|  | //===- InstCombineAddSub.cpp ----------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visit functions for add, fadd, sub, and fsub. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombineInternal.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Class representing coefficient of floating-point addend. | 
|  | /// This class needs to be highly efficient, which is especially true for | 
|  | /// the constructor. As of I write this comment, the cost of the default | 
|  | /// constructor is merely 4-byte-store-zero (Assuming compiler is able to | 
|  | /// perform write-merging). | 
|  | /// | 
|  | class FAddendCoef { | 
|  | public: | 
|  | // The constructor has to initialize a APFloat, which is unnecessary for | 
|  | // most addends which have coefficient either 1 or -1. So, the constructor | 
|  | // is expensive. In order to avoid the cost of the constructor, we should | 
|  | // reuse some instances whenever possible. The pre-created instances | 
|  | // FAddCombine::Add[0-5] embodies this idea. | 
|  | // | 
|  | FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {} | 
|  | ~FAddendCoef(); | 
|  |  | 
|  | void set(short C) { | 
|  | assert(!insaneIntVal(C) && "Insane coefficient"); | 
|  | IsFp = false; IntVal = C; | 
|  | } | 
|  |  | 
|  | void set(const APFloat& C); | 
|  |  | 
|  | void negate(); | 
|  |  | 
|  | bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } | 
|  | Value *getValue(Type *) const; | 
|  |  | 
|  | // If possible, don't define operator+/operator- etc because these | 
|  | // operators inevitably call FAddendCoef's constructor which is not cheap. | 
|  | void operator=(const FAddendCoef &A); | 
|  | void operator+=(const FAddendCoef &A); | 
|  | void operator-=(const FAddendCoef &A); | 
|  | void operator*=(const FAddendCoef &S); | 
|  |  | 
|  | bool isOne() const { return isInt() && IntVal == 1; } | 
|  | bool isTwo() const { return isInt() && IntVal == 2; } | 
|  | bool isMinusOne() const { return isInt() && IntVal == -1; } | 
|  | bool isMinusTwo() const { return isInt() && IntVal == -2; } | 
|  |  | 
|  | private: | 
|  | bool insaneIntVal(int V) { return V > 4 || V < -4; } | 
|  | APFloat *getFpValPtr(void) | 
|  | { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); } | 
|  | const APFloat *getFpValPtr(void) const | 
|  | { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); } | 
|  |  | 
|  | const APFloat &getFpVal(void) const { | 
|  | assert(IsFp && BufHasFpVal && "Incorret state"); | 
|  | return *getFpValPtr(); | 
|  | } | 
|  |  | 
|  | APFloat &getFpVal(void) { | 
|  | assert(IsFp && BufHasFpVal && "Incorret state"); | 
|  | return *getFpValPtr(); | 
|  | } | 
|  |  | 
|  | bool isInt() const { return !IsFp; } | 
|  |  | 
|  | // If the coefficient is represented by an integer, promote it to a | 
|  | // floating point. | 
|  | void convertToFpType(const fltSemantics &Sem); | 
|  |  | 
|  | // Construct an APFloat from a signed integer. | 
|  | // TODO: We should get rid of this function when APFloat can be constructed | 
|  | //       from an *SIGNED* integer. | 
|  | APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); | 
|  | private: | 
|  |  | 
|  | bool IsFp; | 
|  |  | 
|  | // True iff FpValBuf contains an instance of APFloat. | 
|  | bool BufHasFpVal; | 
|  |  | 
|  | // The integer coefficient of an individual addend is either 1 or -1, | 
|  | // and we try to simplify at most 4 addends from neighboring at most | 
|  | // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt | 
|  | // is overkill of this end. | 
|  | short IntVal; | 
|  |  | 
|  | AlignedCharArrayUnion<APFloat> FpValBuf; | 
|  | }; | 
|  |  | 
|  | /// FAddend is used to represent floating-point addend. An addend is | 
|  | /// represented as <C, V>, where the V is a symbolic value, and C is a | 
|  | /// constant coefficient. A constant addend is represented as <C, 0>. | 
|  | /// | 
|  | class FAddend { | 
|  | public: | 
|  | FAddend() { Val = nullptr; } | 
|  |  | 
|  | Value *getSymVal (void) const { return Val; } | 
|  | const FAddendCoef &getCoef(void) const { return Coeff; } | 
|  |  | 
|  | bool isConstant() const { return Val == nullptr; } | 
|  | bool isZero() const { return Coeff.isZero(); } | 
|  |  | 
|  | void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; } | 
|  | void set(const APFloat& Coefficient, Value *V) | 
|  | { Coeff.set(Coefficient); Val = V; } | 
|  | void set(const ConstantFP* Coefficient, Value *V) | 
|  | { Coeff.set(Coefficient->getValueAPF()); Val = V; } | 
|  |  | 
|  | void negate() { Coeff.negate(); } | 
|  |  | 
|  | /// Drill down the U-D chain one step to find the definition of V, and | 
|  | /// try to break the definition into one or two addends. | 
|  | static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); | 
|  |  | 
|  | /// Similar to FAddend::drillDownOneStep() except that the value being | 
|  | /// splitted is the addend itself. | 
|  | unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; | 
|  |  | 
|  | void operator+=(const FAddend &T) { | 
|  | assert((Val == T.Val) && "Symbolic-values disagree"); | 
|  | Coeff += T.Coeff; | 
|  | } | 
|  |  | 
|  | private: | 
|  | void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } | 
|  |  | 
|  | // This addend has the value of "Coeff * Val". | 
|  | Value *Val; | 
|  | FAddendCoef Coeff; | 
|  | }; | 
|  |  | 
|  | /// FAddCombine is the class for optimizing an unsafe fadd/fsub along | 
|  | /// with its neighboring at most two instructions. | 
|  | /// | 
|  | class FAddCombine { | 
|  | public: | 
|  | FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {} | 
|  | Value *simplify(Instruction *FAdd); | 
|  |  | 
|  | private: | 
|  | typedef SmallVector<const FAddend*, 4> AddendVect; | 
|  |  | 
|  | Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); | 
|  |  | 
|  | Value *performFactorization(Instruction *I); | 
|  |  | 
|  | /// Convert given addend to a Value | 
|  | Value *createAddendVal(const FAddend &A, bool& NeedNeg); | 
|  |  | 
|  | /// Return the number of instructions needed to emit the N-ary addition. | 
|  | unsigned calcInstrNumber(const AddendVect& Vect); | 
|  | Value *createFSub(Value *Opnd0, Value *Opnd1); | 
|  | Value *createFAdd(Value *Opnd0, Value *Opnd1); | 
|  | Value *createFMul(Value *Opnd0, Value *Opnd1); | 
|  | Value *createFDiv(Value *Opnd0, Value *Opnd1); | 
|  | Value *createFNeg(Value *V); | 
|  | Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); | 
|  | void createInstPostProc(Instruction *NewInst, bool NoNumber = false); | 
|  |  | 
|  | InstCombiner::BuilderTy *Builder; | 
|  | Instruction *Instr; | 
|  |  | 
|  | private: | 
|  | // Debugging stuff are clustered here. | 
|  | #ifndef NDEBUG | 
|  | unsigned CreateInstrNum; | 
|  | void initCreateInstNum() { CreateInstrNum = 0; } | 
|  | void incCreateInstNum() { CreateInstrNum++; } | 
|  | #else | 
|  | void initCreateInstNum() {} | 
|  | void incCreateInstNum() {} | 
|  | #endif | 
|  | }; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Implementation of | 
|  | //    {FAddendCoef, FAddend, FAddition, FAddCombine}. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | FAddendCoef::~FAddendCoef() { | 
|  | if (BufHasFpVal) | 
|  | getFpValPtr()->~APFloat(); | 
|  | } | 
|  |  | 
|  | void FAddendCoef::set(const APFloat& C) { | 
|  | APFloat *P = getFpValPtr(); | 
|  |  | 
|  | if (isInt()) { | 
|  | // As the buffer is meanless byte stream, we cannot call | 
|  | // APFloat::operator=(). | 
|  | new(P) APFloat(C); | 
|  | } else | 
|  | *P = C; | 
|  |  | 
|  | IsFp = BufHasFpVal = true; | 
|  | } | 
|  |  | 
|  | void FAddendCoef::convertToFpType(const fltSemantics &Sem) { | 
|  | if (!isInt()) | 
|  | return; | 
|  |  | 
|  | APFloat *P = getFpValPtr(); | 
|  | if (IntVal > 0) | 
|  | new(P) APFloat(Sem, IntVal); | 
|  | else { | 
