blob: 5efcc1a0d9fc07353a42e569c1a24a0c43578dda [file] [log] [blame]
//===-- ARMBaseInstrInfo.h - ARM Base Instruction Information ---*- C++ -*-===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// This file contains the Base ARM implementation of the TargetInstrInfo class.
#include "MCTargetDesc/ARMBaseInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsARM.h"
#include <array>
#include <cstdint>
#include ""
namespace llvm {
class ARMBaseRegisterInfo;
class ARMSubtarget;
class ARMBaseInstrInfo : public ARMGenInstrInfo {
const ARMSubtarget &Subtarget;
// Can be only subclassed.
explicit ARMBaseInstrInfo(const ARMSubtarget &STI);
void expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
unsigned LoadImmOpc, unsigned LoadOpc) const;
/// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
/// and \p DefIdx.
/// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
/// the list is modeled as <Reg:SubReg, SubIdx>.
/// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
/// two elements:
/// - %1:sub1, sub0
/// - %2<:0>, sub1
/// \returns true if it is possible to build such an input sequence
/// with the pair \p MI, \p DefIdx. False otherwise.
/// \pre MI.isRegSequenceLike().
bool getRegSequenceLikeInputs(
const MachineInstr &MI, unsigned DefIdx,
SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const override;
/// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
/// and \p DefIdx.
/// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
/// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
/// - %1:sub1, sub0
/// \returns true if it is possible to build such an input sequence
/// with the pair \p MI, \p DefIdx. False otherwise.
/// \pre MI.isExtractSubregLike().
bool getExtractSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
RegSubRegPairAndIdx &InputReg) const override;
/// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
/// and \p DefIdx.
/// \p [out] BaseReg and \p [out] InsertedReg contain
/// the equivalent inputs of INSERT_SUBREG.
/// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
/// - BaseReg: %0:sub0
/// - InsertedReg: %1:sub1, sub3
/// \returns true if it is possible to build such an input sequence
/// with the pair \p MI, \p DefIdx. False otherwise.
/// \pre MI.isInsertSubregLike().
getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
RegSubRegPair &BaseReg,
RegSubRegPairAndIdx &InsertedReg) const override;
/// Commutes the operands in the given instruction.
/// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
/// Do not call this method for a non-commutable instruction or for
/// non-commutable pair of operand indices OpIdx1 and OpIdx2.
/// Even though the instruction is commutable, the method may still
/// fail to commute the operands, null pointer is returned in such cases.
MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
unsigned OpIdx1,
unsigned OpIdx2) const override;
/// If the specific machine instruction is an instruction that moves/copies
/// value from one register to another register return destination and source
/// registers as machine operands.
isCopyInstrImpl(const MachineInstr &MI) const override;
/// Specialization of \ref TargetInstrInfo::describeLoadedValue, used to
/// enhance debug entry value descriptions for ARM targets.
describeLoadedValue(const MachineInstr &MI, Register Reg) const override;
// Return whether the target has an explicit NOP encoding.
bool hasNOP() const;
// Return the non-pre/post incrementing version of 'Opc'. Return 0
// if there is not such an opcode.
virtual unsigned getUnindexedOpcode(unsigned Opc) const = 0;
MachineInstr *convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
LiveIntervals *LIS) const override;
virtual const ARMBaseRegisterInfo &getRegisterInfo() const = 0;
const ARMSubtarget &getSubtarget() const { return Subtarget; }
ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
const ScheduleDAG *DAG) const override;
ScheduleHazardRecognizer *
CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAGMI *DAG) const override;
ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAG *DAG) const override;
// Branch analysis.
