X86::VPMOVZXDQZrm : 0, 8, 32, rebuildZExtCst}}; |
| return FixupConstant(Fixups, 512, 1); |
| } |
| /* Integer Loads */ |
| case X86::MOVDQArm: |
| case X86::MOVDQUrm: { |
| FixupEntry Fixups[] = { |
| {HasSSE41 ? X86::PMOVSXBQrm : 0, 2, 8, rebuildSExtCst}, |
| {HasSSE41 ? X86::PMOVZXBQrm : 0, 2, 8, rebuildZExtCst}, |
| {X86::MOVDI2PDIrm, 1, 32, rebuildZeroUpperCst}, |
| {HasSSE41 ? X86::PMOVSXBDrm : 0, 4, 8, rebuildSExtCst}, |
| {HasSSE41 ? X86::PMOVZXBDrm : 0, 4, 8, rebuildZExtCst}, |
| {HasSSE41 ? X86::PMOVSXWQrm : 0, 2, 16, rebuildSExtCst}, |
| {HasSSE41 ? X86::PMOVZXWQrm : 0, 2, 16, rebuildZExtCst}, |
| {X86::MOVQI2PQIrm, 1, 64, rebuildZeroUpperCst}, |
| {HasSSE41 ? X86::PMOVSXBWrm : 0, 8, 8, rebuildSExtCst}, |
| {HasSSE41 ? X86::PMOVZXBWrm : 0, 8, 8, rebuildZExtCst}, |
| {HasSSE41 ? X86::PMOVSXWDrm : 0, 4, 16, rebuildSExtCst}, |
| {HasSSE41 ? X86::PMOVZXWDrm : 0, 4, 16, rebuildZExtCst}, |
| {HasSSE41 ? X86::PMOVSXDQrm : 0, 2, 32, rebuildSExtCst}, |
| {HasSSE41 ? X86::PMOVZXDQrm : 0, 2, 32, rebuildZExtCst}}; |
| return FixupConstant(Fixups, 128, 1); |
| } |
| case X86::VMOVDQArm: |
| case X86::VMOVDQUrm: { |
| FixupEntry Fixups[] = { |
| {HasAVX2 ? X86::VPBROADCASTBrm : 0, 1, 8, rebuildSplatCst}, |
| {HasAVX2 ? X86::VPBROADCASTWrm : 0, 1, 16, rebuildSplatCst}, |
| {X86::VPMOVSXBQrm, 2, 8, rebuildSExtCst}, |
| {X86::VPMOVZXBQrm, 2, 8, rebuildZExtCst}, |
| {X86::VMOVDI2PDIrm, 1, 32, rebuildZeroUpperCst}, |
| {HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm, 1, 32, |
| rebuildSplatCst}, |
| {X86::VPMOVSXBDrm, 4, 8, rebuildSExtCst}, |
| {X86::VPMOVZXBDrm, 4, 8, rebuildZExtCst}, |
| {X86::VPMOVSXWQrm, 2, 16, rebuildSExtCst}, |
| {X86::VPMOVZXWQrm, 2, 16, rebuildZExtCst}, |
| {X86::VMOVQI2PQIrm, 1, 64, rebuildZeroUpperCst}, |
| {HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm, 1, 64, |
| rebuildSplatCst}, |
| {X86::VPMOVSXBWrm, 8, 8, rebuildSExtCst}, |
| {X86::VPMOVZXBWrm, 8, 8, rebuildZExtCst}, |
| {X86::VPMOVSXWDrm, 4, 16, rebuildSExtCst}, |
| {X86::VPMOVZXWDrm, 4, 16, rebuildZExtCst}, |
| {X86::VPMOVSXDQrm, 2, 32, rebuildSExtCst}, |
| {X86::VPMOVZXDQrm, 2, 32, rebuildZExtCst}}; |
| return FixupConstant(Fixups, 128, 1); |
| } |
| case X86::VMOVDQAYrm: |
| case X86::VMOVDQUYrm: { |
| FixupEntry Fixups[] = { |
| {HasAVX2 ? X86::VPBROADCASTBYrm : 0, 1, 8, rebuildSplatCst}, |
| {HasAVX2 ? X86::VPBROADCASTWYrm : 0, 1, 16, rebuildSplatCst}, |
| {HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm, 1, 32, |
| rebuildSplatCst}, |