|  | new(P) APFloat(Sem, 0 - IntVal); | 
|  | P->changeSign(); | 
|  | } | 
|  | IsFp = BufHasFpVal = true; | 
|  | } | 
|  |  | 
|  | APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { | 
|  | if (Val >= 0) | 
|  | return APFloat(Sem, Val); | 
|  |  | 
|  | APFloat T(Sem, 0 - Val); | 
|  | T.changeSign(); | 
|  |  | 
|  | return T; | 
|  | } | 
|  |  | 
|  | void FAddendCoef::operator=(const FAddendCoef &That) { | 
|  | if (That.isInt()) | 
|  | set(That.IntVal); | 
|  | else | 
|  | set(That.getFpVal()); | 
|  | } | 
|  |  | 
|  | void FAddendCoef::operator+=(const FAddendCoef &That) { | 
|  | enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; | 
|  | if (isInt() == That.isInt()) { | 
|  | if (isInt()) | 
|  | IntVal += That.IntVal; | 
|  | else | 
|  | getFpVal().add(That.getFpVal(), RndMode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isInt()) { | 
|  | const APFloat &T = That.getFpVal(); | 
|  | convertToFpType(T.getSemantics()); | 
|  | getFpVal().add(T, RndMode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | APFloat &T = getFpVal(); | 
|  | T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); | 
|  | } | 
|  |  | 
|  | void FAddendCoef::operator-=(const FAddendCoef &That) { | 
|  | enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; | 
|  | if (isInt() == That.isInt()) { | 
|  | if (isInt()) | 
|  | IntVal -= That.IntVal; | 
|  | else | 
|  | getFpVal().subtract(That.getFpVal(), RndMode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isInt()) { | 
|  | const APFloat &T = That.getFpVal(); | 
|  | convertToFpType(T.getSemantics()); | 
|  | getFpVal().subtract(T, RndMode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | APFloat &T = getFpVal(); | 
|  | T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode); | 
|  | } | 
|  |  | 
|  | void FAddendCoef::operator*=(const FAddendCoef &That) { | 
|  | if (That.isOne()) | 
|  | return; | 
|  |  | 
|  | if (That.isMinusOne()) { | 
|  | negate(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isInt() && That.isInt()) { | 
|  | int Res = IntVal * (int)That.IntVal; | 
|  | assert(!insaneIntVal(Res) && "Insane int value"); | 
|  | IntVal = Res; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const fltSemantics &Semantic = | 
|  | isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); | 
|  |  | 
|  | if (isInt()) | 
|  | convertToFpType(Semantic); | 
|  | APFloat &F0 = getFpVal(); | 
|  |  | 
|  | if (That.isInt()) | 
|  | F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), | 
|  | APFloat::rmNearestTiesToEven); | 
|  | else | 
|  | F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | void FAddendCoef::negate() { | 
|  | if (isInt()) | 
|  | IntVal = 0 - IntVal; | 
|  | else | 
|  | getFpVal().changeSign(); | 
|  | } | 
|  |  | 
|  | Value *FAddendCoef::getValue(Type *Ty) const { | 
|  | return isInt() ? | 
|  | ConstantFP::get(Ty, float(IntVal)) : | 
|  | ConstantFP::get(Ty->getContext(), getFpVal()); | 
|  | } | 
|  |  | 
|  | // The definition of <Val>     Addends | 
|  | // ========================================= | 
|  | //  A + B                     <1, A>, <1,B> | 
|  | //  A - B                     <1, A>, <1,B> | 
|  | //  0 - B                     <-1, B> | 
|  | //  C * A,                    <C, A> | 
|  | //  A + C                     <1, A> <C, NULL> | 
|  | //  0 +/- 0                   <0, NULL> (corner case) | 
|  | // | 
|  | // Legend: A and B are not constant, C is constant | 
|  | // | 
|  | unsigned FAddend::drillValueDownOneStep | 
|  | (Value *Val, FAddend &Addend0, FAddend &Addend1) { | 
|  | Instruction *I = nullptr; | 
|  | if (!Val || !(I = dyn_cast<Instruction>(Val))) | 
|  | return 0; | 
|  |  | 
|  | unsigned Opcode = I->getOpcode(); | 
|  |  | 
|  | if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { | 
|  | ConstantFP *C0, *C1; | 
|  | Value *Opnd0 = I->getOperand(0); | 
|  | Value *Opnd1 = I->getOperand(1); | 
|  | if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) | 
|  | Opnd0 = nullptr; | 
|  |  | 
|  | if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) | 
|  | Opnd1 = nullptr; | 
|  |  | 
|  | if (Opnd0) { | 
|  | if (!C0) | 
|  | Addend0.set(1, Opnd0); | 
|  | else | 
|  | Addend0.set(C0, nullptr); | 
|  | } | 
|  |  | 
|  | if (Opnd1) { | 
|  | FAddend &Addend = Opnd0 ? Addend1 : Addend0; | 
|  | if (!C1) | 
|  | Addend.set(1, Opnd1); | 
|  | else | 
|  | Addend.set(C1, nullptr); | 
|  | if (Opcode == Instruction::FSub) | 
|  | Addend.negate(); | 
|  | } | 
|  |  | 
|  | if (Opnd0 || Opnd1) | 
|  | return Opnd0 && Opnd1 ? 2 : 1; | 
|  |  | 
|  | // Both operands are zero. Weird! | 
|  | Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (I->getOpcode() == Instruction::FMul) { | 
|  | Value *V0 = I->getOperand(0); | 
|  | Value *V1 = I->getOperand(1); | 
|  | if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { | 
|  | Addend0.set(C, V1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { | 
|  | Addend0.set(C, V0); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Try to break *this* addend into two addends. e.g. Suppose this addend is | 
|  | // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, | 
|  | // i.e. <2.3, X> and <2.3, Y>. | 
|  | // | 
|  | unsigned FAddend::drillAddendDownOneStep | 
|  | (FAddend &Addend0, FAddend &Addend1) const { | 
|  | if (isConstant()) | 
|  | return 0; | 
|  |  | 
|  | unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); | 
|  | if (!BreakNum || Coeff.isOne()) | 
|  | return BreakNum; | 
|  |  | 
|  | Addend0.Scale(Coeff); | 
|  |  | 
|  | if (BreakNum == 2) | 
|  | Addend1.Scale(Coeff); | 
|  |  | 
|  | return BreakNum; | 
|  | } | 
|  |  | 
|  | // Try to perform following optimization on the input instruction I. Return the | 
|  | // simplified expression if was successful; otherwise, return 0. | 
|  | // | 
|  | //   Instruction "I" is                Simplified into | 
|  | // ------------------------------------------------------- | 
|  | //   (x * y) +/- (x * z)               x * (y +/- z) | 
|  | //   (y / x) +/- (z / x)               (y +/- z) / x | 
|  | // | 
|  | Value *FAddCombine::performFactorization(Instruction *I) { | 
|  | assert((I->getOpcode() == Instruction::FAdd || | 
|  | I->getOpcode() == Instruction::FSub) && "Expect add/sub"); | 
|  |  | 
|  | Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0)); | 
|  | Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1)); | 
|  |  | 
|  | if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode()) | 
|  | return nullptr; | 
|  |  | 
|  | bool isMpy = false; | 
|  | if (I0->getOpcode() == Instruction::FMul) | 
|  | isMpy = true; | 
|  | else if (I0->getOpcode() != Instruction::FDiv) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Opnd0_0 = I0->getOperand(0); | 
|  | Value *Opnd0_1 = I0->getOperand(1); | 
|  | Value *Opnd1_0 = I1->getOperand(0); | 
|  | Value *Opnd1_1 = I1->getOperand(1); | 
|  |  | 
|  | //  Input Instr I       Factor   AddSub0  AddSub1 | 
|  | //  ---------------------------------------------- | 
|  | // (x*y) +/- (x*z)        x        y         z | 
|  | // (y/x) +/- (z/x)        x        y         z | 
|  | // | 
|  | Value *Factor = nullptr; | 
|  | Value *AddSub0 = nullptr, *AddSub1 = nullptr; | 
|  |  | 
|  | if (isMpy) { | 
|  | if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1) | 
|  | Factor = Opnd0_0; | 
|  | else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1) | 
|  | Factor = Opnd0_1; | 
|  |  | 
|  | if (Factor) { | 
|  | AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0; | 
|  | AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0; | 
|  | } | 
|  | } else if (Opnd0_1 == Opnd1_1) { | 
|  | Factor = Opnd0_1; | 
|  | AddSub0 = Opnd0_0; | 
|  | AddSub1 = Opnd1_0; | 
|  | } | 
|  |  | 
|  | if (!Factor) | 
|  | return nullptr; | 
|  |  | 
|  | FastMathFlags Flags; | 
|  | Flags.setUnsafeAlgebra(); | 