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify = false) const override;
unsigned removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved = nullptr) const override;
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded = nullptr) const override;
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
// Predication support.
bool isPredicated(const MachineInstr &MI) const override;
// MIR printer helper function to annotate Operands with a comment.
createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
unsigned OpIdx,
const TargetRegisterInfo *TRI) const override;
ARMCC::CondCodes getPredicate(const MachineInstr &MI) const {
int PIdx = MI.findFirstPredOperandIdx();
return PIdx != -1 ? (ARMCC::CondCodes)MI.getOperand(PIdx).getImm()
bool PredicateInstruction(MachineInstr &MI,
ArrayRef<MachineOperand> Pred) const override;
bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
ArrayRef<MachineOperand> Pred2) const override;
bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred,
bool SkipDead) const override;
bool isPredicable(const MachineInstr &MI) const override;
// CPSR defined in instruction
static bool isCPSRDefined(const MachineInstr &MI);
/// GetInstSize - Returns the size of the specified MachineInstr.
unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
unsigned isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const override;
unsigned isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const override;
unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
int &FrameIndex) const override;
unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
int &FrameIndex) const override;
void copyToCPSR(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned SrcReg, bool KillSrc,
const ARMSubtarget &Subtarget) const;
void copyFromCPSR(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned DestReg, bool KillSrc,
const ARMSubtarget &Subtarget) const;
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
bool KillSrc) const override;
void storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, Register SrcReg,
bool isKill, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI,
Register VReg) const override;
void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, Register DestReg,
int FrameIndex, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI,
Register VReg) const override;
bool expandPostRAPseudo(MachineInstr &MI) const override;
bool shouldSink(const MachineInstr &MI) const override;
void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
Register DestReg, unsigned SubIdx,
const MachineInstr &Orig,
const TargetRegisterInfo &TRI) const override;
MachineInstr &
duplicate(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
const MachineInstr &Orig) const override;
const MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
unsigned SubIdx, unsigned State,
const TargetRegisterInfo *TRI) const;
bool produceSameValue(const MachineInstr &MI0, const MachineInstr &MI1,
const MachineRegisterInfo *MRI) const override;
/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
/// determine if two loads are loading from the same base address. It should
/// only return true if the base pointers are the same and the only
/// differences between the two addresses is the offset. It also returns the
/// offsets by reference.
bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
int64_t &Offset2) const override;
/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
/// should be scheduled togther. On some targets if two loads are loading from
/// addresses in the same cache line, it's better if they are scheduled
/// together. This function takes two integers that represent the load offsets
/// from the common base address. It returns true if it decides it's desirable
/// to schedule the two loads together. "NumLoads" is the number of loads that
/// have already been scheduled after Load1.
bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
int64_t Offset1, int64_t Offset2,
unsigned NumLoads) const override;
bool isSchedulingBoundary(const MachineInstr &MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const override;
bool isProfitableToIfCvt(MachineBasicBlock &MBB,
unsigned NumCycles, unsigned ExtraPredCycles,
BranchProbability Probability) const override;
bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumT,
unsigned ExtraT, MachineBasicBlock &FMBB,
unsigned NumF, unsigned ExtraF,
BranchProbability Probability) const override;
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
BranchProbability Probability) const override {
return NumCycles == 1;
unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
unsigned NumInsts) const override;
unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const override;
bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
MachineBasicBlock &FMBB) const override;
/// analyzeCompare - For a comparison instruction, return the source registers
/// in SrcReg and SrcReg2 if having two register operands, and the value it
/// compares against in CmpValue. Return true if the comparison instruction
/// can be analyzed.
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
Register &SrcReg2, int64_t &CmpMask,
int64_t &CmpValue) const override;
/// optimizeCompareInstr - Convert the instruction to set the zero flag so
/// that we can remove a "comparison with zero"; Remove a redundant CMP
/// instruction if the flags can be updated in the same way by an earlier
/// instruction such as SUB.
bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
Register SrcReg2, int64_t CmpMask, int64_t CmpValue,
const MachineRegisterInfo *MRI) const override;
bool analyzeSelect(const MachineInstr &MI,
SmallVectorImpl<MachineOperand> &Cond, unsigned &TrueOp,
unsigned &FalseOp, bool &Optimizable) const override;
MachineInstr *optimizeSelect(MachineInstr &MI,
SmallPtrSetImpl<MachineInstr *> &SeenMIs,
bool) const override;
/// FoldImmediate - 'Reg' is known to be defined by a move immediate
/// instruction, try to fold the immediate into the use instruction.
bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
MachineRegisterInfo *MRI) const override;
unsigned getNumMicroOps(const InstrItineraryData *ItinData,
const MachineInstr &MI) const override;
int getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr &DefMI, unsigned DefIdx,
const MachineInstr &UseMI,
unsigned UseIdx) const override;
int getOperandLatency(const InstrItineraryData *ItinData,
SDNode *DefNode, unsigned DefIdx,
SDNode *UseNode, unsigned UseIdx) const override;
/// VFP/NEON execution domains.
