| //===-- AtomicExpandPass.cpp - Expand atomic instructions -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a pass (at IR level) to replace atomic instructions with |
| // __atomic_* library calls, or target specific instruction which implement the |
| // same semantics in a way which better fits the target backend. This can |
| // include the use of (intrinsic-based) load-linked/store-conditional loops, |
| // AtomicCmpXchg, or type coercions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/AtomicExpandUtils.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetSubtargetInfo.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "atomic-expand" |
| |
| namespace { |
| class AtomicExpand: public FunctionPass { |
| const TargetMachine *TM; |
| const TargetLowering *TLI; |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| explicit AtomicExpand(const TargetMachine *TM = nullptr) |
| : FunctionPass(ID), TM(TM), TLI(nullptr) { |
| initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| |
| private: |
| bool bracketInstWithFences(Instruction *I, AtomicOrdering Order, |
| bool IsStore, bool IsLoad); |
| IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); |
| LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); |
| bool tryExpandAtomicLoad(LoadInst *LI); |
| bool expandAtomicLoadToLL(LoadInst *LI); |
| bool expandAtomicLoadToCmpXchg(LoadInst *LI); |
| StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); |
| bool expandAtomicStore(StoreInst *SI); |
| bool tryExpandAtomicRMW(AtomicRMWInst *AI); |
| bool expandAtomicOpToLLSC( |
| Instruction *I, Value *Addr, AtomicOrdering MemOpOrder, |
| std::function<Value *(IRBuilder<> &, Value *)> PerformOp); |
| AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); |
| bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); |
| bool isIdempotentRMW(AtomicRMWInst *AI); |
| bool simplifyIdempotentRMW(AtomicRMWInst *AI); |
| |
| bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align, |
| Value *PointerOperand, Value *ValueOperand, |
| Value *CASExpected, AtomicOrdering Ordering, |
| AtomicOrdering Ordering2, |
| ArrayRef<RTLIB::Libcall> Libcalls); |
| void expandAtomicLoadToLibcall(LoadInst *LI); |
| void expandAtomicStoreToLibcall(StoreInst *LI); |
| void expandAtomicRMWToLibcall(AtomicRMWInst *I); |
| void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); |
| }; |
| } |
| |
| char AtomicExpand::ID = 0; |
| char &llvm::AtomicExpandID = AtomicExpand::ID; |
| INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand", "Expand Atomic instructions", |
| false, false) |
| |
| FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) { |
| return new AtomicExpand(TM); |
| } |
| |
| namespace { |
| // Helper functions to retrieve the size of atomic instructions. |
| unsigned getAtomicOpSize(LoadInst *LI) { |
| const DataLayout &DL = LI->getModule()->getDataLayout(); |
| return DL.getTypeStoreSize(LI->getType()); |
| } |
| |
| unsigned getAtomicOpSize(StoreInst *SI) { |
| const DataLayout &DL = SI->getModule()->getDataLayout(); |
| return DL.getTypeStoreSize(SI->getValueOperand()->getType()); |
| } |
| |
| unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { |
| const DataLayout &DL = RMWI->getModule()->getDataLayout(); |
| return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); |
| } |
| |
| unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { |
| const DataLayout &DL = CASI->getModule()->getDataLayout(); |
| return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); |
| } |
| |
| // Helper functions to retrieve the alignment of atomic instructions. |
| unsigned getAtomicOpAlign(LoadInst *LI) { |
| unsigned Align = LI->getAlignment(); |
| // In the future, if this IR restriction is relaxed, we should |
| // return DataLayout::getABITypeAlignment when there's no align |
| // value. |
| assert(Align != 0 && "An atomic LoadInst always has an explicit alignment"); |
| return Align; |
| } |
| |
| unsigned getAtomicOpAlign(StoreInst *SI) { |
| unsigned Align = SI->getAlignment(); |
| // In the future, if this IR restriction is relaxed, we should |
| // return DataLayout::getABITypeAlignment when there's no align |
| // value. |
| assert(Align != 0 && "An atomic StoreInst always has an explicit alignment"); |
| return Align; |
| } |
| |
| unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) { |
| // TODO(PR27168): This instruction has no alignment attribute, but unlike the |
| // default alignment for load/store, the default here is to assume |
| // it has NATURAL alignment, not DataLayout-specified alignment. |
| const DataLayout &DL = RMWI->getModule()->getDataLayout(); |
| return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); |
| } |
| |
| unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) { |
| // TODO(PR27168): same comment as above. |
| const DataLayout &DL = CASI->getModule()->getDataLayout(); |
| return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); |
| } |
| |
| // Determine if a particular atomic operation has a supported size, |
| // and is of appropriate alignment, to be passed through for target |
| // lowering. (Versus turning into a __atomic libcall) |
| template <typename Inst> |
| bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { |
| unsigned Size = getAtomicOpSize(I); |
| unsigned Align = getAtomicOpAlign(I); |
| return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; |
| } |
| |
| } // end anonymous namespace |
| |
| bool AtomicExpand::runOnFunction(Function &F) { |
| if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand()) |
| return false; |
| TLI = TM->getSubtargetImpl(F)->getTargetLowering(); |
| |
| SmallVector<Instruction *, 1> AtomicInsts; |
| |
| // Changing control-flow while iterating through it is a bad idea, so gather a |
| // list of all atomic instructions before we start. |
| for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { |
| Instruction *I = &*II; |
| if (I->isAtomic() && !isa<FenceInst>(I)) |
| AtomicInsts.push_back(I); |
| } |
| |
| bool MadeChange = false; |
| for (auto I : AtomicInsts) { |
| auto LI = dyn_cast<LoadInst>(I); |
| auto SI = dyn_cast<StoreInst>(I); |