|  | if (I0) Flags &= I->getFastMathFlags(); | 
|  | if (I1) Flags &= I->getFastMathFlags(); | 
|  |  | 
|  | // Create expression "NewAddSub = AddSub0 +/- AddsSub1" | 
|  | Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ? | 
|  | createFAdd(AddSub0, AddSub1) : | 
|  | createFSub(AddSub0, AddSub1); | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) { | 
|  | const APFloat &F = CFP->getValueAPF(); | 
|  | if (!F.isNormal()) | 
|  | return nullptr; | 
|  | } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub)) | 
|  | II->setFastMathFlags(Flags); | 
|  |  | 
|  | if (isMpy) { | 
|  | Value *RI = createFMul(Factor, NewAddSub); | 
|  | if (Instruction *II = dyn_cast<Instruction>(RI)) | 
|  | II->setFastMathFlags(Flags); | 
|  | return RI; | 
|  | } | 
|  |  | 
|  | Value *RI = createFDiv(NewAddSub, Factor); | 
|  | if (Instruction *II = dyn_cast<Instruction>(RI)) | 
|  | II->setFastMathFlags(Flags); | 
|  | return RI; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::simplify(Instruction *I) { | 
|  | assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode"); | 
|  |  | 
|  | // Currently we are not able to handle vector type. | 
|  | if (I->getType()->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | assert((I->getOpcode() == Instruction::FAdd || | 
|  | I->getOpcode() == Instruction::FSub) && "Expect add/sub"); | 
|  |  | 
|  | // Save the instruction before calling other member-functions. | 
|  | Instr = I; | 
|  |  | 
|  | FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; | 
|  |  | 
|  | unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); | 
|  |  | 
|  | // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. | 
|  | unsigned Opnd0_ExpNum = 0; | 
|  | unsigned Opnd1_ExpNum = 0; | 
|  |  | 
|  | if (!Opnd0.isConstant()) | 
|  | Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); | 
|  |  | 
|  | // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. | 
|  | if (OpndNum == 2 && !Opnd1.isConstant()) | 
|  | Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); | 
|  |  | 
|  | // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 | 
|  | if (Opnd0_ExpNum && Opnd1_ExpNum) { | 
|  | AddendVect AllOpnds; | 
|  | AllOpnds.push_back(&Opnd0_0); | 
|  | AllOpnds.push_back(&Opnd1_0); | 
|  | if (Opnd0_ExpNum == 2) | 
|  | AllOpnds.push_back(&Opnd0_1); | 
|  | if (Opnd1_ExpNum == 2) | 
|  | AllOpnds.push_back(&Opnd1_1); | 
|  |  | 
|  | // Compute instruction quota. We should save at least one instruction. | 
|  | unsigned InstQuota = 0; | 
|  |  | 
|  | Value *V0 = I->getOperand(0); | 
|  | Value *V1 = I->getOperand(1); | 
|  | InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && | 
|  | (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; | 
|  |  | 
|  | if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | if (OpndNum != 2) { | 
|  | // The input instruction is : "I=0.0 +/- V". If the "V" were able to be | 
|  | // splitted into two addends, say "V = X - Y", the instruction would have | 
|  | // been optimized into "I = Y - X" in the previous steps. | 
|  | // | 
|  | const FAddendCoef &CE = Opnd0.getCoef(); | 
|  | return CE.isOne() ? Opnd0.getSymVal() : nullptr; | 
|  | } | 
|  |  | 
|  | // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] | 
|  | if (Opnd1_ExpNum) { | 
|  | AddendVect AllOpnds; | 
|  | AllOpnds.push_back(&Opnd0); | 
|  | AllOpnds.push_back(&Opnd1_0); | 
|  | if (Opnd1_ExpNum == 2) | 
|  | AllOpnds.push_back(&Opnd1_1); | 
|  |  | 
|  | if (Value *R = simplifyFAdd(AllOpnds, 1)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] | 
|  | if (Opnd0_ExpNum) { | 
|  | AddendVect AllOpnds; | 
|  | AllOpnds.push_back(&Opnd1); | 
|  | AllOpnds.push_back(&Opnd0_0); | 
|  | if (Opnd0_ExpNum == 2) | 
|  | AllOpnds.push_back(&Opnd0_1); | 
|  |  | 
|  | if (Value *R = simplifyFAdd(AllOpnds, 1)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // step 6: Try factorization as the last resort, | 
|  | return performFactorization(I); | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { | 
|  |  | 
|  | unsigned AddendNum = Addends.size(); | 
|  | assert(AddendNum <= 4 && "Too many addends"); | 
|  |  | 
|  | // For saving intermediate results; | 
|  | unsigned NextTmpIdx = 0; | 
|  | FAddend TmpResult[3]; | 
|  |  | 
|  | // Points to the constant addend of the resulting simplified expression. | 
|  | // If the resulting expr has constant-addend, this constant-addend is | 
|  | // desirable to reside at the top of the resulting expression tree. Placing | 
|  | // constant close to supper-expr(s) will potentially reveal some optimization | 
|  | // opportunities in super-expr(s). | 
|  | // | 
|  | const FAddend *ConstAdd = nullptr; | 
|  |  | 
|  | // Simplified addends are placed <SimpVect>. | 
|  | AddendVect SimpVect; | 
|  |  | 
|  | // The outer loop works on one symbolic-value at a time. Suppose the input | 
|  | // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... | 
|  | // The symbolic-values will be processed in this order: x, y, z. | 
|  | // | 
|  | for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { | 
|  |  | 
|  | const FAddend *ThisAddend = Addends[SymIdx]; | 
|  | if (!ThisAddend) { | 
|  | // This addend was processed before. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Value *Val = ThisAddend->getSymVal(); | 
|  | unsigned StartIdx = SimpVect.size(); | 
|  | SimpVect.push_back(ThisAddend); | 
|  |  | 
|  | // The inner loop collects addends sharing same symbolic-value, and these | 
|  | // addends will be later on folded into a single addend. Following above | 
|  | // example, if the symbolic value "y" is being processed, the inner loop | 
|  | // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will | 
|  | // be later on folded into "<b1+b2, y>". | 
|  | // | 
|  | for (unsigned SameSymIdx = SymIdx + 1; | 
|  | SameSymIdx < AddendNum; SameSymIdx++) { | 
|  | const FAddend *T = Addends[SameSymIdx]; | 
|  | if (T && T->getSymVal() == Val) { | 
|  | // Set null such that next iteration of the outer loop will not process | 
|  | // this addend again. | 
|  | Addends[SameSymIdx] = nullptr; | 
|  | SimpVect.push_back(T); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If multiple addends share same symbolic value, fold them together. | 
|  | if (StartIdx + 1 != SimpVect.size()) { | 
|  | FAddend &R = TmpResult[NextTmpIdx ++]; | 
|  | R = *SimpVect[StartIdx]; | 
|  | for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) | 
|  | R += *SimpVect[Idx]; | 
|  |  | 
|  | // Pop all addends being folded and push the resulting folded addend. | 
|  | SimpVect.resize(StartIdx); | 
|  | if (Val) { | 
|  | if (!R.isZero()) { | 
|  | SimpVect.push_back(&R); | 
|  | } | 
|  | } else { | 
|  | // Don't push constant addend at this time. It will be the last element | 
|  | // of <SimpVect>. | 
|  | ConstAdd = &R; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && | 
|  | "out-of-bound access"); | 
|  |  | 
|  | if (ConstAdd) | 
|  | SimpVect.push_back(ConstAdd); | 
|  |  | 
|  | Value *Result; | 
|  | if (!SimpVect.empty()) | 
|  | Result = createNaryFAdd(SimpVect, InstrQuota); | 
|  | else { | 
|  | // The addition is folded to 0.0. | 
|  | Result = ConstantFP::get(Instr->getType(), 0.0); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::createNaryFAdd | 
|  | (const AddendVect &Opnds, unsigned InstrQuota) { | 
|  | assert(!Opnds.empty() && "Expect at least one addend"); | 
|  |  | 
|  | // Step 1: Check if the # of instructions needed exceeds the quota. | 
|  | // | 
|  | unsigned InstrNeeded = calcInstrNumber(Opnds); | 
|  | if (InstrNeeded > InstrQuota) | 
|  | return nullptr; | 
|  |  | 
|  | initCreateInstNum(); | 
|  |  | 
|  | // step 2: Emit the N-ary addition. | 
|  | // Note that at most three instructions are involved in Fadd-InstCombine: the | 
|  | // addition in question, and at most two neighboring instructions. | 