std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr &MI) const override;
void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
getPartialRegUpdateClearance(const MachineInstr &, unsigned,
const TargetRegisterInfo *) const override;
void breakPartialRegDependency(MachineInstr &, unsigned,
const TargetRegisterInfo *TRI) const override;
/// Get the number of addresses by LDM or VLDM or zero for unknown.
unsigned getNumLDMAddresses(const MachineInstr &MI) const;
std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const override;
ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const override;
ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const override;
/// ARM supports the MachineOutliner.
bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
bool OutlineFromLinkOnceODRs) const override;
std::optional<outliner::OutlinedFunction> getOutliningCandidateInfo(
std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
void mergeOutliningCandidateAttributes(
Function &F, std::vector<outliner::Candidate> &Candidates) const override;
outliner::InstrType getOutliningTypeImpl(MachineBasicBlock::iterator &MIT,
unsigned Flags) const override;
bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
unsigned &Flags) const override;
void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
const outliner::OutlinedFunction &OF) const override;
insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
MachineBasicBlock::iterator &It, MachineFunction &MF,
outliner::Candidate &C) const override;
/// Enable outlining by default at -Oz.
bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const override;
bool isUnspillableTerminatorImpl(const MachineInstr *MI) const override {
return MI->getOpcode() == ARM::t2LoopEndDec ||
MI->getOpcode() == ARM::t2DoLoopStartTP ||
MI->getOpcode() == ARM::t2WhileLoopStartLR ||
MI->getOpcode() == ARM::t2WhileLoopStartTP;
/// Analyze loop L, which must be a single-basic-block loop, and if the
/// conditions can be understood enough produce a PipelinerLoopInfo object.
analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
/// Returns an unused general-purpose register which can be used for
/// constructing an outlined call if one exists. Returns 0 otherwise.
Register findRegisterToSaveLRTo(outliner::Candidate &C) const;
/// Adds an instruction which saves the link register on top of the stack into
/// the MachineBasicBlock \p MBB at position \p It. If \p Auth is true,
/// compute and store an authentication code alongiside the link register.
/// If \p CFI is true, emit CFI instructions.
void saveLROnStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator It,
bool CFI, bool Auth) const;
/// Adds an instruction which restores the link register from the top the
/// stack into the MachineBasicBlock \p MBB at position \p It. If \p Auth is
/// true, restore an authentication code and authenticate LR.
/// If \p CFI is true, emit CFI instructions.
void restoreLRFromStack(MachineBasicBlock &MBB,
MachineBasicBlock::iterator It, bool CFI,
bool Auth) const;
/// Emit CFI instructions into the MachineBasicBlock \p MBB at position \p It,
/// for the case when the LR is saved in the register \p Reg.
void emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator It,
Register Reg) const;
/// Emit CFI instructions into the MachineBasicBlock \p MBB at position \p It,
/// after the LR is was restored from a register.
void emitCFIForLRRestoreFromReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator It) const;
/// \brief Sets the offsets on outlined instructions in \p MBB which use SP
/// so that they will be valid post-outlining.
/// \param MBB A \p MachineBasicBlock in an outlined function.
void fixupPostOutline(MachineBasicBlock &MBB) const;
/// Returns true if the machine instruction offset can handle the stack fixup
/// and updates it if requested.