| auto RMWI = dyn_cast<AtomicRMWInst>(I); |
| auto CASI = dyn_cast<AtomicCmpXchgInst>(I); |
| assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); |
| |
| // If the Size/Alignment is not supported, replace with a libcall. |
| if (LI) { |
| if (!atomicSizeSupported(TLI, LI)) { |
| expandAtomicLoadToLibcall(LI); |
| MadeChange = true; |
| continue; |
| } |
| } else if (SI) { |
| if (!atomicSizeSupported(TLI, SI)) { |
| expandAtomicStoreToLibcall(SI); |
| MadeChange = true; |
| continue; |
| } |
| } else if (RMWI) { |
| if (!atomicSizeSupported(TLI, RMWI)) { |
| expandAtomicRMWToLibcall(RMWI); |
| MadeChange = true; |
| continue; |
| } |
| } else if (CASI) { |
| if (!atomicSizeSupported(TLI, CASI)) { |
| expandAtomicCASToLibcall(CASI); |
| MadeChange = true; |
| continue; |
| } |
| } |
| |
| if (TLI->shouldInsertFencesForAtomic(I)) { |
| auto FenceOrdering = AtomicOrdering::Monotonic; |
| bool IsStore, IsLoad; |
| if (LI && isAcquireOrStronger(LI->getOrdering())) { |
| FenceOrdering = LI->getOrdering(); |
| LI->setOrdering(AtomicOrdering::Monotonic); |
| IsStore = false; |
| IsLoad = true; |
| } else if (SI && isReleaseOrStronger(SI->getOrdering())) { |
| FenceOrdering = SI->getOrdering(); |
| SI->setOrdering(AtomicOrdering::Monotonic); |
| IsStore = true; |
| IsLoad = false; |
| } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || |
| isAcquireOrStronger(RMWI->getOrdering()))) { |
| FenceOrdering = RMWI->getOrdering(); |
| RMWI->setOrdering(AtomicOrdering::Monotonic); |
| IsStore = IsLoad = true; |
| } else if (CASI && !TLI->shouldExpandAtomicCmpXchgInIR(CASI) && |
| (isReleaseOrStronger(CASI->getSuccessOrdering()) || |
| isAcquireOrStronger(CASI->getSuccessOrdering()))) { |
| // If a compare and swap is lowered to LL/SC, we can do smarter fence |
| // insertion, with a stronger one on the success path than on the |
| // failure path. As a result, fence insertion is directly done by |
| // expandAtomicCmpXchg in that case. |
| FenceOrdering = CASI->getSuccessOrdering(); |
| CASI->setSuccessOrdering(AtomicOrdering::Monotonic); |
| CASI->setFailureOrdering(AtomicOrdering::Monotonic); |
| IsStore = IsLoad = true; |
| } |
| |
| if (FenceOrdering != AtomicOrdering::Monotonic) { |
| MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad); |
| } |
| } |
| |
| if (LI) { |
| if (LI->getType()->isFloatingPointTy()) { |
| // TODO: add a TLI hook to control this so that each target can |
| // convert to lowering the original type one at a time. |
| LI = convertAtomicLoadToIntegerType(LI); |
| assert(LI->getType()->isIntegerTy() && "invariant broken"); |
| MadeChange = true; |
| } |
| |
| MadeChange |= tryExpandAtomicLoad(LI); |
| } else if (SI) { |
| if (SI->getValueOperand()->getType()->isFloatingPointTy()) { |
| // TODO: add a TLI hook to control this so that each target can |
| // convert to lowering the original type one at a time. |
| SI = convertAtomicStoreToIntegerType(SI); |
| assert(SI->getValueOperand()->getType()->isIntegerTy() && |
| "invariant broken"); |
| MadeChange = true; |
| } |
| |
| if (TLI->shouldExpandAtomicStoreInIR(SI)) |
| MadeChange |= expandAtomicStore(SI); |
| } else if (RMWI) { |
| // There are two different ways of expanding RMW instructions: |
| // - into a load if it is idempotent |
| // - into a Cmpxchg/LL-SC loop otherwise |
| // we try them in that order. |
| |
| if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { |
| MadeChange = true; |
| } else { |
| MadeChange |= tryExpandAtomicRMW(RMWI); |
| } |
| } else if (CASI) { |
| // TODO: when we're ready to make the change at the IR level, we can |
| // extend convertCmpXchgToInteger for floating point too. |
| assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && |
| "unimplemented - floating point not legal at IR level"); |
| if (CASI->getCompareOperand()->getType()->isPointerTy() ) { |
| // TODO: add a TLI hook to control this so that each target can |
| // convert to lowering the original type one at a time. |
| CASI = convertCmpXchgToIntegerType(CASI); |
| assert(CASI->getCompareOperand()->getType()->isIntegerTy() && |
| "invariant broken"); |
| MadeChange = true; |
| } |
| |
| if (TLI->shouldExpandAtomicCmpXchgInIR(CASI)) |
| MadeChange |= expandAtomicCmpXchg(CASI); |
| } |
| } |
| return MadeChange; |
| } |
| |
| bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order, |
| bool IsStore, bool IsLoad) { |
| IRBuilder<> Builder(I); |
| |
| auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad); |
| |
| auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad); |
| // The trailing fence is emitted before the instruction instead of after |
| // because there is no easy way of setting Builder insertion point after |
| // an instruction. So we must erase it from the BB, and insert it back |
| // in the right place. |
| // We have a guard here because not every atomic operation generates a |
| // trailing fence. |
| if (TrailingFence) { |
| TrailingFence->removeFromParent(); |
| TrailingFence->insertAfter(I); |
| } |
| |
| return (LeadingFence || TrailingFence); |
| } |
| |
| /// Get the iX type with the same bitwidth as T. |
| IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, |
| const DataLayout &DL) { |
| EVT VT = TLI->getValueType(DL, T); |
| unsigned BitWidth = VT.getStoreSizeInBits(); |
| assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); |
| return IntegerType::get(T->getContext(), BitWidth); |
| } |
| |
| /// Convert an atomic load of a non-integral type to an integer load of the |
| /// equivalent bitwidth. See the function comment on |
| /// convertAtomicStoreToIntegerType for background. |
| LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { |
| auto *M = LI->getModule(); |
| Type *NewTy = getCorrespondingIntegerType(LI->getType(), |
| M->getDataLayout()); |
| |
| IRBuilder<> Builder(LI); |
| |
| Value *Addr = LI->getPointerOperand(); |
| Type *PT = PointerType::get(NewTy, |
| Addr->getType()->getPointerAddressSpace()); |
| Value *NewAddr = Builder.CreateBitCast(Addr, PT); |
| |
| auto *NewLI = Builder.CreateLoad(NewAddr); |
| NewLI->setAlignment(LI->getAlignment()); |
| NewLI->setVolatile(LI->isVolatile()); |