| {HasAVX2 ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst}, |
| {HasAVX2 ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst}, |
| {HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm, 1, 64, |
| rebuildSplatCst}, |
| {HasAVX2 ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst}, |
| {HasAVX2 ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst}, |
| {HasAVX2 ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst}, |
| {HasAVX2 ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst}, |
| {HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm, 1, 128, |
| rebuildSplatCst}, |
| {HasAVX2 ? X86::VPMOVSXBWYrm : 0, 16, 8, rebuildSExtCst}, |
| {HasAVX2 ? X86::VPMOVZXBWYrm : 0, 16, 8, rebuildZExtCst}, |
| {HasAVX2 ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst}, |
| {HasAVX2 ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst}, |
| {HasAVX2 ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst}, |
| {HasAVX2 ? X86::VPMOVZXDQYrm : 0, 4, 32, rebuildZExtCst}}; |
| return FixupConstant(Fixups, 256, 1); |
| } |
| case X86::VMOVDQA32Z128rm: |
| case X86::VMOVDQA64Z128rm: |
| case X86::VMOVDQU32Z128rm: |
| case X86::VMOVDQU64Z128rm: { |
| FixupEntry Fixups[] = { |
| {HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1, 8, rebuildSplatCst}, |
| {HasBWI ? X86::VPBROADCASTWZ128rm : 0, 1, 16, rebuildSplatCst}, |
| {X86::VPMOVSXBQZ128rm, 2, 8, rebuildSExtCst}, |
| {X86::VPMOVZXBQZ128rm, 2, 8, rebuildZExtCst}, |
| {X86::VMOVDI2PDIZrm, 1, 32, rebuildZeroUpperCst}, |
| {X86::VPBROADCASTDZ128rm, 1, 32, rebuildSplatCst}, |
| {X86::VPMOVSXBDZ128rm, 4, 8, rebuildSExtCst}, |
| {X86::VPMOVZXBDZ128rm, 4, 8, rebuildZExtCst}, |
| {X86::VPMOVSXWQZ128rm, 2, 16, rebuildSExtCst}, |
| {X86::VPMOVZXWQZ128rm, 2, 16, rebuildZExtCst}, |
| {X86::VMOVQI2PQIZrm, 1, 64, rebuildZeroUpperCst}, |
| {X86::VPBROADCASTQZ128rm, 1, 64, rebuildSplatCst}, |
| {HasBWI ? X86::VPMOVSXBWZ128rm : 0, 8, 8, rebuildSExtCst}, |
| {HasBWI ? X86::VPMOVZXBWZ128rm : 0, 8, 8, rebuildZExtCst}, |
| {X86::VPMOVSXWDZ128rm, 4, 16, rebuildSExtCst}, |
| {X86::VPMOVZXWDZ128rm, 4, 16, rebuildZExtCst}, |
| {X86::VPMOVSXDQZ128rm, 2, 32, rebuildSExtCst}, |
| {X86::VPMOVZXDQZ128rm, 2, 32, rebuildZExtCst}}; |
| return FixupConstant(Fixups, 128, 1); |
| } |
| case X86::VMOVDQA32Z256rm: |
| case X86::VMOVDQA64Z256rm: |
| case X86::VMOVDQU32Z256rm: |
| case X86::VMOVDQU64Z256rm: { |
| FixupEntry Fixups[] = { |
| {HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1, 8, rebuildSplatCst}, |