bool checkAndUpdateStackOffset(MachineInstr *MI, int64_t Fixup,
bool Updt) const;
unsigned getInstBundleLength(const MachineInstr &MI) const;
int getVLDMDefCycle(const InstrItineraryData *ItinData,
const MCInstrDesc &DefMCID,
unsigned DefClass,
unsigned DefIdx, unsigned DefAlign) const;
int getLDMDefCycle(const InstrItineraryData *ItinData,
const MCInstrDesc &DefMCID,
unsigned DefClass,
unsigned DefIdx, unsigned DefAlign) const;
int getVSTMUseCycle(const InstrItineraryData *ItinData,
const MCInstrDesc &UseMCID,
unsigned UseClass,
unsigned UseIdx, unsigned UseAlign) const;
int getSTMUseCycle(const InstrItineraryData *ItinData,
const MCInstrDesc &UseMCID,
unsigned UseClass,
unsigned UseIdx, unsigned UseAlign) const;
int getOperandLatency(const InstrItineraryData *ItinData,
const MCInstrDesc &DefMCID,
unsigned DefIdx, unsigned DefAlign,
const MCInstrDesc &UseMCID,
unsigned UseIdx, unsigned UseAlign) const;
int getOperandLatencyImpl(const InstrItineraryData *ItinData,
const MachineInstr &DefMI, unsigned DefIdx,
const MCInstrDesc &DefMCID, unsigned DefAdj,
const MachineOperand &DefMO, unsigned Reg,
const MachineInstr &UseMI, unsigned UseIdx,
const MCInstrDesc &UseMCID, unsigned UseAdj) const;
unsigned getPredicationCost(const MachineInstr &MI) const override;
unsigned getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr &MI,
unsigned *PredCost = nullptr) const override;
int getInstrLatency(const InstrItineraryData *ItinData,
SDNode *Node) const override;
bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
const MachineRegisterInfo *MRI,
const MachineInstr &DefMI, unsigned DefIdx,
const MachineInstr &UseMI,
unsigned UseIdx) const override;
bool hasLowDefLatency(const TargetSchedModel &SchedModel,
const MachineInstr &DefMI,
unsigned DefIdx) const override;
/// verifyInstruction - Perform target specific instruction verification.
bool verifyInstruction(const MachineInstr &MI,
StringRef &ErrInfo) const override;
virtual void expandLoadStackGuard(MachineBasicBlock::iterator MI) const = 0;
void expandMEMCPY(MachineBasicBlock::iterator) const;
/// Identify instructions that can be folded into a MOVCC instruction, and
/// return the defining instruction.
MachineInstr *canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
const TargetInstrInfo *TII) const;
bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override;
/// Modeling special VFP / NEON fp MLA / MLS hazards.
/// MLxEntryMap - Map fp MLA / MLS to the corresponding entry in the internal
/// MLx table.
DenseMap<unsigned, unsigned> MLxEntryMap;
/// MLxHazardOpcodes - Set of add / sub and multiply opcodes that would cause
/// stalls when scheduled together with fp MLA / MLS opcodes.
SmallSet<unsigned, 16> MLxHazardOpcodes;
/// isFpMLxInstruction - Return true if the specified opcode is a fp MLA / MLS
/// instruction.
bool isFpMLxInstruction(unsigned Opcode) const {
return MLxEntryMap.count(Opcode);
/// isFpMLxInstruction - This version also returns the multiply opcode and the
/// addition / subtraction opcode to expand to. Return true for 'HasLane' for
/// the MLX instructions with an extra lane operand.
bool isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
unsigned &AddSubOpc, bool &NegAcc,
bool &HasLane) const;
/// canCauseFpMLxStall - Return true if an instruction of the specified opcode
/// will cause stalls when scheduled after (within 4-cycle window) a fp
/// MLA / MLS instruction.
bool canCauseFpMLxStall(unsigned Opcode) const {
return MLxHazardOpcodes.count(Opcode);
/// Returns true if the instruction has a shift by immediate that can be
/// executed in one cycle less.
bool isSwiftFastImmShift(const MachineInstr *MI) const;
/// Returns predicate register associated with the given frame instruction.
unsigned getFramePred(const MachineInstr &MI) const {
// - argument declared in the pattern:
// 0 - frame size
// 2 - predicate code (like ARMCC::AL)
// - added by predOps:
// 3 - predicate reg
return MI.getOperand(3).getReg();
std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
Register Reg) const override;
/// Get the operands corresponding to the given \p Pred value. By default, the
/// predicate register is assumed to be 0 (no register), but you can pass in a
/// \p PredReg if that is not the case.
static inline std::array<MachineOperand, 2> predOps(ARMCC::CondCodes Pred,
unsigned PredReg = 0) {
return {{MachineOperand::CreateImm(static_cast<int64_t>(Pred)),
MachineOperand::CreateReg(PredReg, false)}};
/// Get the operand corresponding to the conditional code result. By default,
/// this is 0 (no register).
static inline MachineOperand condCodeOp(unsigned CCReg = 0) {
return MachineOperand::CreateReg(CCReg, false);
/// Get the operand corresponding to the conditional code result for Thumb1.