|  | // The resulting optimized addition should have at least one less instruction | 
|  | // than the original addition expression tree. This implies that the resulting | 
|  | // N-ary addition has at most two instructions, and we don't need to worry | 
|  | // about tree-height when constructing the N-ary addition. | 
|  |  | 
|  | Value *LastVal = nullptr; | 
|  | bool LastValNeedNeg = false; | 
|  |  | 
|  | // Iterate the addends, creating fadd/fsub using adjacent two addends. | 
|  | for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end(); | 
|  | I != E; I++) { | 
|  | bool NeedNeg; | 
|  | Value *V = createAddendVal(**I, NeedNeg); | 
|  | if (!LastVal) { | 
|  | LastVal = V; | 
|  | LastValNeedNeg = NeedNeg; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (LastValNeedNeg == NeedNeg) { | 
|  | LastVal = createFAdd(LastVal, V); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (LastValNeedNeg) | 
|  | LastVal = createFSub(V, LastVal); | 
|  | else | 
|  | LastVal = createFSub(LastVal, V); | 
|  |  | 
|  | LastValNeedNeg = false; | 
|  | } | 
|  |  | 
|  | if (LastValNeedNeg) { | 
|  | LastVal = createFNeg(LastVal); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | assert(CreateInstrNum == InstrNeeded && | 
|  | "Inconsistent in instruction numbers"); | 
|  | #endif | 
|  |  | 
|  | return LastVal; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { | 
|  | Value *V = Builder->CreateFSub(Opnd0, Opnd1); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | createInstPostProc(I); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::createFNeg(Value *V) { | 
|  | Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); | 
|  | Value *NewV = createFSub(Zero, V); | 
|  | if (Instruction *I = dyn_cast<Instruction>(NewV)) | 
|  | createInstPostProc(I, true); // fneg's don't receive instruction numbers. | 
|  | return NewV; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { | 
|  | Value *V = Builder->CreateFAdd(Opnd0, Opnd1); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | createInstPostProc(I); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { | 
|  | Value *V = Builder->CreateFMul(Opnd0, Opnd1); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | createInstPostProc(I); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) { | 
|  | Value *V = Builder->CreateFDiv(Opnd0, Opnd1); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | createInstPostProc(I); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { | 
|  | NewInstr->setDebugLoc(Instr->getDebugLoc()); | 
|  |  | 
|  | // Keep track of the number of instruction created. | 
|  | if (!NoNumber) | 
|  | incCreateInstNum(); | 
|  |  | 
|  | // Propagate fast-math flags | 
|  | NewInstr->setFastMathFlags(Instr->getFastMathFlags()); | 
|  | } | 
|  |  | 
|  | // Return the number of instruction needed to emit the N-ary addition. | 
|  | // NOTE: Keep this function in sync with createAddendVal(). | 
|  | unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { | 
|  | unsigned OpndNum = Opnds.size(); | 
|  | unsigned InstrNeeded = OpndNum - 1; | 
|  |  | 
|  | // The number of addends in the form of "(-1)*x". | 
|  | unsigned NegOpndNum = 0; | 
|  |  | 
|  | // Adjust the number of instructions needed to emit the N-ary add. | 
|  | for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end(); | 
|  | I != E; I++) { | 
|  | const FAddend *Opnd = *I; | 
|  | if (Opnd->isConstant()) | 
|  | continue; | 
|  |  | 
|  | const FAddendCoef &CE = Opnd->getCoef(); | 
|  | if (CE.isMinusOne() || CE.isMinusTwo()) | 
|  | NegOpndNum++; | 
|  |  | 
|  | // Let the addend be "c * x". If "c == +/-1", the value of the addend | 
|  | // is immediately available; otherwise, it needs exactly one instruction | 
|  | // to evaluate the value. | 
|  | if (!CE.isMinusOne() && !CE.isOne()) | 
|  | InstrNeeded++; | 
|  | } | 
|  | if (NegOpndNum == OpndNum) | 
|  | InstrNeeded++; | 
|  | return InstrNeeded; | 
|  | } | 
|  |  | 
|  | // Input Addend        Value           NeedNeg(output) | 
|  | // ================================================================ | 
|  | // Constant C          C               false | 
|  | // <+/-1, V>           V               coefficient is -1 | 
|  | // <2/-2, V>          "fadd V, V"      coefficient is -2 | 
|  | // <C, V>             "fmul V, C"      false | 
|  | // | 
|  | // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. | 
|  | Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { | 
|  | const FAddendCoef &Coeff = Opnd.getCoef(); | 
|  |  | 
|  | if (Opnd.isConstant()) { | 
|  | NeedNeg = false; | 
|  | return Coeff.getValue(Instr->getType()); | 
|  | } | 
|  |  | 
|  | Value *OpndVal = Opnd.getSymVal(); | 
|  |  | 
|  | if (Coeff.isMinusOne() || Coeff.isOne()) { | 
|  | NeedNeg = Coeff.isMinusOne(); | 
|  | return OpndVal; | 
|  | } | 
|  |  | 
|  | if (Coeff.isTwo() || Coeff.isMinusTwo()) { | 
|  | NeedNeg = Coeff.isMinusTwo(); | 
|  | return createFAdd(OpndVal, OpndVal); | 
|  | } | 
|  |  | 
|  | NeedNeg = false; | 
|  | return createFMul(OpndVal, Coeff.getValue(Instr->getType())); | 
|  | } | 
|  |  | 
|  | // If one of the operands only has one non-zero bit, and if the other | 
|  | // operand has a known-zero bit in a more significant place than it (not | 
|  | // including the sign bit) the ripple may go up to and fill the zero, but | 
|  | // won't change the sign. For example, (X & ~4) + 1. | 
|  | static bool checkRippleForAdd(const APInt &Op0KnownZero, | 
|  | const APInt &Op1KnownZero) { | 
|  | APInt Op1MaybeOne = ~Op1KnownZero; | 
|  | // Make sure that one of the operand has at most one bit set to 1. | 
|  | if (Op1MaybeOne.countPopulation() != 1) | 
|  | return false; | 
|  |  | 
|  | // Find the most significant known 0 other than the sign bit. | 
|  | int BitWidth = Op0KnownZero.getBitWidth(); | 
|  | APInt Op0KnownZeroTemp(Op0KnownZero); | 
|  | Op0KnownZeroTemp.clearBit(BitWidth - 1); | 
|  | int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1; | 
|  |  | 
|  | int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1; | 
|  | assert(Op1OnePosition >= 0); | 
|  |  | 
|  | // This also covers the case of no known zero, since in that case | 
|  | // Op0ZeroPosition is -1. | 
|  | return Op0ZeroPosition >= Op1OnePosition; | 
|  | } | 
|  |  | 
|  | /// WillNotOverflowSignedAdd - Return true if we can prove that: | 
|  | ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS)) | 
|  | /// This basically requires proving that the add in the original type would not | 
|  | /// overflow to change the sign bit or have a carry out. | 
|  | bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS, | 
|  | Instruction &CxtI) { | 
|  | // There are different heuristics we can use for this.  Here are some simple | 
|  | // ones. | 
|  |  | 
|  | // If LHS and RHS each have at least two sign bits, the addition will look | 
|  | // like | 
|  | // | 
|  | // XX..... + | 
|  | // YY..... | 
|  | // | 
|  | // If the carry into the most significant position is 0, X and Y can't both | 
|  | // be 1 and therefore the carry out of the addition is also 0. | 
|  | // | 
|  | // If the carry into the most significant position is 1, X and Y can't both | 
|  | // be 0 and therefore the carry out of the addition is also 1. | 
|  | // | 
|  | // Since the carry into the most significant position is always equal to | 
|  | // the carry out of the addition, there is no signed overflow. | 
|  | if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 && | 
|  | ComputeNumSignBits(RHS, 0, &CxtI) > 1) | 
|  | return true; | 
|  |  | 
|  | unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); | 
|  | APInt LHSKnownZero(BitWidth, 0); | 
|  | APInt LHSKnownOne(BitWidth, 0); | 
|  | computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI); | 
|  |  | 
|  | APInt RHSKnownZero(BitWidth, 0); | 