| {HasBWI ? X86::VPBROADCASTWZ256rm : 0, 1, 16, rebuildSplatCst}, |
| {X86::VPBROADCASTDZ256rm, 1, 32, rebuildSplatCst}, |
| {X86::VPMOVSXBQZ256rm, 4, 8, rebuildSExtCst}, |
| {X86::VPMOVZXBQZ256rm, 4, 8, rebuildZExtCst}, |
| {X86::VPBROADCASTQZ256rm, 1, 64, rebuildSplatCst}, |
| {X86::VPMOVSXBDZ256rm, 8, 8, rebuildSExtCst}, |
| {X86::VPMOVZXBDZ256rm, 8, 8, rebuildZExtCst}, |
| {X86::VPMOVSXWQZ256rm, 4, 16, rebuildSExtCst}, |
| {X86::VPMOVZXWQZ256rm, 4, 16, rebuildZExtCst}, |
| {X86::VBROADCASTI32X4Z256rm, 1, 128, rebuildSplatCst}, |
| {HasBWI ? X86::VPMOVSXBWZ256rm : 0, 16, 8, rebuildSExtCst}, |
| {HasBWI ? X86::VPMOVZXBWZ256rm : 0, 16, 8, rebuildZExtCst}, |
| {X86::VPMOVSXWDZ256rm, 8, 16, rebuildSExtCst}, |
| {X86::VPMOVZXWDZ256rm, 8, 16, rebuildZExtCst}, |
| {X86::VPMOVSXDQZ256rm, 4, 32, rebuildSExtCst}, |
| {X86::VPMOVZXDQZ256rm, 4, 32, rebuildZExtCst}}; |
| return FixupConstant(Fixups, 256, 1); |
| } |
| case X86::VMOVDQA32Zrm: |
| case X86::VMOVDQA64Zrm: |
| case X86::VMOVDQU32Zrm: |
| case X86::VMOVDQU64Zrm: { |
| FixupEntry Fixups[] = { |
| {HasBWI ? X86::VPBROADCASTBZrm : 0, 1, 8, rebuildSplatCst}, |
| {HasBWI ? X86::VPBROADCASTWZrm : 0, 1, 16, rebuildSplatCst}, |
| {X86::VPBROADCASTDZrm, 1, 32, rebuildSplatCst}, |
| {X86::VPBROADCASTQZrm, 1, 64, rebuildSplatCst}, |
| {X86::VPMOVSXBQZrm, 8, 8, rebuildSExtCst}, |
| {X86::VPMOVZXBQZrm, 8, 8, rebuildZExtCst}, |
| {X86::VBROADCASTI32X4Zrm, 1, 128, rebuildSplatCst}, |
| {X86::VPMOVSXBDZrm, 16, 8, rebuildSExtCst}, |
| {X86::VPMOVZXBDZrm, 16, 8, rebuildZExtCst}, |
| {X86::VPMOVSXWQZrm, 8, 16, rebuildSExtCst}, |
| {X86::VPMOVZXWQZrm, 8, 16, rebuildZExtCst}, |
| {X86::VBROADCASTI64X4Zrm, 1, 256, rebuildSplatCst}, |
| {HasBWI ? X86::VPMOVSXBWZrm : 0, 32, 8, rebuildSExtCst}, |
| {HasBWI ? X86::VPMOVZXBWZrm : 0, 32, 8, rebuildZExtCst}, |
| {X86::VPMOVSXWDZrm, 16, 16, rebuildSExtCst}, |
| {X86::VPMOVZXWDZrm, 16, 16, rebuildZExtCst}, |
| {X86::VPMOVSXDQZrm, 8, 32, rebuildSExtCst}, |
| {X86::VPMOVZXDQZrm, 8, 32, rebuildZExtCst}}; |
| return FixupConstant(Fixups, 512, 1); |
| } |
| } |
| |
| auto ConvertToBroadcast = [&](unsigned OpSrc, int BW) { |
| if (OpSrc) { |
| if (const X86FoldTableEntry *Mem2Bcst = |
| llvm::lookupBroadcastFoldTableBySize(OpSrc, BW)) { |
| unsigned OpBcst = Mem2Bcst->DstOp; |
| unsigned OpNoBcst = Mem2Bcst->Flags & TB_INDEX_MASK; |
| FixupEntry Fixups[] = {{(int)OpBcst, 1, BW, rebuildSplatCst}}; |
| // TODO: Add support for RegBitWidth, but currently rebuildSplatCst |
| // doesn't require it (defaults to Constant::getPrimitiveSizeInBits). |