/// This operand will always refer to CPSR and it will have the Define flag set.
/// You can optionally set the Dead flag by means of \p isDead.
static inline MachineOperand t1CondCodeOp(bool isDead = false) {
return MachineOperand::CreateReg(ARM::CPSR,
/*Define*/ true, /*Implicit*/ false,
/*Kill*/ false, isDead);
static inline
bool isUncondBranchOpcode(int Opc) {
return Opc == ARM::B || Opc == ARM::tB || Opc == ARM::t2B;
// This table shows the VPT instruction variants, i.e. the different
// mask field encodings, see also B5.6. Predication/conditional execution in
// the ArmARM.
static inline bool isVPTOpcode(int Opc) {
return Opc == ARM::MVE_VPTv16i8 || Opc == ARM::MVE_VPTv16u8 ||
Opc == ARM::MVE_VPTv16s8 || Opc == ARM::MVE_VPTv8i16 ||
Opc == ARM::MVE_VPTv8u16 || Opc == ARM::MVE_VPTv8s16 ||
Opc == ARM::MVE_VPTv4i32 || Opc == ARM::MVE_VPTv4u32 ||
Opc == ARM::MVE_VPTv4s32 || Opc == ARM::MVE_VPTv4f32 ||
Opc == ARM::MVE_VPTv8f16 || Opc == ARM::MVE_VPTv16i8r ||
Opc == ARM::MVE_VPTv16u8r || Opc == ARM::MVE_VPTv16s8r ||
Opc == ARM::MVE_VPTv8i16r || Opc == ARM::MVE_VPTv8u16r ||
Opc == ARM::MVE_VPTv8s16r || Opc == ARM::MVE_VPTv4i32r ||
Opc == ARM::MVE_VPTv4u32r || Opc == ARM::MVE_VPTv4s32r ||
Opc == ARM::MVE_VPTv4f32r || Opc == ARM::MVE_VPTv8f16r ||
static inline
unsigned VCMPOpcodeToVPT(unsigned Opcode) {
switch (Opcode) {
return 0;
case ARM::MVE_VCMPf32:
return ARM::MVE_VPTv4f32;
case ARM::MVE_VCMPf16:
return ARM::MVE_VPTv8f16;
case ARM::MVE_VCMPi8:
return ARM::MVE_VPTv16i8;
case ARM::MVE_VCMPi16:
return ARM::MVE_VPTv8i16;
case ARM::MVE_VCMPi32:
return ARM::MVE_VPTv4i32;
case ARM::MVE_VCMPu8:
return ARM::MVE_VPTv16u8;
case ARM::MVE_VCMPu16:
return ARM::MVE_VPTv8u16;
case ARM::MVE_VCMPu32:
return ARM::MVE_VPTv4u32;
case ARM::MVE_VCMPs8:
return ARM::MVE_VPTv16s8;
case ARM::MVE_VCMPs16:
return ARM::MVE_VPTv8s16;
case ARM::MVE_VCMPs32:
return ARM::MVE_VPTv4s32;
case ARM::MVE_VCMPf32r:
return ARM::MVE_VPTv4f32r;
case ARM::MVE_VCMPf16r:
return ARM::MVE_VPTv8f16r;
case ARM::MVE_VCMPi8r:
return ARM::MVE_VPTv16i8r;
case ARM::MVE_VCMPi16r:
return ARM::MVE_VPTv8i16r;
case ARM::MVE_VCMPi32r:
return ARM::MVE_VPTv4i32r;
case ARM::MVE_VCMPu8r:
return ARM::MVE_VPTv16u8r;
case ARM::MVE_VCMPu16r:
return ARM::MVE_VPTv8u16r;
case ARM::MVE_VCMPu32r:
return ARM::MVE_VPTv4u32r;
case ARM::MVE_VCMPs8r:
return ARM::MVE_VPTv16s8r;
case ARM::MVE_VCMPs16r:
return ARM::MVE_VPTv8s16r;
case ARM::MVE_VCMPs32r:
return ARM::MVE_VPTv4s32r;
static inline
bool isCondBranchOpcode(int Opc) {
