blob: 0d95e3a9b8196293df4cd64b46c9f18c62d3bb22 [file] [log] [blame]
//===-- RISCVTargetParser.cpp - Parser for target features ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a target parser to recognise hardware features
// for RISC-V CPUs.
//
//===----------------------------------------------------------------------===//
#include "llvm/TargetParser/RISCVTargetParser.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/RISCVISAInfo.h"
#include "llvm/TargetParser/Triple.h"
namespace llvm {
namespace RISCV {
enum CPUKind : unsigned {
#define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_UNALIGN) CK_##ENUM,
#define TUNE_PROC(ENUM, NAME) CK_##ENUM,
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
};
struct CPUInfo {
StringLiteral Name;
StringLiteral DefaultMarch;
bool FastUnalignedAccess;
bool is64Bit() const { return DefaultMarch.starts_with("rv64"); }
};
constexpr CPUInfo RISCVCPUInfo[] = {
#define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_UNALIGN) \
{NAME, DEFAULT_MARCH, FAST_UNALIGN},
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
};
static const CPUInfo *getCPUInfoByName(StringRef CPU) {
for (auto &C : RISCVCPUInfo)
if (C.Name == CPU)
return &C;
return nullptr;
}
bool hasFastUnalignedAccess(StringRef CPU) {
const CPUInfo *Info = getCPUInfoByName(CPU);
return Info && Info->FastUnalignedAccess;
}
bool parseCPU(StringRef CPU, bool IsRV64) {
const CPUInfo *Info = getCPUInfoByName(CPU);
if (!Info)
return false;
return Info->is64Bit() == IsRV64;
}
bool parseTuneCPU(StringRef TuneCPU, bool IsRV64) {
std::optional<CPUKind> Kind =
llvm::StringSwitch<std::optional<CPUKind>>(TuneCPU)
#define TUNE_PROC(ENUM, NAME) .Case(NAME, CK_##ENUM)
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
.Default(std::nullopt);
if (Kind.has_value())
return true;
// Fallback to parsing as a CPU.
return parseCPU(TuneCPU, IsRV64);
}
StringRef getMArchFromMcpu(StringRef CPU) {
const CPUInfo *Info = getCPUInfoByName(CPU);
if (!Info)
return "";
return Info->DefaultMarch;
}
void fillValidCPUArchList(SmallVectorImpl<StringRef> &Values, bool IsRV64) {
for (const auto &C : RISCVCPUInfo) {
if (IsRV64 == C.is64Bit())
Values.emplace_back(C.Name);
}
}
void fillValidTuneCPUArchList(SmallVectorImpl<StringRef> &Values, bool IsRV64) {
for (const auto &C : RISCVCPUInfo) {
if (IsRV64 == C.is64Bit())
Values.emplace_back(C.Name);
}
#define TUNE_PROC(ENUM, NAME) Values.emplace_back(StringRef(NAME));
#include "llvm/TargetParser/RISCVTargetParserDef.inc"
}
// This function is currently used by IREE, so it's not dead code.
void getFeaturesForCPU(StringRef CPU,
SmallVectorImpl<std::string> &EnabledFeatures,
bool NeedPlus) {
StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(CPU);
if (MarchFromCPU == "")
return;
EnabledFeatures.clear();
auto RII = RISCVISAInfo::parseArchString(
MarchFromCPU, /* EnableExperimentalExtension */ true);
if (llvm::errorToBool(RII.takeError()))
return;
std::vector<std::string> FeatStrings =
(*RII)->toFeatures(/* AddAllExtensions */ false);
for (const auto &F : FeatStrings)
if (NeedPlus)
EnabledFeatures.push_back(F);
else
EnabledFeatures.push_back(F.substr(1));
}
} // namespace RISCV
namespace RISCVVType {
// Encode VTYPE into the binary format used by the the VSETVLI instruction which
// is used by our MC layer representation.
//
// Bits | Name | Description
// -----+------------+------------------------------------------------
// 7 | vma | Vector mask agnostic
// 6 | vta | Vector tail agnostic
// 5:3 | vsew[2:0] | Standard element width (SEW) setting
// 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting
unsigned encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW, bool TailAgnostic,
bool MaskAgnostic) {
assert(isValidSEW(SEW) && "Invalid SEW");
unsigned VLMULBits = static_cast<unsigned>(VLMUL);
unsigned VSEWBits = encodeSEW(SEW);
unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
if (TailAgnostic)
VTypeI |= 0x40;
if (MaskAgnostic)
VTypeI |= 0x80;
return VTypeI;
}
std::pair<unsigned, bool> decodeVLMUL(RISCVII::VLMUL VLMUL) {
switch (VLMUL) {
default:
llvm_unreachable("Unexpected LMUL value!");
case RISCVII::VLMUL::LMUL_1:
case RISCVII::VLMUL::LMUL_2:
case RISCVII::VLMUL::LMUL_4:
case RISCVII::VLMUL::LMUL_8:
return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
case RISCVII::VLMUL::LMUL_F2:
case RISCVII::VLMUL::LMUL_F4:
case RISCVII::VLMUL::LMUL_F8:
return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
}
}
void printVType(unsigned VType, raw_ostream &OS) {
unsigned Sew = getSEW(VType);
OS << "e" << Sew;
unsigned LMul;
bool Fractional;
std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
if (Fractional)
OS << ", mf";
else
OS << ", m";
OS << LMul;
if (isTailAgnostic(VType))
OS << ", ta";
else
OS << ", tu";
if (isMaskAgnostic(VType))
OS << ", ma";
else
OS << ", mu";
}
unsigned getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) {
unsigned LMul;
bool Fractional;
std::tie(LMul, Fractional) = decodeVLMUL(VLMul);
// Convert LMul to a fixed point value with 3 fractional bits.
LMul = Fractional ? (8 / LMul) : (LMul * 8);
assert(SEW >= 8 && "Unexpected SEW value");
return (SEW * 8) / LMul;
}
std::optional<RISCVII::VLMUL>
getSameRatioLMUL(unsigned SEW, RISCVII::VLMUL VLMUL, unsigned EEW) {
unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMUL);
unsigned EMULFixedPoint = (EEW * 8) / Ratio;
bool Fractional = EMULFixedPoint < 8;
unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8;
if (!isValidLMUL(EMUL, Fractional))
return std::nullopt;
return RISCVVType::encodeLMUL(EMUL, Fractional);
}
} // namespace RISCVVType
} // namespace llvm