| NewLI->setAtomic(LI->getOrdering(), LI->getSynchScope()); |
| DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); |
| |
| Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); |
| LI->replaceAllUsesWith(NewVal); |
| LI->eraseFromParent(); |
| return NewLI; |
| } |
| |
| bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { |
| switch (TLI->shouldExpandAtomicLoadInIR(LI)) { |
| case TargetLoweringBase::AtomicExpansionKind::None: |
| return false; |
| case TargetLoweringBase::AtomicExpansionKind::LLSC: |
| return expandAtomicOpToLLSC( |
| LI, LI->getPointerOperand(), LI->getOrdering(), |
| [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); |
| case TargetLoweringBase::AtomicExpansionKind::LLOnly: |
| return expandAtomicLoadToLL(LI); |
| case TargetLoweringBase::AtomicExpansionKind::CmpXChg: |
| return expandAtomicLoadToCmpXchg(LI); |
| } |
| llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); |
| } |
| |
| bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { |
| IRBuilder<> Builder(LI); |
| |
| // On some architectures, load-linked instructions are atomic for larger |
| // sizes than normal loads. For example, the only 64-bit load guaranteed |
| // to be single-copy atomic by ARM is an ldrexd (A3.5.3). |
| Value *Val = |
| TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); |
| TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); |
| |
| LI->replaceAllUsesWith(Val); |
| LI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { |
| IRBuilder<> Builder(LI); |
| AtomicOrdering Order = LI->getOrdering(); |
| Value *Addr = LI->getPointerOperand(); |
| Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); |
| Constant *DummyVal = Constant::getNullValue(Ty); |
| |
| Value *Pair = Builder.CreateAtomicCmpXchg( |
| Addr, DummyVal, DummyVal, Order, |
| AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); |
| Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); |
| |
| LI->replaceAllUsesWith(Loaded); |
| LI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| /// Convert an atomic store of a non-integral type to an integer store of the |
| /// equivalent bitwidth. We used to not support floating point or vector |
| /// atomics in the IR at all. The backends learned to deal with the bitcast |
| /// idiom because that was the only way of expressing the notion of a atomic |
| /// float or vector store. The long term plan is to teach each backend to |
| /// instruction select from the original atomic store, but as a migration |
| /// mechanism, we convert back to the old format which the backends understand. |
| /// Each backend will need individual work to recognize the new format. |
| StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { |
| IRBuilder<> Builder(SI); |
| auto *M = SI->getModule(); |
| Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), |
| M->getDataLayout()); |
| Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); |
| |
| Value *Addr = SI->getPointerOperand(); |
| Type *PT = PointerType::get(NewTy, |
| Addr->getType()->getPointerAddressSpace()); |
| Value *NewAddr = Builder.CreateBitCast(Addr, PT); |
| |
| StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); |
| NewSI->setAlignment(SI->getAlignment()); |
| NewSI->setVolatile(SI->isVolatile()); |
| NewSI->setAtomic(SI->getOrdering(), SI->getSynchScope()); |
| DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); |
| SI->eraseFromParent(); |
| return NewSI; |
| } |
| |
| bool AtomicExpand::expandAtomicStore(StoreInst *SI) { |
| // This function is only called on atomic stores that are too large to be |
| // atomic if implemented as a native store. So we replace them by an |
| // atomic swap, that can be implemented for example as a ldrex/strex on ARM |
| // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. |
| // It is the responsibility of the target to only signal expansion via |
| // shouldExpandAtomicRMW in cases where this is required and possible. |
| IRBuilder<> Builder(SI); |
| AtomicRMWInst *AI = |
| Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), |
| SI->getValueOperand(), SI->getOrdering()); |
| SI->eraseFromParent(); |
| |
| // Now we have an appropriate swap instruction, lower it as usual. |
| return tryExpandAtomicRMW(AI); |
| } |
| |
| static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, |
| Value *Loaded, Value *NewVal, |
| AtomicOrdering MemOpOrder, |
| Value *&Success, Value *&NewLoaded) { |
| Value* Pair = Builder.CreateAtomicCmpXchg( |
| Addr, Loaded, NewVal, MemOpOrder, |
| AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); |
| Success = Builder.CreateExtractValue(Pair, 1, "success"); |
| NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); |
| } |
| |
| /// Emit IR to implement the given atomicrmw operation on values in registers, |
| /// returning the new value. |
| static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, |
| Value *Loaded, Value *Inc) { |
| Value *NewVal; |
| switch (Op) { |
| case AtomicRMWInst::Xchg: |
| return Inc; |
| case AtomicRMWInst::Add: |
| return Builder.CreateAdd(Loaded, Inc, "new"); |
| case AtomicRMWInst::Sub: |
| return Builder.CreateSub(Loaded, Inc, "new"); |
| case AtomicRMWInst::And: |
| return Builder.CreateAnd(Loaded, Inc, "new"); |
| case AtomicRMWInst::Nand: |
| return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); |
| case AtomicRMWInst::Or: |
| return Builder.CreateOr(Loaded, Inc, "new"); |
| case AtomicRMWInst::Xor: |
| return Builder.CreateXor(Loaded, Inc, "new"); |
| case AtomicRMWInst::Max: |
| NewVal = Builder.CreateICmpSGT(Loaded, Inc); |
| return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); |
| case AtomicRMWInst::Min: |
| NewVal = Builder.CreateICmpSLE(Loaded, Inc); |
| return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); |
| case AtomicRMWInst::UMax: |
| NewVal = Builder.CreateICmpUGT(Loaded, Inc); |
| return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); |
| case AtomicRMWInst::UMin: |
| NewVal = Builder.CreateICmpULE(Loaded, Inc); |
| return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); |
| default: |
| llvm_unreachable("Unknown atomic op"); |
| } |
| } |
| |
| bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { |
| switch (TLI->shouldExpandAtomicRMWInIR(AI)) { |
| case TargetLoweringBase::AtomicExpansionKind::None: |
| return false; |
| case TargetLoweringBase::AtomicExpansionKind::LLSC: |
| return expandAtomicOpToLLSC(AI, AI->getPointerOperand(), AI->getOrdering(), |
| [&](IRBuilder<> &Builder, Value *Loaded) { |
| return performAtomicOp(AI->getOperation(), |
| Builder, Loaded, |
| AI->getValOperand()); |
| }); |
| case TargetLoweringBase::AtomicExpansionKind::CmpXChg: |
| return expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); |
| default: |
| llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); |
| } |
| } |
| |
| bool AtomicExpand::expandAtomicOpToLLSC( |
| Instruction *I, Value *Addr, AtomicOrdering MemOpOrder, |
| std::function<Value *(IRBuilder<> &, Value *)> PerformOp) { |
| BasicBlock *BB = I->getParent(); |
| Function *F = BB->getParent(); |
| LLVMContext &Ctx = F->getContext(); |
| |
| // Given: atomicrmw some_op iN* %addr, iN %incr ordering |
| // |
| // The standard expansion we produce is: |
| // [...] |
| // fence? |
| // atomicrmw.start: |
| // %loaded = @load.linked(%addr) |
| // %new = some_op iN %loaded, %incr |
| // %stored = @store_conditional(%new, %addr) |
| // %try_again = icmp i32 ne %stored, 0 |
| // br i1 %try_again, label %loop, label %atomicrmw.end |
| // atomicrmw.end: |
| // fence? |
| // [...] |
| BasicBlock *ExitBB = BB->splitBasicBlock(I->getIterator(), "atomicrmw.end"); |
| BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); |
| |
| // This grabs the DebugLoc from I. |
| IRBuilder<> Builder(I); |
| |
| // The split call above "helpfully" added a branch at the end of BB (to the |
| // wrong place), but we might want a fence too. It's easiest to just remove |
| // the branch entirely. |
| std::prev(BB->end())->eraseFromParent(); |
| Builder.SetInsertPoint(BB); |
| Builder.CreateBr(LoopBB); |
| |
| // Start the main loop block now that we've taken care of the preliminaries. |
| Builder.SetInsertPoint(LoopBB); |
| Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); |
| |
| Value *NewVal = PerformOp(Builder, Loaded); |
| |
| Value *StoreSuccess = |
| TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); |
| Value *TryAgain = Builder.CreateICmpNE( |
| StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); |
| Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); |
| |
| Builder.SetInsertPoint(ExitBB, ExitBB->begin()); |
| |
| I->replaceAllUsesWith(Loaded); |
| I->eraseFromParent(); |
| |
| return true; |
| } |
| |
| /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of |
| /// the equivalent bitwidth. We used to not support pointer cmpxchg in the |
| /// IR. As a migration step, we convert back to what use to be the standard |
| /// way to represent a pointer cmpxchg so that we can update backends one by |
| /// one. |
| AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { |
| auto *M = CI->getModule(); |
| Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), |
| M->getDataLayout()); |
| |
| IRBuilder<> Builder(CI); |
| |
| Value *Addr = CI->getPointerOperand(); |
| Type *PT = PointerType::get(NewTy, |
| Addr->getType()->getPointerAddressSpace()); |
| Value *NewAddr = Builder.CreateBitCast(Addr, PT); |
| |
| Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); |
| Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); |
| |
| |
| auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal, |
| CI->getSuccessOrdering(), |
| CI->getFailureOrdering(), |
| CI->getSynchScope()); |
| NewCI->setVolatile(CI->isVolatile()); |
| NewCI->setWeak(CI->isWeak()); |
| DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); |
| |
| Value *OldVal = Builder.CreateExtractValue(NewCI, 0); |
| Value *Succ = Builder.CreateExtractValue(NewCI, 1); |
| |
| OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); |
| |
| Value *Res = UndefValue::get(CI->getType()); |
| Res = Builder.CreateInsertValue(Res, OldVal, 0); |
| Res = Builder.CreateInsertValue(Res, Succ, 1); |
| |
| CI->replaceAllUsesWith(Res); |
| CI->eraseFromParent(); |
| return NewCI; |
| } |
| |
| |
| bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { |
| AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); |
| AtomicOrdering FailureOrder = CI->getFailureOrdering(); |
| Value *Addr = CI->getPointerOperand(); |
| BasicBlock *BB = CI->getParent(); |
| Function *F = BB->getParent(); |
| LLVMContext &Ctx = F->getContext(); |
| // If shouldInsertFencesForAtomic() returns true, then the target does not |
| // want to deal with memory orders, and emitLeading/TrailingFence should take |
| // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we |
| // should preserve the ordering. |
| bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); |
| AtomicOrdering MemOpOrder = |
| ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; |
| |
| // In implementations which use a barrier to achieve release semantics, we can |
| // delay emitting this barrier until we know a store is actually going to be |
| // attempted. The cost of this delay is that we need 2 copies of the block |
| // emitting the load-linked, affecting code size. |
| // |
| // Ideally, this logic would be unconditional except for the minsize check |
| // since in other cases the extra blocks naturally collapse down to the |
| // minimal loop. Unfortunately, this puts too much stress on later |
| // optimisations so we avoid emitting the extra logic in those cases too. |
| bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && |
| SuccessOrder != AtomicOrdering::Monotonic && |
| SuccessOrder != AtomicOrdering::Acquire && |
| !F->optForMinSize(); |
| |
| // There's no overhead for sinking the release barrier in a weak cmpxchg, so |
| // do it even on minsize. |
| bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak(); |
| |
| // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord |
| // |
| // The full expansion we produce is: |
| // [...] |
| // cmpxchg.start: |
| // %unreleasedload = @load.linked(%addr) |
| // %should_store = icmp eq %unreleasedload, %desired |
| // br i1 %should_store, label %cmpxchg.fencedstore, |
| // label %cmpxchg.nostore |