| return FixupConstant(Fixups, 0, OpNoBcst); |
| } |
| } |
| return false; |
| }; |
| |
| // Attempt to find a AVX512 mapping from a full width memory-fold instruction |
| // to a broadcast-fold instruction variant. |
| if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX) |
| return ConvertToBroadcast(Opc, 32) || ConvertToBroadcast(Opc, 64); |
| |
| // Reverse the X86InstrInfo::setExecutionDomainCustom EVEX->VEX logic |
| // conversion to see if we can convert to a broadcasted (integer) logic op. |
| if (HasVLX && !HasDQI) { |
| unsigned OpSrc32 = 0, OpSrc64 = 0; |
| switch (Opc) { |
| case X86::VANDPDrm: |
| case X86::VANDPSrm: |
| case X86::VPANDrm: |
| OpSrc32 = X86 ::VPANDDZ128rm; |
| OpSrc64 = X86 ::VPANDQZ128rm; |
| break; |
| case X86::VANDPDYrm: |
| case X86::VANDPSYrm: |
| case X86::VPANDYrm: |
| OpSrc32 = X86 ::VPANDDZ256rm; |
| OpSrc64 = X86 ::VPANDQZ256rm; |
| break; |
| case X86::VANDNPDrm: |
| case X86::VANDNPSrm: |
| case X86::VPANDNrm: |
| OpSrc32 = X86 ::VPANDNDZ128rm; |
| OpSrc64 = X86 ::VPANDNQZ128rm; |
| break; |
| case X86::VANDNPDYrm: |
| case X86::VANDNPSYrm: |
| case X86::VPANDNYrm: |
| OpSrc32 = X86 ::VPANDNDZ256rm; |
| OpSrc64 = X86 ::VPANDNQZ256rm; |
| break; |
| case X86::VORPDrm: |
| case X86::VORPSrm: |
| case X86::VPORrm: |
| OpSrc32 = X86 ::VPORDZ128rm; |
| OpSrc64 = X86 ::VPORQZ128rm; |
| break; |
| case X86::VORPDYrm: |
| case X86::VORPSYrm: |
| case X86::VPORYrm: |
| OpSrc32 = X86 ::VPORDZ256rm; |
| OpSrc64 = X86 ::VPORQZ256rm; |
| break; |
| case X86::VXORPDrm: |
| case X86::VXORPSrm: |
| case X86::VPXORrm: |
| OpSrc32 = X86 ::VPXORDZ128rm; |
| OpSrc64 = X86 ::VPXORQZ128rm; |
| break; |
| case X86::VXORPDYrm: |
| case X86::VXORPSYrm: |
| case X86::VPXORYrm: |
| OpSrc32 = X86 ::VPXORDZ256rm; |
| OpSrc64 = X86 ::VPXORQZ256rm; |
| break; |
| } |
| if (OpSrc32 || OpSrc64) |
| return ConvertToBroadcast(OpSrc32, 32) || ConvertToBroadcast(OpSrc64, 64); |
| } |
| |
| return false; |
| } |
| |
| bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) { |
| LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";); |
| bool Changed = false; |
| ST = &MF.getSubtarget<X86Subtarget>(); |
| TII = ST->getInstrInfo(); |
| SM = &ST->getSchedModel(); |
| |
| for (MachineBasicBlock &MBB : MF) { |
| for (MachineInstr &MI : MBB) { |
| if (processInstruction(MF, MBB, MI)) { |
| ++NumInstChanges; |
| Changed = true; |
| } |
| } |
| } |
| LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";); |
| return Changed; |
| } |