return Opc == ARM::Bcc || Opc == ARM::tBcc || Opc == ARM::t2Bcc;
static inline bool isJumpTableBranchOpcode(int Opc) {
return Opc == ARM::BR_JTr || Opc == ARM::BR_JTm_i12 ||
Opc == ARM::BR_JTm_rs || Opc == ARM::BR_JTadd || Opc == ARM::tBR_JTr ||
Opc == ARM::t2BR_JT;
static inline
bool isIndirectBranchOpcode(int Opc) {
return Opc == ARM::BX || Opc == ARM::MOVPCRX || Opc == ARM::tBRIND;
static inline bool isIndirectCall(const MachineInstr &MI) {
int Opc = MI.getOpcode();
switch (Opc) {
// indirect calls:
case ARM::BLX:
case ARM::BLX_noip:
case ARM::BLX_pred:
case ARM::BLX_pred_noip:
case ARM::BX_CALL:
case ARM::TAILJMPr4:
case ARM::tBLXr:
case ARM::tBLXr_noip:
case ARM::tBLXNSr:
case ARM::tBX_CALL:
case ARM::tTAILJMPr:
return true;
// direct calls:
case ARM::BL:
case ARM::BL_pred:
case ARM::BLXi:
case ARM::SVC:
case ARM::HVC:
case ARM::TPsoft:
case ARM::tTAILJMPd:
case ARM::t2SMC:
case ARM::t2HVC:
case ARM::tBL:
case ARM::tBLXi:
case ARM::tSVC:
case ARM::tTPsoft:
return false;
return false;
static inline bool isIndirectControlFlowNotComingBack(const MachineInstr &MI) {
int opc = MI.getOpcode();
return MI.isReturn() || isIndirectBranchOpcode(MI.getOpcode()) ||
static inline bool isSpeculationBarrierEndBBOpcode(int Opc) {
return Opc == ARM::SpeculationBarrierISBDSBEndBB ||
Opc == ARM::SpeculationBarrierSBEndBB ||
Opc == ARM::t2SpeculationBarrierISBDSBEndBB ||
Opc == ARM::t2SpeculationBarrierSBEndBB;
static inline bool isPopOpcode(int Opc) {
return Opc == ARM::tPOP_RET || Opc == ARM::LDMIA_RET ||
Opc == ARM::t2LDMIA_RET || Opc == ARM::tPOP || Opc == ARM::LDMIA_UPD ||
static inline bool isPushOpcode(int Opc) {
return Opc == ARM::tPUSH || Opc == ARM::t2STMDB_UPD ||
static inline bool isSubImmOpcode(int Opc) {
return Opc == ARM::SUBri ||
Opc == ARM::tSUBi3 || Opc == ARM::tSUBi8 ||
Opc == ARM::tSUBSi3 || Opc == ARM::tSUBSi8 ||
Opc == ARM::t2SUBri || Opc == ARM::t2SUBri12 || Opc == ARM::t2SUBSri;
static inline bool isMovRegOpcode(int Opc) {
return Opc == ARM::MOVr || Opc == ARM::tMOVr || Opc == ARM::t2MOVr;
/// isValidCoprocessorNumber - decide whether an explicit coprocessor
/// number is legal in generic instructions like CDP. The answer can
/// vary with the subtarget.
static inline bool isValidCoprocessorNumber(unsigned Num,
const FeatureBitset& featureBits) {
// In Armv7 and Armv8-M CP10 and CP11 clash with VFP/NEON, however, the
// coprocessor is still valid for CDP/MCR/MRC and friends. Allowing it is
// useful for code which is shared with older architectures which do not know
// the new VFP/NEON mnemonics.