|  | APInt RHSKnownOne(BitWidth, 0); | 
|  | computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI); | 
|  |  | 
|  | // Addition of two 2's compliment numbers having opposite signs will never | 
|  | // overflow. | 
|  | if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) || | 
|  | (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1])) | 
|  | return true; | 
|  |  | 
|  | // Check if carry bit of addition will not cause overflow. | 
|  | if (checkRippleForAdd(LHSKnownZero, RHSKnownZero)) | 
|  | return true; | 
|  | if (checkRippleForAdd(RHSKnownZero, LHSKnownZero)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Return true if we can prove that: | 
|  | ///    (sub LHS, RHS)  === (sub nsw LHS, RHS) | 
|  | /// This basically requires proving that the add in the original type would not | 
|  | /// overflow to change the sign bit or have a carry out. | 
|  | /// TODO: Handle this for Vectors. | 
|  | bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS, | 
|  | Instruction &CxtI) { | 
|  | // If LHS and RHS each have at least two sign bits, the subtraction | 
|  | // cannot overflow. | 
|  | if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 && | 
|  | ComputeNumSignBits(RHS, 0, &CxtI) > 1) | 
|  | return true; | 
|  |  | 
|  | unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); | 
|  | APInt LHSKnownZero(BitWidth, 0); | 
|  | APInt LHSKnownOne(BitWidth, 0); | 
|  | computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI); | 
|  |  | 
|  | APInt RHSKnownZero(BitWidth, 0); | 
|  | APInt RHSKnownOne(BitWidth, 0); | 
|  | computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI); | 
|  |  | 
|  | // Subtraction of two 2's compliment numbers having identical signs will | 
|  | // never overflow. | 
|  | if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) || | 
|  | (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1])) | 
|  | return true; | 
|  |  | 
|  | // TODO: implement logic similar to checkRippleForAdd | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Return true if we can prove that: | 
|  | ///    (sub LHS, RHS)  === (sub nuw LHS, RHS) | 
|  | bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, | 
|  | Instruction &CxtI) { | 
|  | // If the LHS is negative and the RHS is non-negative, no unsigned wrap. | 
|  | bool LHSKnownNonNegative, LHSKnownNegative; | 
|  | bool RHSKnownNonNegative, RHSKnownNegative; | 
|  | ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0, | 
|  | &CxtI); | 
|  | ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0, | 
|  | &CxtI); | 
|  | if (LHSKnownNegative && RHSKnownNonNegative) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Checks if any operand is negative and we can convert add to sub. | 
|  | // This function checks for following negative patterns | 
|  | //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) | 
|  | //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) | 
|  | //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even | 
|  | static Value *checkForNegativeOperand(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy *Builder) { | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  |  | 
|  | // This function creates 2 instructions to replace ADD, we need at least one | 
|  | // of LHS or RHS to have one use to ensure benefit in transform. | 
|  | if (!LHS->hasOneUse() && !RHS->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *X = nullptr, *Y = nullptr, *Z = nullptr; | 
|  | const APInt *C1 = nullptr, *C2 = nullptr; | 
|  |  | 
|  | // if ONE is on other side, swap | 
|  | if (match(RHS, m_Add(m_Value(X), m_One()))) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | if (match(LHS, m_Add(m_Value(X), m_One()))) { | 
|  | // if XOR on other side, swap | 
|  | if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) | 
|  | std::swap(X, RHS); | 
|  |  | 
|  | if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { | 
|  | // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) | 
|  | // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) | 
|  | if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { | 
|  | Value *NewAnd = Builder->CreateAnd(Z, *C1); | 
|  | return Builder->CreateSub(RHS, NewAnd, "sub"); | 
|  | } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { | 
|  | // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) | 
|  | // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) | 
|  | Value *NewOr = Builder->CreateOr(Z, ~(*C1)); | 
|  | return Builder->CreateSub(RHS, NewOr, "sub"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Restore LHS and RHS | 
|  | LHS = I.getOperand(0); | 
|  | RHS = I.getOperand(1); | 
|  |  | 
|  | // if XOR is on other side, swap | 
|  | if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | // C2 is ODD | 
|  | // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) | 
|  | // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) | 
|  | if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) | 
|  | if (C1->countTrailingZeros() == 0) | 
|  | if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { | 
|  | Value *NewOr = Builder->CreateOr(Z, ~(*C2)); | 
|  | return Builder->CreateSub(RHS, NewOr, "sub"); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitAdd(BinaryOperator &I) { | 
|  | bool Changed = SimplifyAssociativeOrCommutative(I); | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyVectorOp(I)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), | 
|  | I.hasNoUnsignedWrap(), DL, TLI, DT, AC)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // (A*B)+(A*C) -> A*(B+C) etc | 
|  | if (Value *V = SimplifyUsingDistributiveLaws(I)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { | 
|  | // X + (signbit) --> X ^ signbit | 
|  | const APInt &Val = CI->getValue(); | 
|  | if (Val.isSignBit()) | 
|  | return BinaryOperator::CreateXor(LHS, RHS); | 
|  |  | 
|  | // See if SimplifyDemandedBits can simplify this.  This handles stuff like | 
|  | // (X & 254)+1 -> (X&254)|1 | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  |  | 
|  | // zext(bool) + C -> bool ? C + 1 : C | 
|  | if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) | 
|  | if (ZI->getSrcTy()->isIntegerTy(1)) | 
|  | return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); | 
|  |  | 
|  | Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; | 
|  | if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { | 
|  | uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); | 
|  | const APInt &RHSVal = CI->getValue(); | 
|  | unsigned ExtendAmt = 0; | 
|  | // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. | 
|  | // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. | 
|  | if (XorRHS->getValue() == -RHSVal) { | 
|  | if (RHSVal.isPowerOf2()) | 
|  | ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; | 
|  | else if (XorRHS->getValue().isPowerOf2()) | 
|  | ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; | 
|  | } | 
|  |  | 
|  | if (ExtendAmt) { | 
|  | APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); | 
|  | if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) | 
|  | ExtendAmt = 0; | 
|  | } | 
|  |  | 
|  | if (ExtendAmt) { | 
|  | Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt); | 
|  | Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext"); | 
|  | return BinaryOperator::CreateAShr(NewShl, ShAmt); | 
|  | } | 
|  |  | 
|  | // If this is a xor that was canonicalized from a sub, turn it back into | 
|  | // a sub and fuse this add with it. | 
|  | if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { | 
|  | IntegerType *IT = cast<IntegerType>(I.getType()); | 
|  | APInt LHSKnownOne(IT->getBitWidth(), 0); | 
|  | APInt LHSKnownZero(IT->getBitWidth(), 0); | 
|  | computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I); | 
|  | if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue()) | 