| // cmpxchg.releasingstore: |
| // fence? |
| // br label cmpxchg.trystore |
| // cmpxchg.trystore: |
| // %loaded.trystore = phi [%unreleasedload, %releasingstore], |
| // [%releasedload, %cmpxchg.releasedload] |
| // %stored = @store_conditional(%new, %addr) |
| // %success = icmp eq i32 %stored, 0 |
| // br i1 %success, label %cmpxchg.success, |
| // label %cmpxchg.releasedload/%cmpxchg.failure |
| // cmpxchg.releasedload: |
| // %releasedload = @load.linked(%addr) |
| // %should_store = icmp eq %releasedload, %desired |
| // br i1 %should_store, label %cmpxchg.trystore, |
| // label %cmpxchg.failure |
| // cmpxchg.success: |
| // fence? |
| // br label %cmpxchg.end |
| // cmpxchg.nostore: |
| // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], |
| // [%releasedload, |
| // %cmpxchg.releasedload/%cmpxchg.trystore] |
| // @load_linked_fail_balance()? |
| // br label %cmpxchg.failure |
| // cmpxchg.failure: |
| // fence? |
| // br label %cmpxchg.end |
| // cmpxchg.end: |
| // %loaded = phi [%loaded.nostore, %cmpxchg.failure], |
| // [%loaded.trystore, %cmpxchg.trystore] |
| // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] |
| // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 |
| // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 |
| // [...] |
| BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); |
| auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); |
| auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); |
| auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); |
| auto ReleasedLoadBB = |
| BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); |
| auto TryStoreBB = |
| BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); |
| auto ReleasingStoreBB = |
| BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); |
| auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); |
| |
| // This grabs the DebugLoc from CI |
| IRBuilder<> Builder(CI); |
| |
| // The split call above "helpfully" added a branch at the end of BB (to the |
| // wrong place), but we might want a fence too. It's easiest to just remove |
| // the branch entirely. |
| std::prev(BB->end())->eraseFromParent(); |
| Builder.SetInsertPoint(BB); |
| if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) |
| TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true, |
| /*IsLoad=*/true); |
| Builder.CreateBr(StartBB); |
| |
| // Start the main loop block now that we've taken care of the preliminaries. |
| Builder.SetInsertPoint(StartBB); |
| Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); |
| Value *ShouldStore = Builder.CreateICmpEQ( |
| UnreleasedLoad, CI->getCompareOperand(), "should_store"); |
| |
| // If the cmpxchg doesn't actually need any ordering when it fails, we can |
| // jump straight past that fence instruction (if it exists). |
| Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); |
| |
| Builder.SetInsertPoint(ReleasingStoreBB); |
| if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) |
| TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true, |
| /*IsLoad=*/true); |
| Builder.CreateBr(TryStoreBB); |
| |
| Builder.SetInsertPoint(TryStoreBB); |
| Value *StoreSuccess = TLI->emitStoreConditional( |
| Builder, CI->getNewValOperand(), Addr, MemOpOrder); |
| StoreSuccess = Builder.CreateICmpEQ( |
| StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); |
| BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; |
| Builder.CreateCondBr(StoreSuccess, SuccessBB, |
| CI->isWeak() ? FailureBB : RetryBB); |
| |
| Builder.SetInsertPoint(ReleasedLoadBB); |
| Value *SecondLoad; |
| if (HasReleasedLoadBB) { |
| SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); |
| ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(), |
| "should_store"); |
| |
| // If the cmpxchg doesn't actually need any ordering when it fails, we can |
| // jump straight past that fence instruction (if it exists). |
| Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); |
| } else |
| Builder.CreateUnreachable(); |
| |
| // Make sure later instructions don't get reordered with a fence if |
| // necessary. |
| Builder.SetInsertPoint(SuccessBB); |
| if (ShouldInsertFencesForAtomic) |
| TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true, |
| /*IsLoad=*/true); |
| Builder.CreateBr(ExitBB); |
| |
| Builder.SetInsertPoint(NoStoreBB); |
| // In the failing case, where we don't execute the store-conditional, the |
| // target might want to balance out the load-linked with a dedicated |
| // instruction (e.g., on ARM, clearing the exclusive monitor). |
| TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); |
| Builder.CreateBr(FailureBB); |
| |
| Builder.SetInsertPoint(FailureBB); |
| if (ShouldInsertFencesForAtomic) |
| TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true, |
| /*IsLoad=*/true); |
| Builder.CreateBr(ExitBB); |
| |
| // Finally, we have control-flow based knowledge of whether the cmpxchg |
| // succeeded or not. We expose this to later passes by converting any |
| // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate |
| // PHI. |
| Builder.SetInsertPoint(ExitBB, ExitBB->begin()); |
| PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); |
| Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); |
| Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); |
| |
| // Setup the builder so we can create any PHIs we need. |
| Value *Loaded; |
| if (!HasReleasedLoadBB) |
| Loaded = UnreleasedLoad; |
| else { |
| Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin()); |
| PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); |
| TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB); |
| TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); |
| |
| Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin()); |
| PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); |
| NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB); |
| NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); |
| |
| Builder.SetInsertPoint(ExitBB, ++ExitBB->begin()); |
| PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); |
| ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB); |