// Armv8-A disallows everything *other* than 111x (CP14 and CP15).
if (featureBits[ARM::HasV8Ops] && (Num & 0xE) != 0xE)
return false;
// Armv8.1-M disallows 100x (CP8,CP9) and 111x (CP14,CP15)
// which clash with MVE.
if (featureBits[ARM::HasV8_1MMainlineOps] &&
((Num & 0xE) == 0x8 || (Num & 0xE) == 0xE))
return false;
return true;
static inline bool isSEHInstruction(const MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
switch (Opc) {
case ARM::SEH_StackAlloc:
case ARM::SEH_SaveRegs:
case ARM::SEH_SaveRegs_Ret:
case ARM::SEH_SaveSP:
case ARM::SEH_SaveFRegs:
case ARM::SEH_SaveLR:
case ARM::SEH_Nop:
case ARM::SEH_Nop_Ret:
case ARM::SEH_PrologEnd:
case ARM::SEH_EpilogStart:
case ARM::SEH_EpilogEnd:
return true;
return false;
/// getInstrPredicate - If instruction is predicated, returns its predicate
/// condition, otherwise returns AL. It also returns the condition code
/// register by reference.
ARMCC::CondCodes getInstrPredicate(const MachineInstr &MI, Register &PredReg);
unsigned getMatchingCondBranchOpcode(unsigned Opc);
/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether
/// the instruction is encoded with an 'S' bit is determined by the optional
/// CPSR def operand.
unsigned convertAddSubFlagsOpcode(unsigned OldOpc);
/// emitARMRegPlusImmediate / emitT2RegPlusImmediate - Emits a series of
/// instructions to materializea destreg = basereg + immediate in ARM / Thumb2
/// code.
void emitARMRegPlusImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
const DebugLoc &dl, Register DestReg,
Register BaseReg, int NumBytes,
ARMCC::CondCodes Pred, Register PredReg,
const ARMBaseInstrInfo &TII, unsigned MIFlags = 0);
void emitT2RegPlusImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
const DebugLoc &dl, Register DestReg,
Register BaseReg, int NumBytes,
ARMCC::CondCodes Pred, Register PredReg,
const ARMBaseInstrInfo &TII, unsigned MIFlags = 0);
void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
const DebugLoc &dl, Register DestReg,
Register BaseReg, int NumBytes,
const TargetInstrInfo &TII,
const ARMBaseRegisterInfo &MRI,
unsigned MIFlags = 0);
/// Tries to add registers to the reglist of a given base-updating
/// push/pop instruction to adjust the stack by an additional
/// NumBytes. This can save a few bytes per function in code-size, but
/// obviously generates more memory traffic. As such, it only takes
/// effect in functions being optimised for size.
bool tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
MachineFunction &MF, MachineInstr *MI,
unsigned NumBytes);
/// rewriteARMFrameIndex / rewriteT2FrameIndex -
/// Rewrite MI to access 'Offset' bytes from the FP. Return false if the
/// offset could not be handled directly in MI, and return the left-over
/// portion by reference.
bool rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
Register FrameReg, int &Offset,
const ARMBaseInstrInfo &TII);
bool rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
Register FrameReg, int &Offset,
const ARMBaseInstrInfo &TII,
const TargetRegisterInfo *TRI);
/// Return true if Reg is defd between From and To
bool registerDefinedBetween(unsigned Reg, MachineBasicBlock::iterator From,
MachineBasicBlock::iterator To,
const TargetRegisterInfo *TRI);
/// Search backwards from a tBcc to find a tCMPi8 against 0, meaning
/// we can convert them to a tCBZ or tCBNZ. Return nullptr if not found.
MachineInstr *findCMPToFoldIntoCBZ(MachineInstr *Br,
const TargetRegisterInfo *TRI);
void addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB);
void addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, Register DestReg);
void addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond);
void addPredicatedMveVpredROp(MachineInstrBuilder &MIB, unsigned Cond,
unsigned Inactive);
/// Returns the number of instructions required to materialize the given
/// constant in a register, or 3 if a literal pool load is needed.
/// If ForCodesize is specified, an approximate cost in bytes is returned.
unsigned ConstantMaterializationCost(unsigned Val,
const ARMSubtarget *Subtarget,
bool ForCodesize = false);
/// Returns true if Val1 has a lower Constant Materialization Cost than Val2.
/// Uses the cost from ConstantMaterializationCost, first with ForCodesize as
/// specified. If the scores are equal, return the comparison for !ForCodesize.
bool HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
const ARMSubtarget *Subtarget,
bool ForCodesize = false);
// Return the immediate if this is ADDri or SUBri, scaled as appropriate.