|  | return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), | 
|  | XorLHS); | 
|  | } | 
|  | // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C, | 
|  | // transform them into (X + (signbit ^ C)) | 
|  | if (XorRHS->getValue().isSignBit()) | 
|  | return BinaryOperator::CreateAdd(XorLHS, | 
|  | ConstantExpr::getXor(XorRHS, CI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<Constant>(RHS) && isa<PHINode>(LHS)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  |  | 
|  | if (I.getType()->getScalarType()->isIntegerTy(1)) | 
|  | return BinaryOperator::CreateXor(LHS, RHS); | 
|  |  | 
|  | // X + X --> X << 1 | 
|  | if (LHS == RHS) { | 
|  | BinaryOperator *New = | 
|  | BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); | 
|  | New->setHasNoSignedWrap(I.hasNoSignedWrap()); | 
|  | New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | // -A + B  -->  B - A | 
|  | // -A + -B  -->  -(A + B) | 
|  | if (Value *LHSV = dyn_castNegVal(LHS)) { | 
|  | if (!isa<Constant>(RHS)) | 
|  | if (Value *RHSV = dyn_castNegVal(RHS)) { | 
|  | Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); | 
|  | return BinaryOperator::CreateNeg(NewAdd); | 
|  | } | 
|  |  | 
|  | return BinaryOperator::CreateSub(RHS, LHSV); | 
|  | } | 
|  |  | 
|  | // A + -B  -->  A - B | 
|  | if (!isa<Constant>(RHS)) | 
|  | if (Value *V = dyn_castNegVal(RHS)) | 
|  | return BinaryOperator::CreateSub(LHS, V); | 
|  |  | 
|  | if (Value *V = checkForNegativeOperand(I, Builder)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // A+B --> A|B iff A and B have no bits set in common. | 
|  | if (haveNoCommonBitsSet(LHS, RHS, DL, AC, &I, DT)) | 
|  | return BinaryOperator::CreateOr(LHS, RHS); | 
|  |  | 
|  | if (Constant *CRHS = dyn_cast<Constant>(RHS)) { | 
|  | Value *X; | 
|  | if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X | 
|  | return BinaryOperator::CreateSub(SubOne(CRHS), X); | 
|  | } | 
|  |  | 
|  | if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { | 
|  | // (X & FF00) + xx00  -> (X+xx00) & FF00 | 
|  | Value *X; | 
|  | ConstantInt *C2; | 
|  | if (LHS->hasOneUse() && | 
|  | match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && | 
|  | CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { | 
|  | // See if all bits from the first bit set in the Add RHS up are included | 
|  | // in the mask.  First, get the rightmost bit. | 
|  | const APInt &AddRHSV = CRHS->getValue(); | 
|  |  | 
|  | // Form a mask of all bits from the lowest bit added through the top. | 
|  | APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); | 
|  |  | 
|  | // See if the and mask includes all of these bits. | 
|  | APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); | 
|  |  | 
|  | if (AddRHSHighBits == AddRHSHighBitsAnd) { | 
|  | // Okay, the xform is safe.  Insert the new add pronto. | 
|  | Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); | 
|  | return BinaryOperator::CreateAnd(NewAdd, C2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to fold constant add into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // add (select X 0 (sub n A)) A  -->  select X A n | 
|  | { | 
|  | SelectInst *SI = dyn_cast<SelectInst>(LHS); | 
|  | Value *A = RHS; | 
|  | if (!SI) { | 
|  | SI = dyn_cast<SelectInst>(RHS); | 
|  | A = LHS; | 
|  | } | 
|  | if (SI && SI->hasOneUse()) { | 
|  | Value *TV = SI->getTrueValue(); | 
|  | Value *FV = SI->getFalseValue(); | 
|  | Value *N; | 
|  |  | 
|  | // Can we fold the add into the argument of the select? | 
|  | // We check both true and false select arguments for a matching subtract. | 
|  | if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) | 
|  | // Fold the add into the true select value. | 
|  | return SelectInst::Create(SI->getCondition(), N, A); | 
|  |  | 
|  | if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) | 
|  | // Fold the add into the false select value. | 
|  | return SelectInst::Create(SI->getCondition(), A, N); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for (add (sext x), y), see if we can merge this into an | 
|  | // integer add followed by a sext. | 
|  | if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { | 
|  | // (add (sext x), cst) --> (sext (add x, cst')) | 
|  | if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { | 
|  | Constant *CI = | 
|  | ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); | 
|  | if (LHSConv->hasOneUse() && | 
|  | ConstantExpr::getSExt(CI, I.getType()) == RHSC && | 
|  | WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { | 
|  | // Insert the new, smaller add. | 
|  | Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), | 
|  | CI, "addconv"); | 
|  | return new SExtInst(NewAdd, I.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (add (sext x), (sext y)) --> (sext (add int x, y)) | 
|  | if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { | 
|  | // Only do this if x/y have the same type, if at last one of them has a | 
|  | // single use (so we don't increase the number of sexts), and if the | 
|  | // integer add will not overflow. | 
|  | if (LHSConv->getOperand(0)->getType() == | 
|  | RHSConv->getOperand(0)->getType() && | 
|  | (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && | 
|  | WillNotOverflowSignedAdd(LHSConv->getOperand(0), | 
|  | RHSConv->getOperand(0), I)) { | 
|  | // Insert the new integer add. | 
|  | Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), | 
|  | RHSConv->getOperand(0), "addconv"); | 
|  | return new SExtInst(NewAdd, I.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // (add (xor A, B) (and A, B)) --> (or A, B) | 
|  | { | 
|  | Value *A = nullptr, *B = nullptr; | 
|  | if (match(RHS, m_Xor(m_Value(A), m_Value(B))) && | 
|  | (match(LHS, m_And(m_Specific(A), m_Specific(B))) || | 
|  | match(LHS, m_And(m_Specific(B), m_Specific(A))))) | 
|  | return BinaryOperator::CreateOr(A, B); | 
|  |  | 
|  | if (match(LHS, m_Xor(m_Value(A), m_Value(B))) && | 
|  | (match(RHS, m_And(m_Specific(A), m_Specific(B))) || | 
|  | match(RHS, m_And(m_Specific(B), m_Specific(A))))) | 
|  | return BinaryOperator::CreateOr(A, B); | 
|  | } | 
|  |  | 
|  | // (add (or A, B) (and A, B)) --> (add A, B) | 
|  | { | 
|  | Value *A = nullptr, *B = nullptr; | 
|  | if (match(RHS, m_Or(m_Value(A), m_Value(B))) && | 
|  | (match(LHS, m_And(m_Specific(A), m_Specific(B))) || | 
|  | match(LHS, m_And(m_Specific(B), m_Specific(A))))) { | 
|  | auto *New = BinaryOperator::CreateAdd(A, B); | 
|  | New->setHasNoSignedWrap(I.hasNoSignedWrap()); | 
|  | New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | if (match(LHS, m_Or(m_Value(A), m_Value(B))) && | 
|  | (match(RHS, m_And(m_Specific(A), m_Specific(B))) || | 
|  | match(RHS, m_And(m_Specific(B), m_Specific(A))))) { | 
|  | auto *New = BinaryOperator::CreateAdd(A, B); | 
|  | New->setHasNoSignedWrap(I.hasNoSignedWrap()); | 
|  | New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); | 
|  | return New; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO(jingyue): Consider WillNotOverflowSignedAdd and | 
|  | // WillNotOverflowUnsignedAdd to reduce the number of invocations of | 
|  | // computeKnownBits. | 
|  | if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) { | 
|  | Changed = true; | 
|  | I.setHasNoSignedWrap(true); | 
|  | } | 
|  | if (!I.hasNoUnsignedWrap() && | 
|  | computeOverflowForUnsignedAdd(LHS, RHS, &I) == | 
|  | OverflowResult::NeverOverflows) { | 
|  | Changed = true; | 
|  | I.setHasNoUnsignedWrap(true); | 
|  | } | 
|  |  | 
|  | return Changed ? &I : nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { | 
|  | bool Changed = SimplifyAssociativeOrCommutative(I); | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyVectorOp(I)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Value *V = | 