| ExitLoaded->addIncoming(NoStoreLoaded, FailureBB); |
| |
| Loaded = ExitLoaded; |
| } |
| |
| // Look for any users of the cmpxchg that are just comparing the loaded value |
| // against the desired one, and replace them with the CFG-derived version. |
| SmallVector<ExtractValueInst *, 2> PrunedInsts; |
| for (auto User : CI->users()) { |
| ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); |
| if (!EV) |
| continue; |
| |
| assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && |
| "weird extraction from { iN, i1 }"); |
| |
| if (EV->getIndices()[0] == 0) |
| EV->replaceAllUsesWith(Loaded); |
| else |
| EV->replaceAllUsesWith(Success); |
| |
| PrunedInsts.push_back(EV); |
| } |
| |
| // We can remove the instructions now we're no longer iterating through them. |
| for (auto EV : PrunedInsts) |
| EV->eraseFromParent(); |
| |
| if (!CI->use_empty()) { |
| // Some use of the full struct return that we don't understand has happened, |
| // so we've got to reconstruct it properly. |
| Value *Res; |
| Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); |
| Res = Builder.CreateInsertValue(Res, Success, 1); |
| |
| CI->replaceAllUsesWith(Res); |
| } |
| |
| CI->eraseFromParent(); |
| return true; |
| } |
| |
| bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { |
| auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); |
| if(!C) |
| return false; |
| |
| AtomicRMWInst::BinOp Op = RMWI->getOperation(); |
| switch(Op) { |
| case AtomicRMWInst::Add: |
| case AtomicRMWInst::Sub: |
| case AtomicRMWInst::Or: |
| case AtomicRMWInst::Xor: |
| return C->isZero(); |
| case AtomicRMWInst::And: |
| return C->isMinusOne(); |
| // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... |
| default: |
| return false; |
| } |
| } |
| |
| bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { |
| if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { |
| tryExpandAtomicLoad(ResultingLoad); |
| return true; |
| } |
| return false; |
| } |
| |
| bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, |
| CreateCmpXchgInstFun CreateCmpXchg) { |
| assert(AI); |
| |
| AtomicOrdering MemOpOrder = AI->getOrdering() == AtomicOrdering::Unordered |
| ? AtomicOrdering::Monotonic |
| : AI->getOrdering(); |
| Value *Addr = AI->getPointerOperand(); |
| BasicBlock *BB = AI->getParent(); |
| Function *F = BB->getParent(); |
| LLVMContext &Ctx = F->getContext(); |
| |
| // Given: atomicrmw some_op iN* %addr, iN %incr ordering |
| // |
| // The standard expansion we produce is: |
| // [...] |
| // %init_loaded = load atomic iN* %addr |
| // br label %loop |
| // loop: |
| // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] |
| // %new = some_op iN %loaded, %incr |
| // %pair = cmpxchg iN* %addr, iN %loaded, iN %new |
| // %new_loaded = extractvalue { iN, i1 } %pair, 0 |
| // %success = extractvalue { iN, i1 } %pair, 1 |
| // br i1 %success, label %atomicrmw.end, label %loop |
| // atomicrmw.end: |
| // [...] |
| BasicBlock *ExitBB = BB->splitBasicBlock(AI->getIterator(), "atomicrmw.end"); |
| BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); |
| |
| // This grabs the DebugLoc from AI. |
| IRBuilder<> Builder(AI); |
| |
| // The split call above "helpfully" added a branch at the end of BB (to the |
| // wrong place), but we want a load. It's easiest to just remove |
| // the branch entirely. |
| std::prev(BB->end())->eraseFromParent(); |
| Builder.SetInsertPoint(BB); |
| LoadInst *InitLoaded = Builder.CreateLoad(Addr); |
| // Atomics require at least natural alignment. |
| InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits() / 8); |
| Builder.CreateBr(LoopBB); |
| |
| // Start the main loop block now that we've taken care of the preliminaries. |
| Builder.SetInsertPoint(LoopBB); |
| PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded"); |
| Loaded->addIncoming(InitLoaded, BB); |
| |
| Value *NewVal = |
| performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); |
| |
| Value *NewLoaded = nullptr; |
| Value *Success = nullptr; |
| |
| CreateCmpXchg(Builder, Addr, Loaded, NewVal, MemOpOrder, |
| Success, NewLoaded); |
| assert(Success && NewLoaded); |
| |
| Loaded->addIncoming(NewLoaded, LoopBB); |
| |
| Builder.CreateCondBr(Success, ExitBB, LoopBB); |
| |
| Builder.SetInsertPoint(ExitBB, ExitBB->begin()); |
| |
| AI->replaceAllUsesWith(NewLoaded); |
| AI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| // In order to use one of the sized library calls such as |
| // __atomic_fetch_add_4, the alignment must be sufficient, the size |
| // must be one of the potentially-specialized sizes, and the value |
| // type must actually exist in C on the target (otherwise, the |
| // function wouldn't actually be defined.) |
| static bool canUseSizedAtomicCall(unsigned Size, unsigned Align, |
| const DataLayout &DL) { |
| // TODO: "LargestSize" is an approximation for "largest type that |
| // you can express in C". It seems to be the case that int128 is |
| // supported on all 64-bit platforms, otherwise only up to 64-bit |
| // integers are supported. If we get this wrong, then we'll try to |
| // call a sized libcall that doesn't actually exist. There should |
| // really be some more reliable way in LLVM of determining integer |
| // sizes which are valid in the target's C ABI... |
| unsigned LargestSize = DL.getLargestLegalIntTypeSize() >= 64 ? 16 : 8; |
| return Align >= Size && |
| (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && |
| Size <= LargestSize; |
| } |
| |
| void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { |
| static const RTLIB::Libcall Libcalls[6] = { |
| RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, |
| RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; |
| unsigned Size = getAtomicOpSize(I); |
| unsigned Align = getAtomicOpAlign(I); |
| |
| bool expanded = expandAtomicOpToLibcall( |
| I, Size, Align, I->getPointerOperand(), nullptr, nullptr, |
| I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); |
| (void)expanded; |
| assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load"); |
| } |
| |
| void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { |
| static const RTLIB::Libcall Libcalls[6] = { |
| RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, |
| RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; |
| unsigned Size = getAtomicOpSize(I); |
| unsigned Align = getAtomicOpAlign(I); |
| |
| bool expanded = expandAtomicOpToLibcall( |
| I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr, |
| I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); |
| (void)expanded; |
| assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store"); |
| } |
| |
| void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { |
| static const RTLIB::Libcall Libcalls[6] = { |
| RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, |
| RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, |
| RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; |
| unsigned Size = getAtomicOpSize(I); |
| unsigned Align = getAtomicOpAlign(I); |
| |
| bool expanded = expandAtomicOpToLibcall( |
| I, Size, Align, I->getPointerOperand(), I->getNewValOperand(), |
| I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), |
| Libcalls); |
| (void)expanded; |
| assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS"); |
| } |
| |
| static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { |
| static const RTLIB::Libcall LibcallsXchg[6] = { |
| RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, |
| RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, |
| RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; |
| static const RTLIB::Libcall LibcallsAdd[6] = { |
| RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, |
| RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, |
| RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; |
| static const RTLIB::Libcall LibcallsSub[6] = { |
| RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, |
| RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, |
| RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; |
| static const RTLIB::Libcall LibcallsAnd[6] = { |
| RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, |
| RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, |
| RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; |
| static const RTLIB::Libcall LibcallsOr[6] = { |
| RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, |
| RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, |
| RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; |
| static const RTLIB::Libcall LibcallsXor[6] = { |
| RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, |
| RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, |
| RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; |
| static const RTLIB::Libcall LibcallsNand[6] = { |
| RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, |
| RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, |
| RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; |
| |
| switch (Op) { |
| case AtomicRMWInst::BAD_BINOP: |
| llvm_unreachable("Should not have BAD_BINOP."); |
| case AtomicRMWInst::Xchg: |
| return makeArrayRef(LibcallsXchg); |
| case AtomicRMWInst::Add: |
| return makeArrayRef(LibcallsAdd); |
| case AtomicRMWInst::Sub: |
| return makeArrayRef(LibcallsSub); |
| case AtomicRMWInst::And: |
| return makeArrayRef(LibcallsAnd); |
| case AtomicRMWInst::Or: |
| return makeArrayRef(LibcallsOr); |
| case AtomicRMWInst::Xor: |
| return makeArrayRef(LibcallsXor); |
| case AtomicRMWInst::Nand: |
| return makeArrayRef(LibcallsNand); |
| case AtomicRMWInst::Max: |
| case AtomicRMWInst::Min: |
| case AtomicRMWInst::UMax: |
| case AtomicRMWInst::UMin: |
| // No atomic libcalls are available for max/min/umax/umin. |
| return {}; |
| } |
| llvm_unreachable("Unexpected AtomicRMW operation."); |
| } |
| |
| void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { |
| ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); |
| |
| unsigned Size = getAtomicOpSize(I); |
| unsigned Align = getAtomicOpAlign(I); |
| |
| bool Success = false; |
| if (!Libcalls.empty()) |
| Success = expandAtomicOpToLibcall( |
| I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr, |
| I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); |
| |
| // The expansion failed: either there were no libcalls at all for |
| // the operation (min/max), or there were only size-specialized |
| // libcalls (add/sub/etc) and we needed a generic. So, expand to a |
| // CAS libcall, via a CAS loop, instead. |
| if (!Success) { |
| expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr, |
| Value *Loaded, Value *NewVal, |
| AtomicOrdering MemOpOrder, |
| Value *&Success, Value *&NewLoaded) { |
| // Create the CAS instruction normally... |
| AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( |
| Addr, Loaded, NewVal, MemOpOrder, |
| AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); |
| Success = Builder.CreateExtractValue(Pair, 1, "success"); |
| NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); |
| |
| // ...and then expand the CAS into a libcall. |
| expandAtomicCASToLibcall(Pair); |
| }); |
| } |
| } |
| |
| // A helper routine for the above expandAtomic*ToLibcall functions. |
| // |
| // 'Libcalls' contains an array of enum values for the particular |
| // ATOMIC libcalls to be emitted. All of the other arguments besides |
| // 'I' are extracted from the Instruction subclass by the |
| // caller. Depending on the particular call, some will be null. |
| bool AtomicExpand::expandAtomicOpToLibcall( |
| Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, |
| Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, |
| AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { |
| assert(Libcalls.size() == 6); |
| |
| LLVMContext &Ctx = I->getContext(); |
| Module *M = I->getModule(); |
| const DataLayout &DL = M->getDataLayout(); |
| IRBuilder<> Builder(I); |
| IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); |
| |
| bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL); |
| Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); |
| |
| unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy); |
| |
| // TODO: the "order" argument type is "int", not int32. So |
| // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. |
| ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); |
| assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); |
| Constant *OrderingVal = |
| ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); |
| Constant *Ordering2Val = nullptr; |
| if (CASExpected) { |
| assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); |
| Ordering2Val = |
| ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); |
| } |
| bool HasResult = I->getType() != Type::getVoidTy(Ctx); |
| |
| RTLIB::Libcall RTLibType; |
| if (UseSizedLibcall) { |
| switch (Size) { |
| case 1: RTLibType = Libcalls[1]; break; |
| case 2: RTLibType = Libcalls[2]; break; |
| case 4: RTLibType = Libcalls[3]; break; |
| case 8: RTLibType = Libcalls[4]; break; |
| case 16: RTLibType = Libcalls[5]; break; |
| } |
| } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { |
| RTLibType = Libcalls[0]; |
| } else { |
| // Can't use sized function, and there's no generic for this |
| // operation, so give up. |
| return false; |
| } |
| |
| // Build up the function call. There's two kinds. First, the sized |
| // variants. These calls are going to be one of the following (with |
| // N=1,2,4,8,16): |
| // iN __atomic_load_N(iN *ptr, int ordering) |
| // void __atomic_store_N(iN *ptr, iN val, int ordering) |
| // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) |
| // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, |
| // int success_order, int failure_order) |
| // |
| // Note that these functions can be used for non-integer atomic |
| // operations, the values just need to be bitcast to integers on the |
| // way in and out. |
| // |
| // And, then, the generic variants. They look like the following: |
| // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) |
| // void __atomic_store(size_t size, void *ptr, void *val, int ordering) |
| // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, |
| // int ordering) |
| // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, |
| // void *desired, int success_order, |
| // int failure_order) |
| // |
| // The different signatures are built up depending on the |
| // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' |
| // variables. |
| |
| AllocaInst *AllocaCASExpected = nullptr; |
| Value *AllocaCASExpected_i8 = nullptr; |
| AllocaInst *AllocaValue = nullptr; |
| Value *AllocaValue_i8 = nullptr; |
| AllocaInst *AllocaResult = nullptr; |
| Value *AllocaResult_i8 = nullptr; |
| |
| Type *ResultTy; |
| SmallVector<Value *, 6> Args; |
| AttributeSet Attr; |
| |
| // 'size' argument. |
| if (!UseSizedLibcall) { |
| // Note, getIntPtrType is assumed equivalent to size_t. |
| Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); |
| } |
| |
| // 'ptr' argument. |
| Value *PtrVal = |
| Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx)); |
| Args.push_back(PtrVal); |
| |
| // 'expected' argument, if present. |
| if (CASExpected) { |
| AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); |
| AllocaCASExpected->setAlignment(AllocaAlignment); |
| AllocaCASExpected_i8 = |
| Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx)); |
| Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); |
| Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); |
| Args.push_back(AllocaCASExpected_i8); |
| } |
| |
| // 'val' argument ('desired' for cas), if present. |
| if (ValueOperand) { |
| if (UseSizedLibcall) { |
| Value *IntValue = |
| Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); |
| Args.push_back(IntValue); |
| } else { |
| AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); |
| AllocaValue->setAlignment(AllocaAlignment); |
| AllocaValue_i8 = |
| Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); |
| Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); |
| Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); |
| Args.push_back(AllocaValue_i8); |
| } |
| } |
| |
| // 'ret' argument. |
| if (!CASExpected && HasResult && !UseSizedLibcall) { |
| AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); |
| AllocaResult->setAlignment(AllocaAlignment); |
| AllocaResult_i8 = |
| Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx)); |
| Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); |
| Args.push_back(AllocaResult_i8); |
| } |
| |
| // 'ordering' ('success_order' for cas) argument. |
| Args.push_back(OrderingVal); |
| |
| // 'failure_order' argument, if present. |
| if (Ordering2Val) |
| Args.push_back(Ordering2Val); |
| |
| // Now, the return type. |
| if (CASExpected) { |
| ResultTy = Type::getInt1Ty(Ctx); |
| Attr = Attr.addAttribute(Ctx, AttributeSet::ReturnIndex, Attribute::ZExt); |
| } else if (HasResult && UseSizedLibcall) |
| ResultTy = SizedIntTy; |
| else |
| ResultTy = Type::getVoidTy(Ctx); |
| |
| // Done with setting up arguments and return types, create the call: |
| SmallVector<Type *, 6> ArgTys; |
| for (Value *Arg : Args) |
| ArgTys.push_back(Arg->getType()); |
| FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); |
| Constant *LibcallFn = |
| M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); |
| CallInst *Call = Builder.CreateCall(LibcallFn, Args); |
| Call->setAttributes(Attr); |
| Value *Result = Call; |
| |
| // And then, extract the results... |
| if (ValueOperand && !UseSizedLibcall) |
| Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); |
| |
| if (CASExpected) { |
| // The final result from the CAS is {load of 'expected' alloca, bool result |
| // from call} |
| Type *FinalResultTy = I->getType(); |
| Value *V = UndefValue::get(FinalResultTy); |
| Value *ExpectedOut = |
| Builder.CreateAlignedLoad(AllocaCASExpected, AllocaAlignment); |
| Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); |
| V = Builder.CreateInsertValue(V, ExpectedOut, 0); |
| V = Builder.CreateInsertValue(V, Result, 1); |
| I->replaceAllUsesWith(V); |
| } else if (HasResult) { |
| Value *V; |
| if (UseSizedLibcall) |
| V = Builder.CreateBitOrPointerCast(Result, I->getType()); |
| else { |
| V = Builder.CreateAlignedLoad(AllocaResult, AllocaAlignment); |
| Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); |
| } |
| I->replaceAllUsesWith(V); |
| } |
| I->eraseFromParent(); |
| return true; |
| } |