// Returns 0 for unknown instructions.
inline int getAddSubImmediate(MachineInstr &MI) {
int Scale = 1;
unsigned ImmOp;
switch (MI.getOpcode()) {
case ARM::t2ADDri:
ImmOp = 2;
case ARM::t2SUBri:
case ARM::t2SUBri12:
ImmOp = 2;
Scale = -1;
case ARM::tSUBi3:
case ARM::tSUBi8:
ImmOp = 3;
Scale = -1;
return 0;
return Scale * MI.getOperand(ImmOp).getImm();
// Given a memory access Opcode, check that the give Imm would be a valid Offset
// for this instruction using its addressing mode.
inline bool isLegalAddressImm(unsigned Opcode, int Imm,
const TargetInstrInfo *TII) {
const MCInstrDesc &Desc = TII->get(Opcode);
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
switch (AddrMode) {
case ARMII::AddrModeT2_i7:
return std::abs(Imm) < ((1 << 7) * 1);
case ARMII::AddrModeT2_i7s2:
return std::abs(Imm) < ((1 << 7) * 2) && Imm % 2 == 0;
case ARMII::AddrModeT2_i7s4:
return std::abs(Imm) < ((1 << 7) * 4) && Imm % 4 == 0;
case ARMII::AddrModeT2_i8:
return std::abs(Imm) < ((1 << 8) * 1);
case ARMII::AddrModeT2_i8pos:
return Imm >= 0 && Imm < ((1 << 8) * 1);
case ARMII::AddrModeT2_i8neg:
return Imm < 0 && -Imm < ((1 << 8) * 1);
case ARMII::AddrModeT2_i8s4:
return std::abs(Imm) < ((1 << 8) * 4) && Imm % 4 == 0;
case ARMII::AddrModeT2_i12:
return Imm >= 0 && Imm < ((1 << 12) * 1);
case ARMII::AddrMode2:
return std::abs(Imm) < ((1 << 12) * 1);
llvm_unreachable("Unhandled Addressing mode");
// Return true if the given intrinsic is a gather
inline bool isGather(IntrinsicInst *IntInst) {
if (IntInst == nullptr)
return false;
unsigned IntrinsicID = IntInst->getIntrinsicID();
return (IntrinsicID == Intrinsic::masked_gather ||
IntrinsicID == Intrinsic::arm_mve_vldr_gather_base ||
IntrinsicID == Intrinsic::arm_mve_vldr_gather_base_predicated ||
IntrinsicID == Intrinsic::arm_mve_vldr_gather_base_wb ||
IntrinsicID == Intrinsic::arm_mve_vldr_gather_base_wb_predicated ||
IntrinsicID == Intrinsic::arm_mve_vldr_gather_offset ||
IntrinsicID == Intrinsic::arm_mve_vldr_gather_offset_predicated);
// Return true if the given intrinsic is a scatter
inline bool isScatter(IntrinsicInst *IntInst) {
if (IntInst == nullptr)
return false;
unsigned IntrinsicID = IntInst->getIntrinsicID();
return (IntrinsicID == Intrinsic::masked_scatter ||
IntrinsicID == Intrinsic::arm_mve_vstr_scatter_base ||
IntrinsicID == Intrinsic::arm_mve_vstr_scatter_base_predicated ||
IntrinsicID == Intrinsic::arm_mve_vstr_scatter_base_wb ||
IntrinsicID == Intrinsic::arm_mve_vstr_scatter_base_wb_predicated ||
IntrinsicID == Intrinsic::arm_mve_vstr_scatter_offset ||
IntrinsicID == Intrinsic::arm_mve_vstr_scatter_offset_predicated);
// Return true if the given intrinsic is a gather or scatter
inline bool isGatherScatter(IntrinsicInst *IntInst) {
if (IntInst == nullptr)
return false;
return isGather(IntInst) || isScatter(IntInst);
unsigned getBLXOpcode(const MachineFunction &MF);
unsigned gettBLXrOpcode(const MachineFunction &MF);
unsigned getBLXpredOpcode(const MachineFunction &MF);
} // end namespace llvm