|  | SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (isa<Constant>(RHS)) { | 
|  | if (isa<PHINode>(LHS)) | 
|  | if (Instruction *NV = FoldOpIntoPhi(I)) | 
|  | return NV; | 
|  |  | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) | 
|  | if (Instruction *NV = FoldOpIntoSelect(I, SI)) | 
|  | return NV; | 
|  | } | 
|  |  | 
|  | // -A + B  -->  B - A | 
|  | // -A + -B  -->  -(A + B) | 
|  | if (Value *LHSV = dyn_castFNegVal(LHS)) { | 
|  | Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV); | 
|  | RI->copyFastMathFlags(&I); | 
|  | return RI; | 
|  | } | 
|  |  | 
|  | // A + -B  -->  A - B | 
|  | if (!isa<Constant>(RHS)) | 
|  | if (Value *V = dyn_castFNegVal(RHS)) { | 
|  | Instruction *RI = BinaryOperator::CreateFSub(LHS, V); | 
|  | RI->copyFastMathFlags(&I); | 
|  | return RI; | 
|  | } | 
|  |  | 
|  | // Check for (fadd double (sitofp x), y), see if we can merge this into an | 
|  | // integer add followed by a promotion. | 
|  | if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { | 
|  | // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) | 
|  | // ... if the constant fits in the integer value.  This is useful for things | 
|  | // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer | 
|  | // requires a constant pool load, and generally allows the add to be better | 
|  | // instcombined. | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { | 
|  | Constant *CI = | 
|  | ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); | 
|  | if (LHSConv->hasOneUse() && | 
|  | ConstantExpr::getSIToFP(CI, I.getType()) == CFP && | 
|  | WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { | 
|  | // Insert the new integer add. | 
|  | Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), | 
|  | CI, "addconv"); | 
|  | return new SIToFPInst(NewAdd, I.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) | 
|  | if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { | 
|  | // Only do this if x/y have the same type, if at last one of them has a | 
|  | // single use (so we don't increase the number of int->fp conversions), | 
|  | // and if the integer add will not overflow. | 
|  | if (LHSConv->getOperand(0)->getType() == | 
|  | RHSConv->getOperand(0)->getType() && | 
|  | (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && | 
|  | WillNotOverflowSignedAdd(LHSConv->getOperand(0), | 
|  | RHSConv->getOperand(0), I)) { | 
|  | // Insert the new integer add. | 
|  | Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), | 
|  | RHSConv->getOperand(0),"addconv"); | 
|  | return new SIToFPInst(NewAdd, I.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // select C, 0, B + select C, A, 0 -> select C, A, B | 
|  | { | 
|  | Value *A1, *B1, *C1, *A2, *B2, *C2; | 
|  | if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) && | 
|  | match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) { | 
|  | if (C1 == C2) { | 
|  | Constant *Z1=nullptr, *Z2=nullptr; | 
|  | Value *A, *B, *C=C1; | 
|  | if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) { | 
|  | Z1 = dyn_cast<Constant>(A1); A = A2; | 
|  | Z2 = dyn_cast<Constant>(B2); B = B1; | 
|  | } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) { | 
|  | Z1 = dyn_cast<Constant>(B1); B = B2; | 
|  | Z2 = dyn_cast<Constant>(A2); A = A1; | 
|  | } | 
|  |  | 
|  | if (Z1 && Z2 && | 
|  | (I.hasNoSignedZeros() || | 
|  | (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) { | 
|  | return SelectInst::Create(C, A, B); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (I.hasUnsafeAlgebra()) { | 
|  | if (Value *V = FAddCombine(Builder).simplify(&I)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  | } | 
|  |  | 
|  | return Changed ? &I : nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Optimize pointer differences into the same array into a size.  Consider: | 
|  | ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer | 
|  | /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. | 
|  | /// | 
|  | Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, | 
|  | Type *Ty) { | 
|  | // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize | 
|  | // this. | 
|  | bool Swapped = false; | 
|  | GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; | 
|  |  | 
|  | // For now we require one side to be the base pointer "A" or a constant | 
|  | // GEP derived from it. | 
|  | if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { | 
|  | // (gep X, ...) - X | 
|  | if (LHSGEP->getOperand(0) == RHS) { | 
|  | GEP1 = LHSGEP; | 
|  | Swapped = false; | 
|  | } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { | 
|  | // (gep X, ...) - (gep X, ...) | 
|  | if (LHSGEP->getOperand(0)->stripPointerCasts() == | 
|  | RHSGEP->getOperand(0)->stripPointerCasts()) { | 
|  | GEP2 = RHSGEP; | 
|  | GEP1 = LHSGEP; | 
|  | Swapped = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { | 
|  | // X - (gep X, ...) | 
|  | if (RHSGEP->getOperand(0) == LHS) { | 
|  | GEP1 = RHSGEP; | 
|  | Swapped = true; | 
|  | } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { | 
|  | // (gep X, ...) - (gep X, ...) | 
|  | if (RHSGEP->getOperand(0)->stripPointerCasts() == | 
|  | LHSGEP->getOperand(0)->stripPointerCasts()) { | 
|  | GEP2 = LHSGEP; | 
|  | GEP1 = RHSGEP; | 
|  | Swapped = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Avoid duplicating the arithmetic if GEP2 has non-constant indices and | 
|  | // multiple users. | 
|  | if (!GEP1 || | 
|  | (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse())) | 
|  | return nullptr; | 
|  |  | 
|  | // Emit the offset of the GEP and an intptr_t. | 
|  | Value *Result = EmitGEPOffset(GEP1); | 
|  |  | 
|  | // If we had a constant expression GEP on the other side offsetting the | 
|  | // pointer, subtract it from the offset we have. | 
|  | if (GEP2) { | 
|  | Value *Offset = EmitGEPOffset(GEP2); | 
|  | Result = Builder->CreateSub(Result, Offset); | 
|  | } | 
|  |  | 
|  | // If we have p - gep(p, ...)  then we have to negate the result. | 
|  | if (Swapped) | 
|  | Result = Builder->CreateNeg(Result, "diff.neg"); | 
|  |  | 
|  | return Builder->CreateIntCast(Result, Ty, true); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSub(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyVectorOp(I)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), | 
|  | I.hasNoUnsignedWrap(), DL, TLI, DT, AC)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // (A*B)-(A*C) -> A*(B-C) etc | 
|  | if (Value *V = SimplifyUsingDistributiveLaws(I)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // If this is a 'B = x-(-A)', change to B = x+A. | 
|  | if (Value *V = dyn_castNegVal(Op1)) { | 
|  | BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); | 
|  |  | 
|  | if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { | 
|  | assert(BO->getOpcode() == Instruction::Sub && | 
|  | "Expected a subtraction operator!"); | 
|  | if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) | 
|  | Res->setHasNoSignedWrap(true); | 
|  | } else { | 
|  | if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) | 
|  | Res->setHasNoSignedWrap(true); | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | if (I.getType()->isIntegerTy(1)) | 
|  | return BinaryOperator::CreateXor(Op0, Op1); | 
|  |  | 
|  | // Replace (-1 - A) with (~A). | 
|  | if (match(Op0, m_AllOnes())) | 
|  | return BinaryOperator::CreateNot(Op1); | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(Op0)) { | 
|  | // C - ~X == X + (1+C) | 
|  | Value *X = nullptr; | 
|  | if (match(Op1, m_Not(m_Value(X)))) | 
|  | return BinaryOperator::CreateAdd(X, AddOne(C)); | 
|  |  | 
|  | // Try to fold constant sub into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  |  | 
|  | // C-(X+C2) --> (C-C2)-X | 
|  | Constant *C2; | 
|  | if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) | 
|  | return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); | 
|  |  | 
|  | if (SimplifyDemandedInstructionBits(I)) | 
|  | return &I; | 
|  |  | 
|  | // Fold (sub 0, (zext bool to B)) --> (sext bool to B) | 
|  | if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X)))) | 
|  | if (X->getType()->getScalarType()->isIntegerTy(1)) | 
|  | return CastInst::CreateSExtOrBitCast(X, Op1->getType()); | 
|  |  | 
|  | // Fold (sub 0, (sext bool to B)) --> (zext bool to B) | 
|  | if (C->isNullValue() && match(Op1, m_SExt(m_Value(X)))) | 
|  | if (X->getType()->getScalarType()->isIntegerTy(1)) | 
|  | return CastInst::CreateZExtOrBitCast(X, Op1->getType()); | 
|  | } | 
|  |  | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { | 
|  | // -(X >>u 31) -> (X >>s 31) | 
|  | // -(X >>s 31) -> (X >>u 31) | 
|  | if (C->isZero()) { | 
|  | Value *X; | 
|  | ConstantInt *CI; | 
|  | if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) && | 
|  | // Verify we are shifting out everything but the sign bit. | 
|  | CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1) | 
|  | return BinaryOperator::CreateAShr(X, CI); | 
|  |  | 
|  | if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) && | 
|  | // Verify we are shifting out everything but the sign bit. | 
|  | CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1) | 
|  | return BinaryOperator::CreateLShr(X, CI); | 
|  | } | 
|  |  | 
|  | // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known | 
|  | // zero. | 
|  | APInt IntVal = C->getValue(); | 
|  | if ((IntVal + 1).isPowerOf2()) { | 
|  | unsigned BitWidth = I.getType()->getScalarSizeInBits(); | 
|  | APInt KnownZero(BitWidth, 0); | 
|  | APInt KnownOne(BitWidth, 0); | 
|  | computeKnownBits(&I, KnownZero, KnownOne, 0, &I); | 
|  | if ((IntVal | KnownZero).isAllOnesValue()) { | 
|  | return BinaryOperator::CreateXor(Op1, C); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | { | 
|  | Value *Y; | 
|  | // X-(X+Y) == -Y    X-(Y+X) == -Y | 
|  | if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) || | 
|  | match(Op1, m_Add(m_Value(Y), m_Specific(Op0)))) | 
|  | return BinaryOperator::CreateNeg(Y); | 
|  |  | 
|  | // (X-Y)-X == -Y | 
|  | if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) | 
|  | return BinaryOperator::CreateNeg(Y); | 
|  | } | 
|  |  | 
|  | // (sub (or A, B) (xor A, B)) --> (and A, B) | 
|  | { | 
|  | Value *A = nullptr, *B = nullptr; | 
|  | if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && | 
|  | (match(Op0, m_Or(m_Specific(A), m_Specific(B))) || | 
|  | match(Op0, m_Or(m_Specific(B), m_Specific(A))))) | 
|  | return BinaryOperator::CreateAnd(A, B); | 
|  | } | 
|  |  | 
|  | if (Op0->hasOneUse()) { | 
|  | Value *Y = nullptr; | 
|  | // ((X | Y) - X) --> (~X & Y) | 
|  | if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) || | 
|  | match(Op0, m_Or(m_Specific(Op1), m_Value(Y)))) | 
|  | return BinaryOperator::CreateAnd( | 
|  | Y, Builder->CreateNot(Op1, Op1->getName() + ".not")); | 
|  | } | 
|  |  | 
|  | if (Op1->hasOneUse()) { | 
|  | Value *X = nullptr, *Y = nullptr, *Z = nullptr; | 
|  | Constant *C = nullptr; | 
|  | Constant *CI = nullptr; | 
|  |  | 
|  | // (X - (Y - Z))  -->  (X + (Z - Y)). | 
|  | if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) | 
|  | return BinaryOperator::CreateAdd(Op0, | 
|  | Builder->CreateSub(Z, Y, Op1->getName())); | 
|  |  | 
|  | // (X - (X & Y))   -->   (X & ~Y) | 
|  | // | 
|  | if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) || | 
|  | match(Op1, m_And(m_Specific(Op0), m_Value(Y)))) | 
|  | return BinaryOperator::CreateAnd(Op0, | 
|  | Builder->CreateNot(Y, Y->getName() + ".not")); | 
|  |  | 
|  | // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow. | 
|  | if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) && | 
|  | C->isNotMinSignedValue() && !C->isOneValue()) | 
|  | return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); | 
|  |  | 
|  | // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable. | 
|  | if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) | 
|  | if (Value *XNeg = dyn_castNegVal(X)) | 
|  | return BinaryOperator::CreateShl(XNeg, Y); | 
|  |  | 
|  | // X - A*-B -> X + A*B | 
|  | // X - -A*B -> X + A*B | 
|  | Value *A, *B; | 
|  | if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) || | 
|  | match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B)))) | 
|  | return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B)); | 
|  |  | 
|  | // X - A*CI -> X + A*-CI | 
|  | // X - CI*A -> X + A*-CI | 
|  | if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) || | 
|  | match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) { | 
|  | Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI)); | 
|  | return BinaryOperator::CreateAdd(Op0, NewMul); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Optimize pointer differences into the same array into a size.  Consider: | 
|  | //  &A[10] - &A[0]: we should compile this to "10". | 
|  | Value *LHSOp, *RHSOp; | 
|  | if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && | 
|  | match(Op1, m_PtrToInt(m_Value(RHSOp)))) | 
|  | if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) | 
|  | return ReplaceInstUsesWith(I, Res); | 
|  |  | 
|  | // trunc(p)-trunc(q) -> trunc(p-q) | 
|  | if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && | 
|  | match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) | 
|  | if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) | 
|  | return ReplaceInstUsesWith(I, Res); | 
|  |  | 
|  | bool Changed = false; | 
|  | if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) { | 
|  | Changed = true; | 
|  | I.setHasNoSignedWrap(true); | 
|  | } | 
|  | if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) { | 
|  | Changed = true; | 
|  | I.setHasNoUnsignedWrap(true); | 
|  | } | 
|  |  | 
|  | return Changed ? &I : nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitFSub(BinaryOperator &I) { | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | if (Value *V = SimplifyVectorOp(I)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Value *V = | 
|  | SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  |  | 
|  | // fsub nsz 0, X ==> fsub nsz -0.0, X | 
|  | if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) { | 
|  | // Subtraction from -0.0 is the canonical form of fneg. | 
|  | Instruction *NewI = BinaryOperator::CreateFNeg(Op1); | 
|  | NewI->copyFastMathFlags(&I); | 
|  | return NewI; | 
|  | } | 
|  |  | 
|  | if (isa<Constant>(Op0)) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) | 
|  | if (Instruction *NV = FoldOpIntoSelect(I, SI)) | 
|  | return NV; | 
|  |  | 
|  | // If this is a 'B = x-(-A)', change to B = x+A, potentially looking | 
|  | // through FP extensions/truncations along the way. | 
|  | if (Value *V = dyn_castFNegVal(Op1)) { | 
|  | Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V); | 
|  | NewI->copyFastMathFlags(&I); | 
|  | return NewI; | 
|  | } | 
|  | if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) { | 
|  | if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) { | 
|  | Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType()); | 
|  | Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc); | 
|  | NewI->copyFastMathFlags(&I); | 
|  | return NewI; | 
|  | } | 
|  | } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) { | 
|  | if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) { | 
|  | Value *NewExt = Builder->CreateFPExt(V, I.getType()); | 
|  | Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt); | 
|  | NewI->copyFastMathFlags(&I); | 
|  | return NewI; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (I.hasUnsafeAlgebra()) { | 
|  | if (Value *V = FAddCombine(Builder).simplify(&I)) | 
|  | return ReplaceInstUsesWith(I, V); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } |