blob: 0c706d51cb665f0422d487953c640522414698db [file] [log] [blame]
//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Custom DAG lowering for SI
//
//===----------------------------------------------------------------------===//
#include "SIISelLowering.h"
#include "AMDGPU.h"
#include "AMDGPUInstrInfo.h"
#include "AMDGPUTargetMachine.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/UniformityAnalysis.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/ByteProvider.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/ModRef.h"
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "si-lower"
STATISTIC(NumTailCalls, "Number of tail calls");
static cl::opt<bool> DisableLoopAlignment(
"amdgpu-disable-loop-alignment",
cl::desc("Do not align and prefetch loops"),
cl::init(false));
static cl::opt<bool> UseDivergentRegisterIndexing(
"amdgpu-use-divergent-register-indexing",
cl::Hidden,
cl::desc("Use indirect register addressing for divergent indexes"),
cl::init(false));
static bool denormalModeIsFlushAllF32(const MachineFunction &MF) {
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
return Info->getMode().FP32Denormals == DenormalMode::getPreserveSign();
}
static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF) {
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
return Info->getMode().FP64FP16Denormals == DenormalMode::getPreserveSign();
}
static unsigned findFirstFreeSGPR(CCState &CCInfo) {
unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
return AMDGPU::SGPR0 + Reg;
}
}
llvm_unreachable("Cannot allocate sgpr");
}
SITargetLowering::SITargetLowering(const TargetMachine &TM,
const GCNSubtarget &STI)
: AMDGPUTargetLowering(TM, STI),
Subtarget(&STI) {
addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
const SIRegisterInfo *TRI = STI.getRegisterInfo();
const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
addRegisterClass(MVT::f64, V64RegClass);
addRegisterClass(MVT::v2f32, V64RegClass);
addRegisterClass(MVT::Untyped, V64RegClass);
addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass);
addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288));
addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass);
addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320));
addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass);
addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352));
addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass);
addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384));
addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
if (Subtarget->has16BitInsts()) {
if (Subtarget->useRealTrue16Insts()) {
addRegisterClass(MVT::i16, &AMDGPU::VGPR_16RegClass);
addRegisterClass(MVT::f16, &AMDGPU::VGPR_16RegClass);
addRegisterClass(MVT::bf16, &AMDGPU::VGPR_16RegClass);
} else {
addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
addRegisterClass(MVT::bf16, &AMDGPU::SReg_32RegClass);
}
// Unless there are also VOP3P operations, not operations are really legal.
addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
addRegisterClass(MVT::v2bf16, &AMDGPU::SReg_32RegClass);
addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v4bf16, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass);
addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass);
addRegisterClass(MVT::v8bf16, &AMDGPU::SGPR_128RegClass);
addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass);
addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass);
addRegisterClass(MVT::v16bf16, &AMDGPU::SGPR_256RegClass);
addRegisterClass(MVT::v32i16, &AMDGPU::SGPR_512RegClass);
addRegisterClass(MVT::v32f16, &AMDGPU::SGPR_512RegClass);
addRegisterClass(MVT::v32bf16, &AMDGPU::SGPR_512RegClass);
}
addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
computeRegisterProperties(Subtarget->getRegisterInfo());
// The boolean content concept here is too inflexible. Compares only ever
// really produce a 1-bit result. Any copy/extend from these will turn into a
// select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
// it's what most targets use.
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent);
// We need to custom lower vector stores from local memory
setOperationAction(ISD::LOAD,
{MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
MVT::i1, MVT::v32i32},
Custom);
setOperationAction(ISD::STORE,
{MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
MVT::i1, MVT::v32i32},
Custom);
if (isTypeLegal(MVT::bf16)) {
for (unsigned Opc :
{ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
ISD::FREM, ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM,
ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FSQRT, ISD::FCBRT,
ISD::FSIN, ISD::FCOS, ISD::FPOW, ISD::FPOWI,
ISD::FLDEXP, ISD::FFREXP, ISD::FLOG, ISD::FLOG2,
ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10,
ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FNEARBYINT,
ISD::FROUND, ISD::FROUNDEVEN, ISD::FFLOOR, ISD::FCANONICALIZE,
ISD::SETCC}) {
// FIXME: The promoted to type shouldn't need to be explicit
setOperationAction(Opc, MVT::bf16, Promote);
AddPromotedToType(Opc, MVT::bf16, MVT::f32);
}
setOperationAction(ISD::FP_ROUND, MVT::bf16, Expand);
setOperationAction(ISD::SELECT, MVT::bf16, Promote);
AddPromotedToType(ISD::SELECT, MVT::bf16, MVT::i16);
// TODO: Could make these legal
setOperationAction(ISD::FABS, MVT::bf16, Expand);
setOperationAction(ISD::FNEG, MVT::bf16, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Expand);
// We only need to custom lower because we can't specify an action for bf16
// sources.
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2bf16, Promote);
AddPromotedToType(ISD::BUILD_VECTOR, MVT::v2bf16, MVT::v2i16);
}
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom);
setOperationAction(ISD::SELECT, MVT::i1, Promote);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Promote);
AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
setOperationAction(ISD::FSQRT, {MVT::f32, MVT::f64}, Custom);
setOperationAction(ISD::SELECT_CC,
{MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand);
setOperationAction(ISD::SETCC, MVT::i1, Promote);
setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand);
AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
setOperationAction(ISD::TRUNCATE,
{MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32},
Expand);
setOperationAction(ISD::FP_ROUND,
{MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32,
MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32,
MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32},
Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG,
{MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16,
MVT::v3i16, MVT::v4i16, MVT::Other},
Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::BR_CC,
{MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand);
setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal);
setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i32, Legal);
setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64,
Expand);
#if 0
setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i64, Legal);
#endif
// We only support LOAD/STORE and vector manipulation ops for vectors
// with > 4 elements.
for (MVT VT :
{MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32,
MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32,
MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16,
MVT::v4f16, MVT::v4bf16, MVT::v3i64, MVT::v3f64, MVT::v6i32,
MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
MVT::v16bf16, MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32,
MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
switch (Op) {
case ISD::LOAD:
case ISD::STORE:
case ISD::BUILD_VECTOR:
case ISD::BITCAST:
case ISD::UNDEF:
case ISD::EXTRACT_VECTOR_ELT:
case ISD::INSERT_VECTOR_ELT:
case ISD::SCALAR_TO_VECTOR:
case ISD::IS_FPCLASS:
break;
case ISD::EXTRACT_SUBVECTOR:
case ISD::INSERT_SUBVECTOR:
case ISD::CONCAT_VECTORS:
setOperationAction(Op, VT, Custom);
break;
default:
setOperationAction(Op, VT, Expand);
break;
}
}
}
setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
// TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
// is expanded to avoid having two separate loops in case the index is a VGPR.
// Most operations are naturally 32-bit vector operations. We only support
// load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
}
for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
}
for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
}
for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
}
for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
}
setOperationAction(ISD::VECTOR_SHUFFLE,
{MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32},
Expand);
setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16, MVT::v4bf16},
Custom);
// Avoid stack access for these.
// TODO: Generalize to more vector types.
setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT},
{MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v2i8, MVT::v4i8,
MVT::v8i8, MVT::v4i16, MVT::v4f16, MVT::v4bf16},
Custom);
// Deal with vec3 vector operations when widened to vec4.
setOperationAction(ISD::INSERT_SUBVECTOR,
{MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom);
// Deal with vec5/6/7 vector operations when widened to vec8.
setOperationAction(ISD::INSERT_SUBVECTOR,
{MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32,
MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32,
MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32,
MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32},
Custom);
// BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
// and output demarshalling
setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom);
// We can't return success/failure, only the old value,
// let LLVM add the comparison
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64},
Expand);
setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal);
// FIXME: This should be narrowed to i32, but that only happens if i64 is
// illegal.
// FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal);
// On SI this is s_memtime and s_memrealtime on VI.
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
if (Subtarget->hasSMemRealTime() ||
Subtarget->getGeneration() >= AMDGPUSubtarget::GFX11)
setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Legal);
setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom);
if (Subtarget->has16BitInsts()) {
setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote);
setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom);
} else {
setOperationAction(ISD::FSQRT, MVT::f16, Custom);
}
if (Subtarget->hasMadMacF32Insts())
setOperationAction(ISD::FMAD, MVT::f32, Legal);
if (!Subtarget->hasBFI())
// fcopysign can be done in a single instruction with BFI.
setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
if (!Subtarget->hasBCNT(32))
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
if (!Subtarget->hasBCNT(64))
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
if (Subtarget->hasFFBH())
setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom);
if (Subtarget->hasFFBL())
setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom);
// We only really have 32-bit BFE instructions (and 16-bit on VI).
//
// On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
// effort to match them now. We want this to be false for i64 cases when the
// extraction isn't restricted to the upper or lower half. Ideally we would
// have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
// span the midpoint are probably relatively rare, so don't worry about them
// for now.
if (Subtarget->hasBFE())
setHasExtractBitsInsn(true);
// Clamp modifier on add/sub
if (Subtarget->hasIntClamp())
setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal);
if (Subtarget->hasAddNoCarry())
setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32},
Legal);
setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64},
Custom);
// These are really only legal for ieee_mode functions. We should be avoiding
// them for functions that don't have ieee_mode enabled, so just say they are
// legal.
setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
{MVT::f32, MVT::f64}, Legal);
if (Subtarget->haveRoundOpsF64())
setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FROUNDEVEN}, MVT::f64,
Legal);
else
setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR},
MVT::f64, Custom);
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, {MVT::f32, MVT::f64},
Legal);
setOperationAction(ISD::FFREXP, {MVT::f32, MVT::f64}, Custom);
setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom);
setOperationAction(ISD::FDIV, MVT::f64, Custom);
setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand);
setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand);
// Custom lower these because we can't specify a rule based on an illegal
// source bf16.
setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f32, Custom);
setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f64, Custom);
if (Subtarget->has16BitInsts()) {
setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN,
ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT},
MVT::i16, Legal);
AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC},
MVT::i16, Expand);
setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM,
ISD::UREM, ISD::BITREVERSE, ISD::CTTZ,
ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF,
ISD::CTPOP},
MVT::i16, Promote);
setOperationAction(ISD::LOAD, MVT::i16, Custom);
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom);
setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom);
setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom);
setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i32, Custom);
// F16 - Constant Actions.
setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
setOperationAction(ISD::ConstantFP, MVT::bf16, Legal);
// F16 - Load/Store Actions.
setOperationAction(ISD::LOAD, MVT::f16, Promote);
AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
setOperationAction(ISD::STORE, MVT::f16, Promote);
AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
// BF16 - Load/Store Actions.
setOperationAction(ISD::LOAD, MVT::bf16, Promote);
AddPromotedToType(ISD::LOAD, MVT::bf16, MVT::i16);
setOperationAction(ISD::STORE, MVT::bf16, Promote);
AddPromotedToType(ISD::STORE, MVT::bf16, MVT::i16);
// F16 - VOP1 Actions.
setOperationAction({ISD::FP_ROUND, ISD::STRICT_FP_ROUND, ISD::FCOS,
ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND},
MVT::f16, Custom);
setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::f16, Promote);
setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::bf16, Promote);
// F16 - VOP2 Actions.
setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, {MVT::f16, MVT::bf16},
Expand);
setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, MVT::f16, Custom);
setOperationAction(ISD::FFREXP, MVT::f16, Custom);
setOperationAction(ISD::FDIV, MVT::f16, Custom);
// F16 - VOP3 Actions.
setOperationAction(ISD::FMA, MVT::f16, Legal);
if (STI.hasMadF16())
setOperationAction(ISD::FMAD, MVT::f16, Legal);
for (MVT VT :
{MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v4i16, MVT::v4f16,
MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16,
MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16}) {
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
switch (Op) {
case ISD::LOAD:
case ISD::STORE:
case ISD::BUILD_VECTOR:
case ISD::BITCAST:
case ISD::UNDEF:
case ISD::EXTRACT_VECTOR_ELT:
case ISD::INSERT_VECTOR_ELT:
case ISD::INSERT_SUBVECTOR:
case ISD::EXTRACT_SUBVECTOR:
case ISD::SCALAR_TO_VECTOR:
case ISD::IS_FPCLASS:
break;
case ISD::CONCAT_VECTORS:
setOperationAction(Op, VT, Custom);
break;
default:
setOperationAction(Op, VT, Expand);
break;
}
}
}
// v_perm_b32 can handle either of these.
setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal);
setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
// XXX - Do these do anything? Vector constants turn into build_vector.
setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal);
setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16, MVT::v2bf16},
Legal);
setOperationAction(ISD::STORE, MVT::v2i16, Promote);
AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
setOperationAction(ISD::STORE, MVT::v2f16, Promote);
AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
setOperationAction(ISD::AND, MVT::v2i16, Promote);
AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
setOperationAction(ISD::OR, MVT::v2i16, Promote);
AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
setOperationAction(ISD::XOR, MVT::v2i16, Promote);
AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::v4bf16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v4bf16, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v4i16, Promote);
AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v4f16, Promote);
AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v4bf16, Promote);
AddPromotedToType(ISD::STORE, MVT::v4bf16, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::v8i16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32);
setOperationAction(ISD::LOAD, MVT::v8f16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32);
setOperationAction(ISD::LOAD, MVT::v8bf16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v8bf16, MVT::v4i32);
setOperationAction(ISD::STORE, MVT::v4i16, Promote);
AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v4f16, Promote);
AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v8i16, Promote);
AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32);
setOperationAction(ISD::STORE, MVT::v8f16, Promote);
AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32);
setOperationAction(ISD::STORE, MVT::v8bf16, Promote);
AddPromotedToType(ISD::STORE, MVT::v8bf16, MVT::v4i32);
setOperationAction(ISD::LOAD, MVT::v16i16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32);
setOperationAction(ISD::LOAD, MVT::v16f16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32);
setOperationAction(ISD::LOAD, MVT::v16bf16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v16bf16, MVT::v8i32);
setOperationAction(ISD::STORE, MVT::v16i16, Promote);
AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32);
setOperationAction(ISD::STORE, MVT::v16f16, Promote);
AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32);
setOperationAction(ISD::STORE, MVT::v16bf16, Promote);
AddPromotedToType(ISD::STORE, MVT::v16bf16, MVT::v8i32);
setOperationAction(ISD::LOAD, MVT::v32i16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v32i16, MVT::v16i32);
setOperationAction(ISD::LOAD, MVT::v32f16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v32f16, MVT::v16i32);
setOperationAction(ISD::LOAD, MVT::v32bf16, Promote);
AddPromotedToType(ISD::LOAD, MVT::v32bf16, MVT::v16i32);
setOperationAction(ISD::STORE, MVT::v32i16, Promote);
AddPromotedToType(ISD::STORE, MVT::v32i16, MVT::v16i32);
setOperationAction(ISD::STORE, MVT::v32f16, Promote);
AddPromotedToType(ISD::STORE, MVT::v32f16, MVT::v16i32);
setOperationAction(ISD::STORE, MVT::v32bf16, Promote);
AddPromotedToType(ISD::STORE, MVT::v32bf16, MVT::v16i32);
setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
MVT::v2i32, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
MVT::v4i32, Expand);
setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
MVT::v8i32, Expand);
if (!Subtarget->hasVOP3PInsts())
setOperationAction(ISD::BUILD_VECTOR,
{MVT::v2i16, MVT::v2f16, MVT::v2bf16}, Custom);
setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
// This isn't really legal, but this avoids the legalizer unrolling it (and
// allows matching fneg (fabs x) patterns)
setOperationAction(ISD::FABS, MVT::v2f16, Legal);
setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom);
setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal);
setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
{MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
Custom);
setOperationAction({ISD::FMINNUM, ISD::FMAXNUM},
{MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
Expand);
for (MVT Vec16 :
{MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
MVT::v16bf16, MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
setOperationAction(
{ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR},
Vec16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand);
}
}
if (Subtarget->hasVOP3PInsts()) {
setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL,
ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT},
MVT::v2i16, Legal);
setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE,
ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE},
MVT::v2f16, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16, MVT::v2bf16},
Custom);
setOperationAction(ISD::VECTOR_SHUFFLE,
{MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16,
MVT::v16f16, MVT::v16i16, MVT::v32f16, MVT::v32i16},
Custom);
for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16, MVT::v32i16})
// Split vector operations.
setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB,
ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX,
ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT,
ISD::SSUBSAT},
VT, Custom);
for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16})
// Split vector operations.
setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE},
VT, Custom);
setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16},
Custom);
setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16, MVT::v4bf16},
Custom);
if (Subtarget->hasPackedFP32Ops()) {
setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG},
MVT::v2f32, Legal);
setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA},
{MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32},
Custom);
}
}
setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom);
if (Subtarget->has16BitInsts()) {
setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
} else {
// Legalization hack.
setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom);
setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom);
}
setOperationAction(ISD::SELECT,
{MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v2i8, MVT::v4i8,
MVT::v8i8, MVT::v8i16, MVT::v8f16, MVT::v8bf16,
MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16,
MVT::v32f16, MVT::v32bf16},
Custom);
setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom);
if (Subtarget->hasScalarSMulU64())
setOperationAction(ISD::MUL, MVT::i64, Custom);
if (Subtarget->hasMad64_32())
setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom);
if (Subtarget->hasPrefetch())
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
if (Subtarget->hasIEEEMinMax())
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM},
{MVT::f16, MVT::f32, MVT::f64, MVT::v2f16}, Legal);
setOperationAction(ISD::INTRINSIC_WO_CHAIN,
{MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16,
MVT::v2i16, MVT::v2f16, MVT::i128, MVT::i8},
Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN,
{MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16,
MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16,
MVT::i16, MVT::i8, MVT::i128},
Custom);
setOperationAction(ISD::INTRINSIC_VOID,
{MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16,
MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16,
MVT::i8, MVT::i128},
Custom);
setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
setOperationAction(ISD::GET_FPENV, MVT::i64, Custom);
setOperationAction(ISD::SET_FPENV, MVT::i64, Custom);
// TODO: Could move this to custom lowering, could benefit from combines on
// extract of relevant bits.
setOperationAction(ISD::GET_FPMODE, MVT::i32, Legal);
setOperationAction(ISD::MUL, MVT::i1, Promote);
setTargetDAGCombine({ISD::ADD,
ISD::UADDO_CARRY,
ISD::SUB,
ISD::USUBO_CARRY,
ISD::FADD,
ISD::FSUB,
ISD::FDIV,
ISD::FMINNUM,
ISD::FMAXNUM,
ISD::FMINNUM_IEEE,
ISD::FMAXNUM_IEEE,
ISD::FMINIMUM,
ISD::FMAXIMUM,
ISD::FMA,
ISD::SMIN,
ISD::SMAX,
ISD::UMIN,
ISD::UMAX,
ISD::SETCC,
ISD::AND,
ISD::OR,
ISD::XOR,
ISD::FSHR,
ISD::SINT_TO_FP,
ISD::UINT_TO_FP,
ISD::FCANONICALIZE,
ISD::SCALAR_TO_VECTOR,
ISD::ZERO_EXTEND,
ISD::SIGN_EXTEND_INREG,
ISD::EXTRACT_VECTOR_ELT,
ISD::INSERT_VECTOR_ELT,
ISD::FCOPYSIGN});
if (Subtarget->has16BitInsts() && !Subtarget->hasMed3_16())
setTargetDAGCombine(ISD::FP_ROUND);
// All memory operations. Some folding on the pointer operand is done to help
// matching the constant offsets in the addressing modes.
setTargetDAGCombine({ISD::LOAD,
ISD::STORE,
ISD::ATOMIC_LOAD,
ISD::ATOMIC_STORE,
ISD::ATOMIC_CMP_SWAP,
ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
ISD::ATOMIC_SWAP,
ISD::ATOMIC_LOAD_ADD,
ISD::ATOMIC_LOAD_SUB,
ISD::ATOMIC_LOAD_AND,
ISD::ATOMIC_LOAD_OR,
ISD::ATOMIC_LOAD_XOR,
ISD::ATOMIC_LOAD_NAND,
ISD::ATOMIC_LOAD_MIN,
ISD::ATOMIC_LOAD_MAX,
ISD::ATOMIC_LOAD_UMIN,
ISD::ATOMIC_LOAD_UMAX,
ISD::ATOMIC_LOAD_FADD,
ISD::ATOMIC_LOAD_UINC_WRAP,
ISD::ATOMIC_LOAD_UDEC_WRAP,
ISD::INTRINSIC_VOID,
ISD::INTRINSIC_W_CHAIN});
// FIXME: In other contexts we pretend this is a per-function property.
setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
setSchedulingPreference(Sched::RegPressure);
}
const GCNSubtarget *SITargetLowering::getSubtarget() const {
return Subtarget;
}
//===----------------------------------------------------------------------===//
// TargetLowering queries
//===----------------------------------------------------------------------===//
// v_mad_mix* support a conversion from f16 to f32.
//
// There is only one special case when denormals are enabled we don't currently,
// where this is OK to use.
bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
EVT DestVT, EVT SrcVT) const {
return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
(Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
DestVT.getScalarType() == MVT::f32 &&
SrcVT.getScalarType() == MVT::f16 &&
// TODO: This probably only requires no input flushing?
denormalModeIsFlushAllF32(DAG.getMachineFunction());
}
bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
LLT DestTy, LLT SrcTy) const {
return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
(Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
DestTy.getScalarSizeInBits() == 32 &&
SrcTy.getScalarSizeInBits() == 16 &&
// TODO: This probably only requires no input flushing?
denormalModeIsFlushAllF32(*MI.getMF());
}
bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
// SI has some legal vector types, but no legal vector operations. Say no
// shuffles are legal in order to prefer scalarizing some vector operations.
return false;
}
MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
if (CC == CallingConv::AMDGPU_KERNEL)
return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
if (VT.isVector()) {
EVT ScalarVT = VT.getScalarType();
unsigned Size = ScalarVT.getSizeInBits();
if (Size == 16) {
if (Subtarget->has16BitInsts()) {
if (VT.isInteger())
return MVT::v2i16;
return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16);
}
return VT.isInteger() ? MVT::i32 : MVT::f32;
}
if (Size < 16)
return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
}
if (VT.getSizeInBits() > 32)
return MVT::i32;
return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
}
unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
if (CC == CallingConv::AMDGPU_KERNEL)
return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
if (VT.isVector()) {
unsigned NumElts = VT.getVectorNumElements();
EVT ScalarVT = VT.getScalarType();
unsigned Size = ScalarVT.getSizeInBits();
// FIXME: Should probably promote 8-bit vectors to i16.
if (Size == 16 && Subtarget->has16BitInsts())
return (NumElts + 1) / 2;
if (Size <= 32)
return NumElts;
if (Size > 32)
return NumElts * ((Size + 31) / 32);
} else if (VT.getSizeInBits() > 32)
return (VT.getSizeInBits() + 31) / 32;
return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
}
unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
LLVMContext &Context, CallingConv::ID CC,
EVT VT, EVT &IntermediateVT,
unsigned &NumIntermediates, MVT &RegisterVT) const {
if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
unsigned NumElts = VT.getVectorNumElements();
EVT ScalarVT = VT.getScalarType();
unsigned Size = ScalarVT.getSizeInBits();
// FIXME: We should fix the ABI to be the same on targets without 16-bit
// support, but unless we can properly handle 3-vectors, it will be still be
// inconsistent.
if (Size == 16 && Subtarget->has16BitInsts()) {
if (ScalarVT == MVT::bf16) {
RegisterVT = MVT::i32;
IntermediateVT = MVT::v2bf16;
} else {
RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
IntermediateVT = RegisterVT;
}
NumIntermediates = (NumElts + 1) / 2;
return NumIntermediates;
}
if (Size == 32) {
RegisterVT = ScalarVT.getSimpleVT();
IntermediateVT = RegisterVT;
NumIntermediates = NumElts;
return NumIntermediates;
}
if (Size < 16 && Subtarget->has16BitInsts()) {
// FIXME: Should probably form v2i16 pieces
RegisterVT = MVT::i16;
IntermediateVT = ScalarVT;
NumIntermediates = NumElts;
return NumIntermediates;
}
if (Size != 16 && Size <= 32) {
RegisterVT = MVT::i32;
IntermediateVT = ScalarVT;
NumIntermediates = NumElts;
return NumIntermediates;
}
if (Size > 32) {
RegisterVT = MVT::i32;
IntermediateVT = RegisterVT;
NumIntermediates = NumElts * ((Size + 31) / 32);
return NumIntermediates;
}
}
return TargetLowering::getVectorTypeBreakdownForCallingConv(
Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
}
static EVT memVTFromLoadIntrData(Type *Ty, unsigned MaxNumLanes) {
assert(MaxNumLanes != 0);
if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements());
return EVT::getVectorVT(Ty->getContext(),
EVT::getEVT(VT->getElementType()),
NumElts);
}
return EVT::getEVT(Ty);
}
// Peek through TFE struct returns to only use the data size.
static EVT memVTFromLoadIntrReturn(Type *Ty, unsigned MaxNumLanes) {
auto *ST = dyn_cast<StructType>(Ty);
if (!ST)
return memVTFromLoadIntrData(Ty, MaxNumLanes);
// TFE intrinsics return an aggregate type.
assert(ST->getNumContainedTypes() == 2 &&
ST->getContainedType(1)->isIntegerTy(32));
return memVTFromLoadIntrData(ST->getContainedType(0), MaxNumLanes);
}
/// Map address space 7 to MVT::v5i32 because that's its in-memory
/// representation. This return value is vector-typed because there is no
/// MVT::i160 and it is not clear if one can be added. While this could
/// cause issues during codegen, these address space 7 pointers will be
/// rewritten away by then. Therefore, we can return MVT::v5i32 in order
/// to allow pre-codegen passes that query TargetTransformInfo, often for cost
/// modeling, to work.
MVT SITargetLowering::getPointerTy(const DataLayout &DL, unsigned AS) const {
if (AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160)
return MVT::v5i32;
if (AMDGPUAS::BUFFER_STRIDED_POINTER == AS &&
DL.getPointerSizeInBits(AS) == 192)
return MVT::v6i32;
return AMDGPUTargetLowering::getPointerTy(DL, AS);
}
/// Similarly, the in-memory representation of a p7 is {p8, i32}, aka
/// v8i32 when padding is added.
/// The in-memory representation of a p9 is {p8, i32, i32}, which is
/// also v8i32 with padding.
MVT SITargetLowering::getPointerMemTy(const DataLayout &DL, unsigned AS) const {
if ((AMDGPUAS::BUFFER_FAT_POINTER == AS &&
DL.getPointerSizeInBits(AS) == 160) ||
(AMDGPUAS::BUFFER_STRIDED_POINTER == AS &&
DL.getPointerSizeInBits(AS) == 192))
return MVT::v8i32;
return AMDGPUTargetLowering::getPointerMemTy(DL, AS);
}
bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &CI,
MachineFunction &MF,
unsigned IntrID) const {
Info.flags = MachineMemOperand::MONone;
if (CI.hasMetadata(LLVMContext::MD_invariant_load))
Info.flags |= MachineMemOperand::MOInvariant;
if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
AMDGPU::lookupRsrcIntrinsic(IntrID)) {
AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
(Intrinsic::ID)IntrID);
MemoryEffects ME = Attr.getMemoryEffects();
if (ME.doesNotAccessMemory())
return false;
// TODO: Should images get their own address space?
Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
if (RsrcIntr->IsImage)
Info.align.reset();
Value *RsrcArg = CI.getArgOperand(RsrcIntr->RsrcArg);
if (auto *RsrcPtrTy = dyn_cast<PointerType>(RsrcArg->getType())) {
if (RsrcPtrTy->getAddressSpace() == AMDGPUAS::BUFFER_RESOURCE)
// We conservatively set the memory operand of a buffer intrinsic to the
// base resource pointer, so that we can access alias information about
// those pointers. Cases like "this points at the same value
// but with a different offset" are handled in
// areMemAccessesTriviallyDisjoint.
Info.ptrVal = RsrcArg;
}
auto *Aux = cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1));
if (Aux->getZExtValue() & AMDGPU::CPol::VOLATILE)
Info.flags |= MachineMemOperand::MOVolatile;
Info.flags |= MachineMemOperand::MODereferenceable;
if (ME.onlyReadsMemory()) {
unsigned MaxNumLanes = 4;
if (RsrcIntr->IsImage) {
const AMDGPU::ImageDimIntrinsicInfo *Intr
= AMDGPU::getImageDimIntrinsicInfo(IntrID);
const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
if (!BaseOpcode->Gather4) {
// If this isn't a gather, we may have excess loaded elements in the
// IR type. Check the dmask for the real number of elements loaded.
unsigned DMask
= cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask);
}
}
Info.memVT = memVTFromLoadIntrReturn(CI.getType(), MaxNumLanes);
// FIXME: What does alignment mean for an image?
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.flags |= MachineMemOperand::MOLoad;
} else if (ME.onlyWritesMemory()) {
Info.opc = ISD::INTRINSIC_VOID;
Type *DataTy = CI.getArgOperand(0)->getType();
if (RsrcIntr->IsImage) {
unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask);
Info.memVT = memVTFromLoadIntrData(DataTy, DMaskLanes);
} else
Info.memVT = EVT::getEVT(DataTy);
Info.flags |= MachineMemOperand::MOStore;
} else {
// Atomic
Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
Info.flags |= MachineMemOperand::MOLoad |
MachineMemOperand::MOStore |
MachineMemOperand::MODereferenceable;
switch (IntrID) {
default:
// XXX - Should this be volatile without known ordering?
Info.flags |= MachineMemOperand::MOVolatile;
break;
case Intrinsic::amdgcn_raw_buffer_load_lds:
case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
case Intrinsic::amdgcn_struct_buffer_load_lds:
case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
Info.ptrVal = CI.getArgOperand(1);
return true;
}
}
}
return true;
}
switch (IntrID) {
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap:
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getType());
Info.ptrVal = CI.getOperand(0);
Info.align.reset();
Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
if (!Vol->isZero())
Info.flags |= MachineMemOperand::MOVolatile;
return true;
}
case Intrinsic::amdgcn_buffer_atomic_fadd: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
Info.align.reset();
Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
if (!Vol || !Vol->isZero())
Info.flags |= MachineMemOperand::MOVolatile;
return true;
}
case Intrinsic::amdgcn_ds_add_gs_reg_rtn:
case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
Info.ptrVal = nullptr;
Info.fallbackAddressSpace = AMDGPUAS::STREAMOUT_REGISTER;
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
return true;
}
case Intrinsic::amdgcn_ds_append:
case Intrinsic::amdgcn_ds_consume: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getType());
Info.ptrVal = CI.getOperand(0);
Info.align.reset();
Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
if (!Vol->isZero())
Info.flags |= MachineMemOperand::MOVolatile;
return true;
}
case Intrinsic::amdgcn_global_atomic_csub: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getType());
Info.ptrVal = CI.getOperand(0);
Info.align.reset();
Info.flags |= MachineMemOperand::MOLoad |
MachineMemOperand::MOStore |
MachineMemOperand::MOVolatile;
return true;
}
case Intrinsic::amdgcn_image_bvh_intersect_ray: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
Info.align.reset();
Info.flags |= MachineMemOperand::MOLoad |
MachineMemOperand::MODereferenceable;
return true;
}
case Intrinsic::amdgcn_global_atomic_fadd:
case Intrinsic::amdgcn_global_atomic_fmin:
case Intrinsic::amdgcn_global_atomic_fmax:
case Intrinsic::amdgcn_global_atomic_fmin_num:
case Intrinsic::amdgcn_global_atomic_fmax_num:
case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
case Intrinsic::amdgcn_flat_atomic_fadd:
case Intrinsic::amdgcn_flat_atomic_fmin:
case Intrinsic::amdgcn_flat_atomic_fmax:
case Intrinsic::amdgcn_flat_atomic_fmin_num:
case Intrinsic::amdgcn_flat_atomic_fmax_num:
case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
case Intrinsic::amdgcn_atomic_cond_sub_u32:
case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getType());
Info.ptrVal = CI.getOperand(0);
Info.align.reset();
Info.flags |= MachineMemOperand::MOLoad |
MachineMemOperand::MOStore |
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOVolatile;
return true;
}
case Intrinsic::amdgcn_global_load_tr_b64:
case Intrinsic::amdgcn_global_load_tr_b128: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getType());
Info.ptrVal = CI.getOperand(0);
Info.align.reset();
Info.flags |= MachineMemOperand::MOLoad;
return true;
}
case Intrinsic::amdgcn_ds_gws_init:
case Intrinsic::amdgcn_ds_gws_barrier:
case Intrinsic::amdgcn_ds_gws_sema_v:
case Intrinsic::amdgcn_ds_gws_sema_br:
case Intrinsic::amdgcn_ds_gws_sema_p:
case Intrinsic::amdgcn_ds_gws_sema_release_all: {
Info.opc = ISD::INTRINSIC_VOID;
const GCNTargetMachine &TM =
static_cast<const GCNTargetMachine &>(getTargetMachine());
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
Info.ptrVal = MFI->getGWSPSV(TM);
// This is an abstract access, but we need to specify a type and size.
Info.memVT = MVT::i32;
Info.size = 4;
Info.align = Align(4);
if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
Info.flags |= MachineMemOperand::MOLoad;
else
Info.flags |= MachineMemOperand::MOStore;
return true;
}
case Intrinsic::amdgcn_global_load_lds: {
Info.opc = ISD::INTRINSIC_VOID;
unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
Info.ptrVal = CI.getArgOperand(1);
Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
return true;
}
case Intrinsic::amdgcn_ds_bvh_stack_rtn: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
const GCNTargetMachine &TM =
static_cast<const GCNTargetMachine &>(getTargetMachine());
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
Info.ptrVal = MFI->getGWSPSV(TM);
// This is an abstract access, but we need to specify a type and size.
Info.memVT = MVT::i32;
Info.size = 4;
Info.align = Align(4);
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
return true;
}
default:
return false;
}
}
void SITargetLowering::CollectTargetIntrinsicOperands(
const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const {
switch (cast<IntrinsicInst>(I).getIntrinsicID()) {
case Intrinsic::amdgcn_addrspacecast_nonnull: {
// The DAG's ValueType loses the addrspaces.
// Add them as 2 extra Constant operands "from" and "to".
unsigned SrcAS = I.getOperand(0)->getType()->getPointerAddressSpace();
unsigned DstAS = I.getType()->getPointerAddressSpace();
Ops.push_back(DAG.getTargetConstant(SrcAS, SDLoc(), MVT::i32));
Ops.push_back(DAG.getTargetConstant(DstAS, SDLoc(), MVT::i32));
break;
}
default:
break;
}
}
bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
SmallVectorImpl<Value*> &Ops,
Type *&AccessTy) const {
Value *Ptr = nullptr;
switch (II->getIntrinsicID()) {
case Intrinsic::amdgcn_atomic_cond_sub_u32:
case Intrinsic::amdgcn_ds_append:
case Intrinsic::amdgcn_ds_consume:
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmax:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap:
case Intrinsic::amdgcn_flat_atomic_fadd:
case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16:
case Intrinsic::amdgcn_flat_atomic_fmax:
case Intrinsic::amdgcn_flat_atomic_fmax_num:
case Intrinsic::amdgcn_flat_atomic_fmin:
case Intrinsic::amdgcn_flat_atomic_fmin_num:
case Intrinsic::amdgcn_global_atomic_csub:
case Intrinsic::amdgcn_global_atomic_fadd:
case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
case Intrinsic::amdgcn_global_atomic_fmax:
case Intrinsic::amdgcn_global_atomic_fmax_num:
case Intrinsic::amdgcn_global_atomic_fmin:
case Intrinsic::amdgcn_global_atomic_fmin_num:
case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
case Intrinsic::amdgcn_global_load_tr_b64:
case Intrinsic::amdgcn_global_load_tr_b128:
Ptr = II->getArgOperand(0);
break;
case Intrinsic::amdgcn_global_load_lds:
Ptr = II->getArgOperand(1);
break;
default:
return false;
}
AccessTy = II->getType();
Ops.push_back(Ptr);
return true;
}
bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM,
unsigned AddrSpace,
uint64_t FlatVariant) const {
if (!Subtarget->hasFlatInstOffsets()) {
// Flat instructions do not have offsets, and only have the register
// address.
return AM.BaseOffs == 0 && AM.Scale == 0;
}
return AM.Scale == 0 &&
(AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
AM.BaseOffs, AddrSpace, FlatVariant));
}
bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
if (Subtarget->hasFlatGlobalInsts())
return isLegalFlatAddressingMode(AM, AMDGPUAS::GLOBAL_ADDRESS,
SIInstrFlags::FlatGlobal);
if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
// Assume the we will use FLAT for all global memory accesses
// on VI.
// FIXME: This assumption is currently wrong. On VI we still use
// MUBUF instructions for the r + i addressing mode. As currently
// implemented, the MUBUF instructions only work on buffer < 4GB.
// It may be possible to support > 4GB buffers with MUBUF instructions,
// by setting the stride value in the resource descriptor which would
// increase the size limit to (stride * 4GB). However, this is risky,
// because it has never been validated.
return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS,
SIInstrFlags::FLAT);
}
return isLegalMUBUFAddressingMode(AM);
}
bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
// MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
// additionally can do r + r + i with addr64. 32-bit has more addressing
// mode options. Depending on the resource constant, it can also do
// (i64 r0) + (i32 r1) * (i14 i).
//
// Private arrays end up using a scratch buffer most of the time, so also
// assume those use MUBUF instructions. Scratch loads / stores are currently
// implemented as mubuf instructions with offen bit set, so slightly
// different than the normal addr64.
const SIInstrInfo *TII = Subtarget->getInstrInfo();
if (!TII->isLegalMUBUFImmOffset(AM.BaseOffs))
return false;
// FIXME: Since we can split immediate into soffset and immediate offset,
// would it make sense to allow any immediate?
switch (AM.Scale) {
case 0: // r + i or just i, depending on HasBaseReg.
return true;
case 1:
return true; // We have r + r or r + i.
case 2:
if (AM.HasBaseReg) {
// Reject 2 * r + r.
return false;
}
// Allow 2 * r as r + r
// Or 2 * r + i is allowed as r + r + i.
return true;
default: // Don't allow n * r
return false;
}
}
bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS, Instruction *I) const {
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
if (AS == AMDGPUAS::GLOBAL_ADDRESS)
return isLegalGlobalAddressingMode(AM);
if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
AS == AMDGPUAS::BUFFER_FAT_POINTER || AS == AMDGPUAS::BUFFER_RESOURCE ||
AS == AMDGPUAS::BUFFER_STRIDED_POINTER) {
// If the offset isn't a multiple of 4, it probably isn't going to be
// correctly aligned.
// FIXME: Can we get the real alignment here?
if (AM.BaseOffs % 4 != 0)
return isLegalMUBUFAddressingMode(AM);
if (!Subtarget->hasScalarSubwordLoads()) {
// There are no SMRD extloads, so if we have to do a small type access we
// will use a MUBUF load.
// FIXME?: We also need to do this if unaligned, but we don't know the
// alignment here.
if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
return isLegalGlobalAddressingMode(AM);
}
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
// SMRD instructions have an 8-bit, dword offset on SI.
if (!isUInt<8>(AM.BaseOffs / 4))
return false;
} else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
// On CI+, this can also be a 32-bit literal constant offset. If it fits
// in 8-bits, it can use a smaller encoding.
if (!isUInt<32>(AM.BaseOffs / 4))
return false;
} else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX9) {
// On VI, these use the SMEM format and the offset is 20-bit in bytes.
if (!isUInt<20>(AM.BaseOffs))
return false;
} else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX12) {
// On GFX9 the offset is signed 21-bit in bytes (but must not be negative
// for S_BUFFER_* instructions).
if (!isInt<21>(AM.BaseOffs))
return false;
} else {
// On GFX12, all offsets are signed 24-bit in bytes.
if (!isInt<24>(AM.BaseOffs))
return false;
}
if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
return true;
if (AM.Scale == 1 && AM.HasBaseReg)
return true;
return false;
}
if (AS == AMDGPUAS::PRIVATE_ADDRESS)
return Subtarget->enableFlatScratch()
? isLegalFlatAddressingMode(AM, AMDGPUAS::PRIVATE_ADDRESS,
SIInstrFlags::FlatScratch)
: isLegalMUBUFAddressingMode(AM);
if (AS == AMDGPUAS::LOCAL_ADDRESS ||
(AS == AMDGPUAS::REGION_ADDRESS && Subtarget->hasGDS())) {
// Basic, single offset DS instructions allow a 16-bit unsigned immediate
// field.
// XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
// an 8-bit dword offset but we don't know the alignment here.
if (!isUInt<16>(AM.BaseOffs))
return false;
if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
return true;
if (AM.Scale == 1 && AM.HasBaseReg)
return true;
return false;
}
if (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
// For an unknown address space, this usually means that this is for some
// reason being used for pure arithmetic, and not based on some addressing
// computation. We don't have instructions that compute pointers with any
// addressing modes, so treat them as having no offset like flat
// instructions.
return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS,
SIInstrFlags::FLAT);
}
// Assume a user alias of global for unknown address spaces.
return isLegalGlobalAddressingMode(AM);
}
bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
const MachineFunction &MF) const {
if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
return (MemVT.getSizeInBits() <= 4 * 32);
} else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
return (MemVT.getSizeInBits() <= MaxPrivateBits);
} else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
return (MemVT.getSizeInBits() <= 2 * 32);
}
return true;
}
bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
unsigned Size, unsigned AddrSpace, Align Alignment,
MachineMemOperand::Flags Flags, unsigned *IsFast) const {
if (IsFast)
*IsFast = 0;
if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
AddrSpace == AMDGPUAS::REGION_ADDRESS) {
// Check if alignment requirements for ds_read/write instructions are
// disabled.
if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4))
return false;
Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment.
if (Subtarget->hasLDSMisalignedBug() && Size > 32 &&
Alignment < RequiredAlignment)
return false;
// Either, the alignment requirements are "enabled", or there is an
// unaligned LDS access related hardware bug though alignment requirements
// are "disabled". In either case, we need to check for proper alignment
// requirements.
//
switch (Size) {
case 64:
// SI has a hardware bug in the LDS / GDS bounds checking: if the base
// address is negative, then the instruction is incorrectly treated as
// out-of-bounds even if base + offsets is in bounds. Split vectorized
// loads here to avoid emitting ds_read2_b32. We may re-combine the
// load later in the SILoadStoreOptimizer.
if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8))
return false;
// 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
// can do a 4 byte aligned, 8 byte access in a single operation using
// ds_read2/write2_b32 with adjacent offsets.
RequiredAlignment = Align(4);
if (Subtarget->hasUnalignedDSAccessEnabled()) {
// We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/
// ds_write2_b32 depending on the alignment. In either case with either
// alignment there is no faster way of doing this.
// The numbers returned here and below are not additive, it is a 'speed
// rank'. They are just meant to be compared to decide if a certain way
// of lowering an operation is faster than another. For that purpose
// naturally aligned operation gets it bitsize to indicate that "it
// operates with a speed comparable to N-bit wide load". With the full
// alignment ds128 is slower than ds96 for example. If underaligned it
// is comparable to a speed of a single dword access, which would then
// mean 32 < 128 and it is faster to issue a wide load regardless.
// 1 is simply "slow, don't do it". I.e. comparing an aligned load to a
// wider load which will not be aligned anymore the latter is slower.
if (IsFast)
*IsFast = (Alignment >= RequiredAlignment) ? 64
: (Alignment < Align(4)) ? 32
: 1;
return true;
}
break;
case 96:
if (!Subtarget->hasDS96AndDS128())
return false;
// 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
// gfx8 and older.
if (Subtarget->hasUnalignedDSAccessEnabled()) {
// Naturally aligned access is fastest. However, also report it is Fast
// if memory is aligned less than DWORD. A narrow load or store will be
// be equally slow as a single ds_read_b96/ds_write_b96, but there will
// be more of them, so overall we will pay less penalty issuing a single
// instruction.
// See comment on the values above.
if (IsFast)
*IsFast = (Alignment >= RequiredAlignment) ? 96
: (Alignment < Align(4)) ? 32
: 1;
return true;
}
break;
case 128:
if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128())
return false;
// 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
// gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a
// single operation using ds_read2/write2_b64.
RequiredAlignment = Align(8);
if (Subtarget->hasUnalignedDSAccessEnabled()) {
// Naturally aligned access is fastest. However, also report it is Fast
// if memory is aligned less than DWORD. A narrow load or store will be
// be equally slow as a single ds_read_b128/ds_write_b128, but there
// will be more of them, so overall we will pay less penalty issuing a
// single instruction.
// See comment on the values above.
if (IsFast)
*IsFast = (Alignment >= RequiredAlignment) ? 128
: (Alignment < Align(4)) ? 32
: 1;
return true;
}
break;
default:
if (Size > 32)
return false;
break;
}
// See comment on the values above.
// Note that we have a single-dword or sub-dword here, so if underaligned
// it is a slowest possible access, hence returned value is 0.
if (IsFast)
*IsFast = (Alignment >= RequiredAlignment) ? Size : 0;
return Alignment >= RequiredAlignment ||
Subtarget->hasUnalignedDSAccessEnabled();
}
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
bool AlignedBy4 = Alignment >= Align(4);
if (IsFast)
*IsFast = AlignedBy4;
return AlignedBy4 ||
Subtarget->enableFlatScratch() ||
Subtarget->hasUnalignedScratchAccess();
}
// FIXME: We have to be conservative here and assume that flat operations
// will access scratch. If we had access to the IR function, then we
// could determine if any private memory was used in the function.
if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
!Subtarget->hasUnalignedScratchAccess()) {
bool AlignedBy4 = Alignment >= Align(4);
if (IsFast)
*IsFast = AlignedBy4;
return AlignedBy4;
}
// So long as they are correct, wide global memory operations perform better
// than multiple smaller memory ops -- even when misaligned
if (AMDGPU::isExtendedGlobalAddrSpace(AddrSpace)) {
if (IsFast)
*IsFast = Size;
return Alignment >= Align(4) ||
Subtarget->hasUnalignedBufferAccessEnabled();
}
// Smaller than dword value must be aligned.
if (Size < 32)
return false;
// 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
// byte-address are ignored, thus forcing Dword alignment.
// This applies to private, global, and constant memory.
if (IsFast)
*IsFast = 1;
return Size >= 32 && Alignment >= Align(4);
}
bool SITargetLowering::allowsMisalignedMemoryAccesses(
EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
unsigned *IsFast) const {
return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
Alignment, Flags, IsFast);
}
EVT SITargetLowering::getOptimalMemOpType(
const MemOp &Op, const AttributeList &FuncAttributes) const {
// FIXME: Should account for address space here.
// The default fallback uses the private pointer size as a guess for a type to
// use. Make sure we switch these to 64-bit accesses.
if (Op.size() >= 16 &&
Op.isDstAligned(Align(4))) // XXX: Should only do for global
return MVT::v4i32;
if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
return MVT::v2i32;
// Use the default.
return MVT::Other;
}
bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
const MemSDNode *MemNode = cast<MemSDNode>(N);
return MemNode->getMemOperand()->getFlags() & MONoClobber;
}
bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
AS == AMDGPUAS::PRIVATE_ADDRESS;
}
bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
unsigned DestAS) const {
// Flat -> private/local is a simple truncate.
// Flat -> global is no-op
if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
return true;
const GCNTargetMachine &TM =
static_cast<const GCNTargetMachine &>(getTargetMachine());
return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
}
bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
const MemSDNode *MemNode = cast<MemSDNode>(N);
return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
}
TargetLoweringBase::LegalizeTypeAction
SITargetLowering::getPreferredVectorAction(MVT VT) const {
if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
VT.getScalarType().bitsLE(MVT::i16))
return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
// FIXME: Could be smarter if called for vector constants.
return true;
}
bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const {
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
return false;
// TODO: Add more cases that are cheap.
return Index == 0;
}
bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
if (Subtarget->has16BitInsts() && VT == MVT::i16) {
switch (Op) {
case ISD::LOAD:
case ISD::STORE:
// These operations are done with 32-bit instructions anyway.
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SELECT:
// TODO: Extensions?
return true;
default:
return false;
}
}
// SimplifySetCC uses this function to determine whether or not it should
// create setcc with i1 operands. We don't have instructions for i1 setcc.
if (VT == MVT::i1 && Op == ISD::SETCC)
return false;
return TargetLowering::isTypeDesirableForOp(Op, VT);
}
SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
const SDLoc &SL,
SDValue Chain,
uint64_t Offset) const {
const DataLayout &DL = DAG.getDataLayout();
MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const ArgDescriptor *InputPtrReg;
const TargetRegisterClass *RC;
LLT ArgTy;
MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
std::tie(InputPtrReg, RC, ArgTy) =
Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
// We may not have the kernarg segment argument if we have no kernel
// arguments.
if (!InputPtrReg)
return DAG.getConstant(Offset, SL, PtrVT);
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Offset));
}
SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
const SDLoc &SL) const {
uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
FIRST_IMPLICIT);
return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
}
SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG,
const SDLoc &SL) const {
Function &F = DAG.getMachineFunction().getFunction();
std::optional<uint32_t> KnownSize =
AMDGPUMachineFunction::getLDSKernelIdMetadata(F);
if (KnownSize.has_value())
return DAG.getConstant(*KnownSize, SL, MVT::i32);
return SDValue();
}
SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
const SDLoc &SL, SDValue Val,
bool Signed,
const ISD::InputArg *Arg) const {
// First, if it is a widened vector, narrow it.
if (VT.isVector() &&
VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
EVT NarrowedVT =
EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
VT.getVectorNumElements());
Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
DAG.getConstant(0, SL, MVT::i32));
}
// Then convert the vector elements or scalar value.
if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
VT.bitsLT(MemVT)) {
unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
}
if (MemVT.isFloatingPoint())
Val = getFPExtOrFPRound(DAG, Val, SL, VT);
else if (Signed)
Val = DAG.getSExtOrTrunc(Val, SL, VT);
else
Val = DAG.getZExtOrTrunc(Val, SL, VT);
return Val;
}
SDValue SITargetLowering::lowerKernargMemParameter(
SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
uint64_t Offset, Align Alignment, bool Signed,
const ISD::InputArg *Arg) const {
MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
// Try to avoid using an extload by loading earlier than the argument address,
// and extracting the relevant bits. The load should hopefully be merged with
// the previous argument.
if (MemVT.getStoreSize() < 4 && Alignment < 4) {
// TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
int64_t AlignDownOffset = alignDown(Offset, 4);
int64_t OffsetDiff = Offset - AlignDownOffset;
EVT IntVT = MemVT.changeTypeToInteger();
// TODO: If we passed in the base kernel offset we could have a better
// alignment than 4, but we don't really need it.
SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
}
SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
}
SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
const SDLoc &SL, SDValue Chain,
const ISD::InputArg &Arg) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
if (Arg.Flags.isByVal()) {
unsigned Size = Arg.Flags.getByValSize();
int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
return DAG.getFrameIndex(FrameIdx, MVT::i32);
}
unsigned ArgOffset = VA.getLocMemOffset();
unsigned ArgSize = VA.getValVT().getStoreSize();
int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
SDValue ArgValue;
// For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
MVT MemVT = VA.getValVT();
switch (VA.getLocInfo()) {
default:
break;
case CCValAssign::BCvt:
MemVT = VA.getLocVT();
break;
case CCValAssign::SExt:
ExtType = ISD::SEXTLOAD;
break;
case CCValAssign::ZExt:
ExtType = ISD::ZEXTLOAD;
break;
case CCValAssign::AExt:
ExtType = ISD::EXTLOAD;
break;
}
ArgValue = DAG.getExtLoad(
ExtType, SL, VA.getLocVT(), Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
MemVT);
return ArgValue;
}
SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
const SIMachineFunctionInfo &MFI,
EVT VT,
AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
const ArgDescriptor *Reg = nullptr;
const TargetRegisterClass *RC;
LLT Ty;
CallingConv::ID CC = DAG.getMachineFunction().getFunction().getCallingConv();
const ArgDescriptor WorkGroupIDX =
ArgDescriptor::createRegister(AMDGPU::TTMP9);
// If GridZ is not programmed in an entry function then the hardware will set
// it to all zeros, so there is no need to mask the GridY value in the low
// order bits.
const ArgDescriptor WorkGroupIDY = ArgDescriptor::createRegister(
AMDGPU::TTMP7,
AMDGPU::isEntryFunctionCC(CC) && !MFI.hasWorkGroupIDZ() ? ~0u : 0xFFFFu);
const ArgDescriptor WorkGroupIDZ =
ArgDescriptor::createRegister(AMDGPU::TTMP7, 0xFFFF0000u);
if (Subtarget->hasArchitectedSGPRs() && AMDGPU::isCompute(CC)) {
switch (PVID) {
case AMDGPUFunctionArgInfo::WORKGROUP_ID_X:
Reg = &WorkGroupIDX;
RC = &AMDGPU::SReg_32RegClass;
Ty = LLT::scalar(32);
break;
case AMDGPUFunctionArgInfo::WORKGROUP_ID_Y:
Reg = &WorkGroupIDY;
RC = &AMDGPU::SReg_32RegClass;
Ty = LLT::scalar(32);
break;
case AMDGPUFunctionArgInfo::WORKGROUP_ID_Z:
Reg = &WorkGroupIDZ;
RC = &AMDGPU::SReg_32RegClass;
Ty = LLT::scalar(32);
break;
default:
break;
}
}
if (!Reg)
std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
if (!Reg) {
if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) {
// It's possible for a kernarg intrinsic call to appear in a kernel with
// no allocated segment, in which case we do not add the user sgpr
// argument, so just return null.
return DAG.getConstant(0, SDLoc(), VT);
}
// It's undefined behavior if a function marked with the amdgpu-no-*
// attributes uses the corresponding intrinsic.
return DAG.getUNDEF(VT);
}
return loadInputValue(DAG, RC, VT, SDLoc(DAG.getEntryNode()), *Reg);
}
static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
CallingConv::ID CallConv,
ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
FunctionType *FType,
SIMachineFunctionInfo *Info) {
for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
const ISD::InputArg *Arg = &Ins[I];
assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
"vector type argument should have been split");
// First check if it's a PS input addr.
if (CallConv == CallingConv::AMDGPU_PS &&
!Arg->Flags.isInReg() && PSInputNum <= 15) {
bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
// Inconveniently only the first part of the split is marked as isSplit,
// so skip to the end. We only want to increment PSInputNum once for the
// entire split argument.
if (Arg->Flags.isSplit()) {
while (!Arg->Flags.isSplitEnd()) {
assert((!Arg->VT.isVector() ||
Arg->VT.getScalarSizeInBits() == 16) &&
"unexpected vector split in ps argument type");
if (!SkipArg)
Splits.push_back(*Arg);
Arg = &Ins[++I];
}
}
if (SkipArg) {
// We can safely skip PS inputs.
Skipped.set(Arg->getOrigArgIndex());
++PSInputNum;
continue;
}
Info->markPSInputAllocated(PSInputNum);
if (Arg->Used)
Info->markPSInputEnabled(PSInputNum);
++PSInputNum;
}
Splits.push_back(*Arg);
}
}
// Allocate special inputs passed in VGPRs.
void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) const {
const LLT S32 = LLT::scalar(32);
MachineRegisterInfo &MRI = MF.getRegInfo();
if (Info.hasWorkItemIDX()) {
Register Reg = AMDGPU::VGPR0;
MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
CCInfo.AllocateReg(Reg);
unsigned Mask = (Subtarget->hasPackedTID() &&
Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
}
if (Info.hasWorkItemIDY()) {
assert(Info.hasWorkItemIDX());
if (Subtarget->hasPackedTID()) {
Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
0x3ff << 10));
} else {
unsigned Reg = AMDGPU::VGPR1;
MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
CCInfo.AllocateReg(Reg);
Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
}
}
if (Info.hasWorkItemIDZ()) {
assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
if (Subtarget->hasPackedTID()) {
Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
0x3ff << 20));
} else {
unsigned Reg = AMDGPU::VGPR2;
MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
CCInfo.AllocateReg(Reg);
Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
}
}
}
// Try to allocate a VGPR at the end of the argument list, or if no argument
// VGPRs are left allocating a stack slot.
// If \p Mask is is given it indicates bitfield position in the register.
// If \p Arg is given use it with new ]p Mask instead of allocating new.
static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
ArgDescriptor Arg = ArgDescriptor()) {
if (Arg.isSet())
return ArgDescriptor::createArg(Arg, Mask);
ArrayRef<MCPhysReg> ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
if (RegIdx == ArgVGPRs.size()) {
// Spill to stack required.
int64_t Offset = CCInfo.AllocateStack(4, Align(4));
return ArgDescriptor::createStack(Offset, Mask);
}
unsigned Reg = ArgVGPRs[RegIdx];
Reg = CCInfo.AllocateReg(Reg);
assert(Reg != AMDGPU::NoRegister);
MachineFunction &MF = CCInfo.getMachineFunction();
Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
return ArgDescriptor::createRegister(Reg, Mask);
}
static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
const TargetRegisterClass *RC,
unsigned NumArgRegs) {
ArrayRef<MCPhysReg> ArgSGPRs = ArrayRef(RC->begin(), 32);
unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
if (RegIdx == ArgSGPRs.size())
report_fatal_error("ran out of SGPRs for arguments");
unsigned Reg = ArgSGPRs[RegIdx];
Reg = CCInfo.AllocateReg(Reg);
assert(Reg != AMDGPU::NoRegister);
MachineFunction &MF = CCInfo.getMachineFunction();
MF.addLiveIn(Reg, RC);
return ArgDescriptor::createRegister(Reg);
}
// If this has a fixed position, we still should allocate the register in the
// CCInfo state. Technically we could get away with this for values passed
// outside of the normal argument range.
static void allocateFixedSGPRInputImpl(CCState &CCInfo,
const TargetRegisterClass *RC,
MCRegister Reg) {
Reg = CCInfo.AllocateReg(Reg);
assert(Reg != AMDGPU::NoRegister);
MachineFunction &MF = CCInfo.getMachineFunction();
MF.addLiveIn(Reg, RC);
}
static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
if (Arg) {
allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
Arg.getRegister());
} else
Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
}
static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
if (Arg) {
allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
Arg.getRegister());
} else
Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
}
/// Allocate implicit function VGPR arguments at the end of allocated user
/// arguments.
void SITargetLowering::allocateSpecialInputVGPRs(
CCState &CCInfo, MachineFunction &MF,
const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
const unsigned Mask = 0x3ff;
ArgDescriptor Arg;
if (Info.hasWorkItemIDX()) {
Arg = allocateVGPR32Input(CCInfo, Mask);
Info.setWorkItemIDX(Arg);
}
if (Info.hasWorkItemIDY()) {
Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
Info.setWorkItemIDY(Arg);
}
if (Info.hasWorkItemIDZ())
Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
}
/// Allocate implicit function VGPR arguments in fixed registers.
void SITargetLowering::allocateSpecialInputVGPRsFixed(
CCState &CCInfo, MachineFunction &MF,
const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
if (!Reg)
report_fatal_error("failed to allocated VGPR for implicit arguments");
const unsigned Mask = 0x3ff;
Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
}
void SITargetLowering::allocateSpecialInputSGPRs(
CCState &CCInfo,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) const {
auto &ArgInfo = Info.getArgInfo();
const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
// TODO: Unify handling with private memory pointers.
if (UserSGPRInfo.hasDispatchPtr())
allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
const Module *M = MF.getFunction().getParent();
if (UserSGPRInfo.hasQueuePtr() &&
AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5)
allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
// Implicit arg ptr takes the place of the kernarg segment pointer. This is a
// constant offset from the kernarg segment.
if (Info.hasImplicitArgPtr())
allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
if (UserSGPRInfo.hasDispatchID())
allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
// flat_scratch_init is not applicable for non-kernel functions.
if (Info.hasWorkGroupIDX())
allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
if (Info.hasWorkGroupIDY())
allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
if (Info.hasWorkGroupIDZ())
allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
if (Info.hasLDSKernelId())
allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId);
}
// Allocate special inputs passed in user SGPRs.
void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) const {
const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
if (UserSGPRInfo.hasImplicitBufferPtr()) {
Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(ImplicitBufferPtrReg);
}
// FIXME: How should these inputs interact with inreg / custom SGPR inputs?
if (UserSGPRInfo.hasPrivateSegmentBuffer()) {
Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
CCInfo.AllocateReg(PrivateSegmentBufferReg);
}
if (UserSGPRInfo.hasDispatchPtr()) {
Register DispatchPtrReg = Info.addDispatchPtr(TRI);
MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(DispatchPtrReg);
}
const Module *M = MF.getFunction().getParent();
if (UserSGPRInfo.hasQueuePtr() &&
AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) {
Register QueuePtrReg = Info.addQueuePtr(TRI);
MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(QueuePtrReg);
}
if (UserSGPRInfo.hasKernargSegmentPtr()) {
MachineRegisterInfo &MRI = MF.getRegInfo();
Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
CCInfo.AllocateReg(InputPtrReg);
Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
}
if (UserSGPRInfo.hasDispatchID()) {
Register DispatchIDReg = Info.addDispatchID(TRI);
MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(DispatchIDReg);
}
if (UserSGPRInfo.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(FlatScratchInitReg);
}
// TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
// these from the dispatch pointer.
}
// Allocate pre-loaded kernel arguemtns. Arguments to be preloading must be
// sequential starting from the first argument.
void SITargetLowering::allocatePreloadKernArgSGPRs(
CCState &CCInfo, SmallVectorImpl<CCValAssign> &ArgLocs,
const SmallVectorImpl<ISD::InputArg> &Ins, MachineFunction &MF,
const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
Function &F = MF.getFunction();
unsigned LastExplicitArgOffset =
MF.getSubtarget<GCNSubtarget>().getExplicitKernelArgOffset();
GCNUserSGPRUsageInfo &SGPRInfo = Info.getUserSGPRInfo();
bool InPreloadSequence = true;
unsigned InIdx = 0;
for (auto &Arg : F.args()) {
if (!InPreloadSequence || !Arg.hasInRegAttr())
break;
int ArgIdx = Arg.getArgNo();
// Don't preload non-original args or parts not in the current preload
// sequence.
if (InIdx < Ins.size() && (!Ins[InIdx].isOrigArg() ||
(int)Ins[InIdx].getOrigArgIndex() != ArgIdx))
break;
for (; InIdx < Ins.size() && Ins[InIdx].isOrigArg() &&
(int)Ins[InIdx].getOrigArgIndex() == ArgIdx;
InIdx++) {
assert(ArgLocs[ArgIdx].isMemLoc());
auto &ArgLoc = ArgLocs[InIdx];
const Align KernelArgBaseAlign = Align(16);
unsigned ArgOffset = ArgLoc.getLocMemOffset();
Align Alignment = commonAlignment(KernelArgBaseAlign, ArgOffset);
unsigned NumAllocSGPRs =
alignTo(ArgLoc.getLocVT().getFixedSizeInBits(), 32) / 32;
// Arg is preloaded into the previous SGPR.
if (ArgLoc.getLocVT().getStoreSize() < 4 && Alignment < 4) {
Info.getArgInfo().PreloadKernArgs[InIdx].Regs.push_back(
Info.getArgInfo().PreloadKernArgs[InIdx - 1].Regs[0]);
continue;
}
unsigned Padding = ArgOffset - LastExplicitArgOffset;
unsigned PaddingSGPRs = alignTo(Padding, 4) / 4;
// Check for free user SGPRs for preloading.
if (PaddingSGPRs + NumAllocSGPRs + 1 /*Synthetic SGPRs*/ >
SGPRInfo.getNumFreeUserSGPRs()) {
InPreloadSequence = false;
break;
}
// Preload this argument.
const TargetRegisterClass *RC =
TRI.getSGPRClassForBitWidth(NumAllocSGPRs * 32);
SmallVectorImpl<MCRegister> *PreloadRegs =
Info.addPreloadedKernArg(TRI, RC, NumAllocSGPRs, InIdx, PaddingSGPRs);
if (PreloadRegs->size() > 1)
RC = &AMDGPU::SGPR_32RegClass;
for (auto &Reg : *PreloadRegs) {
assert(Reg);
MF.addLiveIn(Reg, RC);
CCInfo.AllocateReg(Reg);
}
LastExplicitArgOffset = NumAllocSGPRs * 4 + ArgOffset;
}
}
}
void SITargetLowering::allocateLDSKernelId(CCState &CCInfo, MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) const {
// Always allocate this last since it is a synthetic preload.
if (Info.hasLDSKernelId()) {
Register Reg = Info.addLDSKernelId();
MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
}
// Allocate special input registers that are initialized per-wave.
void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
MachineFunction &MF,
SIMachineFunctionInfo &Info,
CallingConv::ID CallConv,
bool IsShader) const {
bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs();
if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) {
// Note: user SGPRs are handled by the front-end for graphics shaders
// Pad up the used user SGPRs with dead inputs.
// TODO: NumRequiredSystemSGPRs computation should be adjusted appropriately
// before enabling architected SGPRs for workgroup IDs.
assert(!HasArchitectedSGPRs && "Unhandled feature for the subtarget");
unsigned CurrentUserSGPRs = Info.getNumUserSGPRs();
// Note we do not count the PrivateSegmentWaveByteOffset. We do not want to
// rely on it to reach 16 since if we end up having no stack usage, it will
// not really be added.
unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() +
Info.hasWorkGroupIDY() +
Info.hasWorkGroupIDZ() +
Info.hasWorkGroupInfo();
for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) {
Register Reg = Info.addReservedUserSGPR();
MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
}
if (!HasArchitectedSGPRs) {
if (Info.hasWorkGroupIDX()) {
Register Reg = Info.addWorkGroupIDX();
MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info.hasWorkGroupIDY()) {
Register Reg = Info.addWorkGroupIDY();
MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info.hasWorkGroupIDZ()) {
Register Reg = Info.addWorkGroupIDZ();
MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
}
if (Info.hasWorkGroupInfo()) {
Register Reg = Info.addWorkGroupInfo();
MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info.hasPrivateSegmentWaveByteOffset()) {
// Scratch wave offset passed in system SGPR.
unsigned PrivateSegmentWaveByteOffsetReg;
if (IsShader) {
PrivateSegmentWaveByteOffsetReg =
Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
// This is true if the scratch wave byte offset doesn't have a fixed
// location.
if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
}
} else
PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
}
assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader ||
Info.getNumPreloadedSGPRs() >= 16);
}
static void reservePrivateMemoryRegs(const TargetMachine &TM,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) {
// Now that we've figured out where the scratch register inputs are, see if
// should reserve the arguments and use them directly.
MachineFrameInfo &MFI = MF.getFrameInfo();
bool HasStackObjects = MFI.hasStackObjects();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
// Record that we know we have non-spill stack objects so we don't need to
// check all stack objects later.
if (HasStackObjects)
Info.setHasNonSpillStackObjects(true);
// Everything live out of a block is spilled with fast regalloc, so it's
// almost certain that spilling will be required.
if (TM.getOptLevel() == CodeGenOptLevel::None)
HasStackObjects = true;
// For now assume stack access is needed in any callee functions, so we need
// the scratch registers to pass in.
bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
if (!ST.enableFlatScratch()) {
if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
// If we have stack objects, we unquestionably need the private buffer
// resource. For the Code Object V2 ABI, this will be the first 4 user
// SGPR inputs. We can reserve those and use them directly.
Register PrivateSegmentBufferReg =
Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
Info.setScratchRSrcReg(PrivateSegmentBufferReg);
} else {
unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
// We tentatively reserve the last registers (skipping the last registers
// which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
// we'll replace these with the ones immediately after those which were
// really allocated. In the prologue copies will be inserted from the
// argument to these reserved registers.
// Without HSA, relocations are used for the scratch pointer and the
// buffer resource setup is always inserted in the prologue. Scratch wave
// offset is still in an input SGPR.
Info.setScratchRSrcReg(ReservedBufferReg);
}
}
MachineRegisterInfo &MRI = MF.getRegInfo();
// For entry functions we have to set up the stack pointer if we use it,
// whereas non-entry functions get this "for free". This means there is no
// intrinsic advantage to using S32 over S34 in cases where we do not have
// calls but do need a frame pointer (i.e. if we are requested to have one
// because frame pointer elimination is disabled). To keep things simple we
// only ever use S32 as the call ABI stack pointer, and so using it does not
// imply we need a separate frame pointer.
//
// Try to use s32 as the SP, but move it if it would interfere with input
// arguments. This won't work with calls though.
//
// FIXME: Move SP to avoid any possible inputs, or find a way to spill input
// registers.
if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
} else {
assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
if (MFI.hasCalls())
report_fatal_error("call in graphics shader with too many input SGPRs");
for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
if (!MRI.isLiveIn(Reg)) {
Info.setStackPtrOffsetReg(Reg);
break;
}
}
if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
report_fatal_error("failed to find register for SP");
}
// hasFP should be accurate for entry functions even before the frame is
// finalized, because it does not rely on the known stack size, only
// properties like whether variable sized objects are present.
if (ST.getFrameLowering()->hasFP(MF)) {
Info.setFrameOffsetReg(AMDGPU::SGPR33);
}
}
bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
return !Info->isEntryFunction();
}
void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
}
void SITargetLowering::insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
if (!IStart)
return;
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (AMDGPU::SReg_64RegClass.contains(*I))
RC = &AMDGPU::SGPR_64RegClass;
else if (AMDGPU::SReg_32RegClass.contains(*I))
RC = &AMDGPU::SGPR_32RegClass;
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
Register NewVR = MRI->createVirtualRegister(RC);
// Create copy from CSR to a virtual register.
Entry->addLiveIn(*I);
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}
SDValue SITargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
const Function &Fn = MF.getFunction();
FunctionType *FType = MF.getFunction().getFunctionType();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
DiagnosticInfoUnsupported NoGraphicsHSA(
Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
DAG.getContext()->diagnose(NoGraphicsHSA);
return DAG.getEntryNode();
}
SmallVector<ISD::InputArg, 16> Splits;
SmallVector<CCValAssign, 16> ArgLocs;
BitVector Skipped(Ins.size());
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
bool IsGraphics = AMDGPU::isGraphics(CallConv);
bool IsKernel = AMDGPU::isKernel(CallConv);
bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
if (IsGraphics) {
const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo();
assert(!UserSGPRInfo.hasDispatchPtr() &&
!UserSGPRInfo.hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() &&
!Info->hasLDSKernelId() && !Info->hasWorkItemIDX() &&
!Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ());
(void)UserSGPRInfo;
if (!Subtarget->enableFlatScratch())
assert(!UserSGPRInfo.hasFlatScratchInit());
if (CallConv != CallingConv::AMDGPU_CS || !Subtarget->hasArchitectedSGPRs())
assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
!Info->hasWorkGroupIDZ());
}
if (CallConv == CallingConv::AMDGPU_PS) {
processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
// At least one interpolation mode must be enabled or else the GPU will
// hang.
//
// Check PSInputAddr instead of PSInputEnable. The idea is that if the user
// set PSInputAddr, the user wants to enable some bits after the compilation
// based on run-time states. Since we can't know what the final PSInputEna
// will look like, so we shouldn't do anything here and the user should take
// responsibility for the correct programming.
//
// Otherwise, the following restrictions apply:
// - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
// - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
// enabled too.
if ((Info->getPSInputAddr() & 0x7F) == 0 ||
((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
Info->markPSInputAllocated(0);
Info->markPSInputEnabled(0);
}
if (Subtarget->isAmdPalOS()) {
// For isAmdPalOS, the user does not enable some bits after compilation
// based on run-time states; the register values being generated here are
// the final ones set in hardware. Therefore we need to apply the
// workaround to PSInputAddr and PSInputEnable together. (The case where
// a bit is set in PSInputAddr but not PSInputEnable is where the
// frontend set up an input arg for a particular interpolation mode, but
// nothing uses that input arg. Really we should have an earlier pass
// that removes such an arg.)
unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
if ((PsInputBits & 0x7F) == 0 ||
((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr()));
}
} else if (IsKernel) {
assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
} else {
Splits.append(Ins.begin(), Ins.end());
}
if (IsKernel)
analyzeFormalArgumentsCompute(CCInfo, Ins);
if (IsEntryFunc) {
allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
if (IsKernel && Subtarget->hasKernargPreload())
allocatePreloadKernArgSGPRs(CCInfo, ArgLocs, Ins, MF, *TRI, *Info);
allocateLDSKernelId(CCInfo, MF, *TRI, *Info);
} else if (!IsGraphics) {
// For the fixed ABI, pass workitem IDs in the last argument register.
allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
// FIXME: Sink this into allocateSpecialInputSGPRs
if (!Subtarget->enableFlatScratch())
CCInfo.AllocateReg(Info->getScratchRSrcReg());
allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
}
if (!IsKernel) {
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
}
SmallVector<SDValue, 16> Chains;
// FIXME: This is the minimum kernel argument alignment. We should improve
// this to the maximum alignment of the arguments.
//
// FIXME: Alignment of explicit arguments totally broken with non-0 explicit
// kern arg offset.
const Align KernelArgBaseAlign = Align(16);
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
InVals.push_back(DAG.getUNDEF(Arg.VT));
continue;
}
CCValAssign &VA = ArgLocs[ArgIdx++];
MVT VT = VA.getLocVT();
if (IsEntryFunc && VA.isMemLoc()) {
VT = Ins[i].VT;
EVT MemVT = VA.getLocVT();
const uint64_t Offset = VA.getLocMemOffset();
Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
if (Arg.Flags.isByRef()) {
SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
const GCNTargetMachine &TM =
static_cast<const GCNTargetMachine &>(getTargetMachine());
if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
Arg.Flags.getPointerAddrSpace())) {
Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
Arg.Flags.getPointerAddrSpace());
}
InVals.push_back(Ptr);
continue;
}
SDValue NewArg;
if (Arg.isOrigArg() && Info->getArgInfo().PreloadKernArgs.count(i)) {
if (MemVT.getStoreSize() < 4 && Alignment < 4) {
// In this case the argument is packed into the previous preload SGPR.
int64_t AlignDownOffset = alignDown(Offset, 4);
int64_t OffsetDiff = Offset - AlignDownOffset;
EVT IntVT = MemVT.changeTypeToInteger();
const SIMachineFunctionInfo *Info =
MF.getInfo<SIMachineFunctionInfo>();
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
Register Reg =
Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs[0];
assert(Reg);
Register VReg = MRI.getLiveInVirtReg(Reg);
SDValue Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32);
SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, DL, MVT::i32);
SDValue Extract = DAG.getNode(ISD::SRL, DL, MVT::i32, Copy, ShiftAmt);
SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, Extract);
ArgVal = DAG.getNode(ISD::BITCAST, DL, MemVT, ArgVal);
NewArg = convertArgType(DAG, VT, MemVT, DL, ArgVal,
Ins[i].Flags.isSExt(), &Ins[i]);
NewArg = DAG.getMergeValues({NewArg, Copy.getValue(1)}, DL);
} else {
const SIMachineFunctionInfo *Info =
MF.getInfo<SIMachineFunctionInfo>();
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
const SmallVectorImpl<MCRegister> &PreloadRegs =
Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs;
SDValue Copy;
if (PreloadRegs.size() == 1) {
Register VReg = MRI.getLiveInVirtReg(PreloadRegs[0]);
const TargetRegisterClass *RC = MRI.getRegClass(VReg);
NewArg = DAG.getCopyFromReg(
Chain, DL, VReg,
EVT::getIntegerVT(*DAG.getContext(),
TRI->getRegSizeInBits(*RC)));
} else {
// If the kernarg alignment does not match the alignment of the SGPR
// tuple RC that can accommodate this argument, it will be built up
// via copies from from the individual SGPRs that the argument was
// preloaded to.
SmallVector<SDValue, 4> Elts;
for (auto Reg : PreloadRegs) {
Register VReg = MRI.getLiveInVirtReg(Reg);
Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32);
Elts.push_back(Copy);
}
NewArg =
DAG.getBuildVector(EVT::getVectorVT(*DAG.getContext(), MVT::i32,
PreloadRegs.size()),
DL, Elts);
}
SDValue CMemVT;
if (VT.isScalarInteger() && VT.bitsLT(NewArg.getSimpleValueType()))
CMemVT = DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewArg);
else
CMemVT = DAG.getBitcast(MemVT, NewArg);
NewArg = convertArgType(DAG, VT, MemVT, DL, CMemVT,
Ins[i].Flags.isSExt(), &Ins[i]);
NewArg = DAG.getMergeValues({NewArg, Chain}, DL);
}
} else {
NewArg =
lowerKernargMemParameter(DAG, VT, MemVT, DL, Chain, Offset,
Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
}
Chains.push_back(NewArg.getValue(1));
auto *ParamTy =
dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
// On SI local pointers are just offsets into LDS, so they are always
// less than 16-bits. On CI and newer they could potentially be
// real pointers, so we can't guarantee their size.
NewArg = DAG.getNode(ISD::AssertZext, DL, NewArg.getValueType(), NewArg,
DAG.getValueType(MVT::i16));
}
InVals.push_back(NewArg);
continue;
} else if (!IsEntryFunc && VA.isMemLoc()) {
SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
InVals.push_back(Val);
if (!Arg.Flags.isByVal())
Chains.push_back(Val.getValue(1));
continue;
}
assert(VA.isRegLoc() && "Parameter must be in a register!");
Register Reg = VA.getLocReg();
const TargetRegisterClass *RC = nullptr;
if (AMDGPU::VGPR_32RegClass.contains(Reg))
RC = &AMDGPU::VGPR_32RegClass;
else if (AMDGPU::SGPR_32RegClass.contains(Reg))
RC = &AMDGPU::SGPR_32RegClass;
else
llvm_unreachable("Unexpected register class in LowerFormalArguments!");
EVT ValVT = VA.getValVT();
Reg = MF.addLiveIn(Reg, RC);
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
if (Arg.Flags.isSRet()) {
// The return object should be reasonably addressable.
// FIXME: This helps when the return is a real sret. If it is a
// automatically inserted sret (i.e. CanLowerReturn returns false), an
// extra copy is inserted in SelectionDAGBuilder which obscures this.
unsigned NumBits
= 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
}
// If this is an 8 or 16-bit value, it is really passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
break;
case CCValAssign::SExt:
Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
DAG.getValueType(ValVT));
Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
break;
case CCValAssign::ZExt:
Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
DAG.getValueType(ValVT));
Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
break;
case CCValAssign::AExt:
Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
break;
default:
llvm_unreachable("Unknown loc info!");
}
InVals.push_back(Val);
}
// Start adding system SGPRs.
if (IsEntryFunc)
allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
auto &ArgUsageInfo =
DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
unsigned StackArgSize = CCInfo.getStackSize();
Info->setBytesInStackArgArea(StackArgSize);
return Chains.empty() ? Chain :
DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
}
// TODO: If return values can't fit in registers, we should return as many as
// possible in registers before passing on stack.
bool SITargetLowering::CanLowerReturn(
CallingConv::ID CallConv,
MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
// Replacing returns with sret/stack usage doesn't make sense for shaders.
// FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
// for shaders. Vector types should be explicitly handled by CC.
if (AMDGPU::isEntryFunctionCC(CallConv))
return true;
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
if (!CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)))
return false;
// We must use the stack if return would require unavailable registers.
unsigned MaxNumVGPRs = Subtarget->getMaxNumVGPRs(MF);
unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs();
for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i)
if (CCInfo.isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i)))
return false;
return true;
}
SDValue
SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
if (AMDGPU::isKernel(CallConv)) {
return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
OutVals, DL, DAG);
}
bool IsShader = AMDGPU::isShader(CallConv);
Info->setIfReturnsVoid(Outs.empty());
bool IsWaveEnd = Info->returnsVoid() && IsShader;
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 48> RVLocs;
SmallVector<ISD::OutputArg, 48> Splits;
// CCState - Info about the registers and stack slots.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze outgoing return values.
CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
SDValue Glue;
SmallVector<SDValue, 48> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
// Copy the result values into the output registers.
for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
++I, ++RealRVLocIdx) {
CCValAssign &VA = RVLocs[I];
assert(VA.isRegLoc() && "Can only return in registers!");
// TODO: Partially return in registers if return values don't fit.
SDValue Arg = OutVals[RealRVLocIdx];
// Copied from other backends.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
break;
default:
llvm_unreachable("Unknown loc info!");
}
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
// FIXME: Does sret work properly?
if (!Info->isEntryFunction()) {
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
const MCPhysReg *I =
TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
if (I) {
for (; *I; ++I) {
if (AMDGPU::SReg_64RegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::i64));
else if (AMDGPU::SReg_32RegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::i32));
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
}
}
}
// Update chain and glue.
RetOps[0] = Chain;
if (Glue.getNode())
RetOps.push_back(Glue);
unsigned Opc = AMDGPUISD::ENDPGM;
if (!IsWaveEnd)
Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_GLUE;
return DAG.getNode(Opc, DL, MVT::Other, RetOps);
}
SDValue SITargetLowering::LowerCallResult(
SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
SDValue ThisVal) const {
CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign VA = RVLocs[i];
SDValue Val;
if (VA.isRegLoc()) {
Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue);
Chain = Val.getValue(1);
InGlue = Val.getValue(2);
} else if (VA.isMemLoc()) {
report_fatal_error("TODO: return values in memory");
} else
llvm_unreachable("unknown argument location type");
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
break;
case CCValAssign::ZExt:
Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
DAG.getValueType(VA.getValVT()));
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
break;
case CCValAssign::SExt:
Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
DAG.getValueType(VA.getValVT()));
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
break;
case CCValAssign::AExt:
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
break;
default:
llvm_unreachable("Unknown loc info!");
}
InVals.push_back(Val);
}
return Chain;
}
// Add code to pass special inputs required depending on used features separate
// from the explicit user arguments present in the IR.
void SITargetLowering::passSpecialInputs(
CallLoweringInfo &CLI,
CCState &CCInfo,
const SIMachineFunctionInfo &Info,
SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
SmallVectorImpl<SDValue> &MemOpChains,
SDValue Chain) const {
// If we don't have a call site, this was a call inserted by
// legalization. These can never use special inputs.
if (!CLI.CB)
return;
SelectionDAG &DAG = CLI.DAG;
const SDLoc &DL = CLI.DL;
const Function &F = DAG.getMachineFunction().getFunction();
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
const AMDGPUFunctionArgInfo *CalleeArgInfo
= &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
auto &ArgUsageInfo =
DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
}
// TODO: Unify with private memory register handling. This is complicated by
// the fact that at least in kernels, the input argument is not necessarily
// in the same location as the input.
static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
StringLiteral> ImplicitAttrs[] = {
{AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"},
{AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" },
{AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"},
{AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"},
{AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"},
{AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"},
{AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"},
{AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"},
};
for (auto Attr : ImplicitAttrs) {
const ArgDescriptor *OutgoingArg;
const TargetRegisterClass *ArgRC;
LLT ArgTy;
AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first;
// If the callee does not use the attribute value, skip copying the value.
if (CLI.CB->hasFnAttr(Attr.second))
continue;
std::tie(OutgoingArg, ArgRC, ArgTy) =
CalleeArgInfo->getPreloadedValue(InputID);
if (!OutgoingArg)
continue;
const ArgDescriptor *IncomingArg;
const TargetRegisterClass *IncomingArgRC;
LLT Ty;
std::tie(IncomingArg, IncomingArgRC, Ty) =
CallerArgInfo.getPreloadedValue(InputID);
assert(IncomingArgRC == ArgRC);
// All special arguments are ints for now.
EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
SDValue InputReg;
if (IncomingArg) {
InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
} else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
// The implicit arg ptr is special because it doesn't have a corresponding
// input for kernels, and is computed from the kernarg segment pointer.
InputReg = getImplicitArgPtr(DAG, DL);
} else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
std::optional<uint32_t> Id =
AMDGPUMachineFunction::getLDSKernelIdMetadata(F);
if (Id.has_value()) {
InputReg = DAG.getConstant(*Id, DL, ArgVT);
} else {
InputReg = DAG.getUNDEF(ArgVT);
}
} else {
// We may have proven the input wasn't needed, although the ABI is
// requiring it. We just need to allocate the register appropriately.
InputReg = DAG.getUNDEF(ArgVT);
}
if (OutgoingArg->isRegister()) {
RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
report_fatal_error("failed to allocate implicit input argument");
} else {
unsigned SpecialArgOffset =
CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
SpecialArgOffset);
MemOpChains.push_back(ArgStore);
}
}
// Pack workitem IDs into a single register or pass it as is if already
// packed.
const ArgDescriptor *OutgoingArg;
const TargetRegisterClass *ArgRC;
LLT Ty;
std::tie(OutgoingArg, ArgRC, Ty) =
CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
if (!OutgoingArg)
std::tie(OutgoingArg, ArgRC, Ty) =
CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
if (!OutgoingArg)
std::tie(OutgoingArg, ArgRC, Ty) =
CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
if (!OutgoingArg)
return;
const ArgDescriptor *IncomingArgX = std::get<0>(
CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
const ArgDescriptor *IncomingArgY = std::get<0>(
CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
const ArgDescriptor *IncomingArgZ = std::get<0>(
CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
SDValue InputReg;
SDLoc SL;
const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
// If incoming ids are not packed we need to pack them.
if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
NeedWorkItemIDX) {
if (Subtarget->getMaxWorkitemID(F, 0) != 0) {
InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
} else {
InputReg = DAG.getConstant(0, DL, MVT::i32);
}
}
if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) {
SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
DAG.getShiftAmountConstant(10, MVT::i32, SL));
InputReg = InputReg.getNode() ?
DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
}
if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) {
SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
DAG.getShiftAmountConstant(20, MVT::i32, SL));
InputReg = InputReg.getNode() ?
DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
}
if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
// We're in a situation where the outgoing function requires the workitem
// ID, but the calling function does not have it (e.g a graphics function
// calling a C calling convention function). This is illegal, but we need
// to produce something.
InputReg = DAG.getUNDEF(MVT::i32);
} else {
// Workitem ids are already packed, any of present incoming arguments
// will carry all required fields.
ArgDescriptor IncomingArg = ArgDescriptor::createArg(
IncomingArgX ? *IncomingArgX :
IncomingArgY ? *IncomingArgY :
*IncomingArgZ, ~0u);
InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
}
}
if (OutgoingArg->isRegister()) {
if (InputReg)
RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
CCInfo.AllocateReg(OutgoingArg->getRegister());
} else {
unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
if (InputReg) {
SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
SpecialArgOffset);
MemOpChains.push_back(ArgStore);
}
}
}
static bool canGuaranteeTCO(CallingConv::ID CC) {
return CC == CallingConv::Fast;
}
/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
switch (CC) {
case CallingConv::C:
case CallingConv::AMDGPU_Gfx:
return true;
default:
return canGuaranteeTCO(CC);
}
}
bool SITargetLowering::isEligibleForTailCallOptimization(
SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
if (AMDGPU::isChainCC(CalleeCC))
return true;
if (!mayTailCallThisCC(CalleeCC))
return false;
// For a divergent call target, we need to do a waterfall loop over the
// possible callees which precludes us from using a simple jump.
if (Callee->isDivergent())
return false;
MachineFunction &MF = DAG.getMachineFunction();
const Function &CallerF = MF.getFunction();
CallingConv::ID CallerCC = CallerF.getCallingConv();
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
// Kernels aren't callable, and don't have a live in return address so it
// doesn't make sense to do a tail call with entry functions.
if (!CallerPreserved)
return false;
bool CCMatch = CallerCC == CalleeCC;
if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
if (canGuaranteeTCO(CalleeCC) && CCMatch)
return true;
return false;
}
// TODO: Can we handle var args?
if (IsVarArg)
return false;
for (const Argument &Arg : CallerF.args()) {
if (Arg.hasByValAttr())
return false;
}
LLVMContext &Ctx = *DAG.getContext();
// Check that the call results are passed in the same way.
if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
CCAssignFnForCall(CalleeCC, IsVarArg),
CCAssignFnForCall(CallerCC, IsVarArg)))
return false;
// The callee has to preserve all registers the caller needs to preserve.
if (!CCMatch) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
// Nothing more to check if the callee is taking no arguments.
if (Outs.empty())
return true;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
// If the stack arguments for this call do not fit into our own save area then
// the call cannot be made tail.
// TODO: Is this really necessary?
if (CCInfo.getStackSize() > FuncInfo->getBytesInStackArgArea())
return false;
const MachineRegisterInfo &MRI = MF.getRegInfo();
return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
}
bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
if (!CI->isTailCall())
return false;
const Function *ParentFn = CI->getParent()->getParent();
if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
return false;
return true;
}
// The wave scratch offset register is used as the global base pointer.
SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
CallingConv::ID CallConv = CLI.CallConv;
bool IsChainCallConv = AMDGPU::isChainCC(CallConv);
SelectionDAG &DAG = CLI.DAG;
TargetLowering::ArgListEntry RequestedExec;
if (IsChainCallConv) {
// The last argument should be the value that we need to put in EXEC.
// Pop it out of CLI.Outs and CLI.OutVals before we do any processing so we
// don't treat it like the rest of the arguments.
RequestedExec = CLI.Args.back();
assert(RequestedExec.Node && "No node for EXEC");
if (!RequestedExec.Ty->isIntegerTy(Subtarget->getWavefrontSize()))
return lowerUnhandledCall(CLI, InVals, "Invalid value for EXEC");
assert(CLI.Outs.back().OrigArgIndex == 2 && "Unexpected last arg");
CLI.Outs.pop_back();
CLI.OutVals.pop_back();
if (RequestedExec.Ty->isIntegerTy(64)) {
assert(CLI.Outs.back().OrigArgIndex == 2 && "Exec wasn't split up");
CLI.Outs.pop_back();
CLI.OutVals.pop_back();
}
assert(CLI.Outs.back().OrigArgIndex != 2 &&
"Haven't popped all the pieces of the EXEC mask");
}
const SDLoc &DL = CLI.DL;
SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
bool IsVarArg = CLI.IsVarArg;
bool IsSibCall = false;
MachineFunction &MF = DAG.getMachineFunction();
if (Callee.isUndef() || isNullConstant(Callee)) {
if (!CLI.IsTailCall) {
for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
}
return Chain;
}
if (IsVarArg) {
return lowerUnhandledCall(CLI, InVals,
"unsupported call to variadic function ");
}
if (!CLI.CB)
report_fatal_error("unsupported libcall legalization");
if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
return lowerUnhandledCall(CLI, InVals,
"unsupported required tail call to function ");
}
if (IsTailCall) {
IsTailCall = isEligibleForTailCallOptimization(
Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
if (!IsTailCall &&
((CLI.CB && CLI.CB->isMustTailCall()) || IsChainCallConv)) {
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail or on llvm.amdgcn.cs.chain");
}
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
// A sibling call is one where we're under the usual C ABI and not planning
// to change that but can still do a tail call:
if (!TailCallOpt && IsTailCall)
IsSibCall = true;
if (IsTailCall)
++NumTailCalls;
}
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
if (CallConv != CallingConv::AMDGPU_Gfx && !AMDGPU::isChainCC(CallConv)) {
// With a fixed ABI, allocate fixed registers before user arguments.
passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
}
CCInfo.AnalyzeCallOperands(Outs, AssignFn);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getStackSize();
if (IsSibCall) {
// Since we're not changing the ABI to make this a tail call, the memory
// operands are already available in the caller's incoming argument space.
NumBytes = 0;
}
// FPDiff is the byte offset of the call's argument area from the callee's.
// Stores to callee stack arguments will be placed in FixedStackSlots offset
// by this amount for a tail call. In a sibling call it must be 0 because the
// caller will deallocate the entire stack and the callee still expects its
// arguments to begin at SP+0. Completely unused for non-tail calls.
int32_t FPDiff = 0;
MachineFrameInfo &MFI = MF.getFrameInfo();
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
if (!IsSibCall)
Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
if (!IsSibCall || IsChainCallConv) {
if (!Subtarget->enableFlatScratch()) {
SmallVector<SDValue, 4> CopyFromChains;
// In the HSA case, this should be an identity copy.
SDValue ScratchRSrcReg
= DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
RegsToPass.emplace_back(IsChainCallConv
? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51
: AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3,
ScratchRSrcReg);
CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
Chain = DAG.getTokenFactor(DL, CopyFromChains);
}
}
MVT PtrVT = MVT::i32;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::FPExt:
Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
break;
default:
llvm_unreachable("Unknown loc info!");
}
if (VA.isRegLoc()) {
RegsToPass.push_back(std::pair(VA.getLocReg(), Arg));
} else {
assert(VA.isMemLoc());
SDValue DstAddr;
MachinePointerInfo DstInfo;
unsigned LocMemOffset = VA.getLocMemOffset();
int32_t Offset = LocMemOffset;
SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
MaybeAlign Alignment;
if (IsTailCall) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
unsigned OpSize = Flags.isByVal() ?
Flags.getByValSize() : VA.getValVT().getStoreSize();
// FIXME: We can have better than the minimum byval required alignment.
Alignment =
Flags.isByVal()
? Flags.getNonZeroByValAlign()
: commonAlignment(Subtarget->getStackAlignment(), Offset);
Offset = Offset + FPDiff;
int FI = MFI.CreateFixedObject(OpSize, Offset, true);
DstAddr = DAG.getFrameIndex(FI, PtrVT);
DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
// Make sure any stack arguments overlapping with where we're storing
// are loaded before this eventual operation. Otherwise they'll be
// clobbered.
// FIXME: Why is this really necessary? This seems to just result in a
// lot of code to copy the stack and write them back to the same
// locations, which are supposed to be immutable?
Chain = addTokenForArgument(Chain, DAG, MFI, FI);
} else {
// Stores to the argument stack area are relative to the stack pointer.
SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
MVT::i32);
DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
Alignment =
commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
}
if (Outs[i].Flags.isByVal()) {
SDValue SizeNode =
DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
SDValue Cpy =
DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
Outs[i].Flags.getNonZeroByValAlign(),
/*isVol = */ false, /*AlwaysInline = */ true,
/*isTailCall = */ false, DstInfo,
MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
MemOpChains.push_back(Cpy);
} else {
SDValue Store =
DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
MemOpChains.push_back(Store);
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InGlue;
for (auto &RegToPass : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
RegToPass.second, InGlue);
InGlue = Chain.getValue(1);
}
// We don't usually want to end the call-sequence here because we would tidy
// the frame up *after* the call, however in the ABI-changing tail-call case
// we've carefully laid out the parameters so that when sp is reset they'll be
// in the correct location.
if (IsTailCall && !IsSibCall) {
Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL);
InGlue = Chain.getValue(1);
}
std::vector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add a redundant copy of the callee global which will not be legalized, as
// we need direct access to the callee later.
if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = GSD->getGlobal();
Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
} else {
Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
}
if (IsTailCall) {
// Each tail call may have to adjust the stack by a different amount, so
// this information must travel along with the operation for eventual
// consumption by emitEpilogue.
Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
}
if (IsChainCallConv)
Ops.push_back(RequestedExec.Node);
// Add argument registers to the end of the list so that they are known live
// into the call.
for (auto &RegToPass : RegsToPass) {
Ops.push_back(DAG.getRegister(RegToPass.first,
RegToPass.second.getValueType()));
}
// Add a register mask operand representing the call-preserved registers.
auto *TRI = static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
if (InGlue.getNode())
Ops.push_back(InGlue);
// NOTE: This potentially results in *two* glue operands, and the wrong one
// might possibly show up where the other was intended. In particular,
// Emitter::EmitMachineNode() expects only the glued convergence token if it
// exists. Similarly, the selection of the call expects to match only the
// InGlue operand if it exists.
if (SDValue Token = CLI.ConvergenceControlToken) {
Ops.push_back(SDValue(DAG.getMachineNode(TargetOpcode::CONVERGENCECTRL_GLUE,
DL, MVT::Glue, Token),
0));
}
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
// If we're doing a tall call, use a TC_RETURN here rather than an
// actual call instruction.
if (IsTailCall) {
MFI.setHasTailCall();
unsigned OPC = AMDGPUISD::TC_RETURN;
switch (CallConv) {
case CallingConv::AMDGPU_Gfx:
OPC = AMDGPUISD::TC_RETURN_GFX;
break;
case CallingConv::AMDGPU_CS_Chain:
case CallingConv::AMDGPU_CS_ChainPreserve:
OPC = AMDGPUISD::TC_RETURN_CHAIN;
break;
}
return DAG.getNode(OPC, DL, NodeTys, Ops);
}
// Returns a chain and a flag for retval copy to use.
SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
Chain = Call.getValue(0);
InGlue = Call.getValue(1);
uint64_t CalleePopBytes = NumBytes;
Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InGlue, DL);
if (!Ins.empty())
InGlue = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG,
InVals, /*IsThisReturn=*/false, SDValue());
}
// This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
// except for applying the wave size scale to the increment amount.
SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
SDValue Op, SelectionDAG &DAG) const {
const MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
SDLoc dl(Op);
EVT VT = Op.getValueType();
SDValue Tmp1 = Op;
SDValue Tmp2 = Op.getValue(1);
SDValue Tmp3 = Op.getOperand(2);
SDValue Chain = Tmp1.getOperand(0);
Register SPReg = Info->getStackPtrOffsetReg();
// Chain the dynamic stack allocation so that it doesn't modify the stack
// pointer when other instructions are using the stack.
Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
SDValue Size = Tmp2.getOperand(1);
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
Chain = SP.getValue(1);
MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
const TargetFrameLowering *TFL = Subtarget->getFrameLowering();
unsigned Opc =
TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
ISD::ADD : ISD::SUB;
SDValue ScaledSize = DAG.getNode(
ISD::SHL, dl, VT, Size,
DAG.getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32));
Align StackAlign = TFL->getStackAlign();
Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
if (Alignment && *Alignment > StackAlign) {
Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
DAG.getConstant(-(uint64_t)Alignment->value()
<< Subtarget->getWavefrontSizeLog2(),
dl, VT));
}
Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl);
return DAG.getMergeValues({Tmp1, Tmp2}, dl);
}
SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
// We only handle constant sizes here to allow non-entry block, static sized
// allocas. A truly dynamic value is more difficult to support because we
// don't know if the size value is uniform or not. If the size isn't uniform,
// we would need to do a wave reduction to get the maximum size to know how
// much to increment the uniform stack pointer.
SDValue Size = Op.getOperand(1);
if (isa<ConstantSDNode>(Size))
return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
}
SDValue SITargetLowering::LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType() != MVT::i32)
return Op; // Defer to cannot select error.
Register SP = getStackPointerRegisterToSaveRestore();
SDLoc SL(Op);
SDValue CopyFromSP = DAG.getCopyFromReg(Op->getOperand(0), SL, SP, MVT::i32);
// Convert from wave uniform to swizzled vector address. This should protect
// from any edge cases where the stacksave result isn't directly used with
// stackrestore.
SDValue VectorAddress =
DAG.getNode(AMDGPUISD::WAVE_ADDRESS, SL, MVT::i32, CopyFromSP);
return DAG.getMergeValues({VectorAddress, CopyFromSP.getValue(1)}, SL);
}
SDValue SITargetLowering::lowerGET_ROUNDING(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
assert(Op.getValueType() == MVT::i32);
uint32_t BothRoundHwReg =
AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 4);
SDValue GetRoundBothImm = DAG.getTargetConstant(BothRoundHwReg, SL, MVT::i32);
SDValue IntrinID =
DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32);
SDValue GetReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, Op->getVTList(),
Op.getOperand(0), IntrinID, GetRoundBothImm);
// There are two rounding modes, one for f32 and one for f64/f16. We only
// report in the standard value range if both are the same.
//
// The raw values also differ from the expected FLT_ROUNDS values. Nearest
// ties away from zero is not supported, and the other values are rotated by
// 1.
//
// If the two rounding modes are not the same, report a target defined value.
// Mode register rounding mode fields:
//
// [1:0] Single-precision round mode.
// [3:2] Double/Half-precision round mode.
//
// 0=nearest even; 1= +infinity; 2= -infinity, 3= toward zero.
//
// Hardware Spec
// Toward-0 3 0
// Nearest Even 0 1
// +Inf 1 2
// -Inf 2 3
// NearestAway0 N/A 4
//
// We have to handle 16 permutations of a 4-bit value, so we create a 64-bit
// table we can index by the raw hardware mode.
//
// (trunc (FltRoundConversionTable >> MODE.fp_round)) & 0xf
SDValue BitTable =
DAG.getConstant(AMDGPU::FltRoundConversionTable, SL, MVT::i64);
SDValue Two = DAG.getConstant(2, SL, MVT::i32);
SDValue RoundModeTimesNumBits =
DAG.getNode(ISD::SHL, SL, MVT::i32, GetReg, Two);
// TODO: We could possibly avoid a 64-bit shift and use a simpler table if we
// knew only one mode was demanded.
SDValue TableValue =
DAG.getNode(ISD::SRL, SL, MVT::i64, BitTable, RoundModeTimesNumBits);
SDValue TruncTable = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, TableValue);
SDValue EntryMask = DAG.getConstant(0xf, SL, MVT::i32);
SDValue TableEntry =
DAG.getNode(ISD::AND, SL, MVT::i32, TruncTable, EntryMask);
// There's a gap in the 4-bit encoded table and actual enum values, so offset
// if it's an extended value.
SDValue Four = DAG.getConstant(4, SL, MVT::i32);
SDValue IsStandardValue =
DAG.getSetCC(SL, MVT::i1, TableEntry, Four, ISD::SETULT);
SDValue EnumOffset = DAG.getNode(ISD::ADD, SL, MVT::i32, TableEntry, Four);
SDValue Result = DAG.getNode(ISD::SELECT, SL, MVT::i32, IsStandardValue,
TableEntry, EnumOffset);
return DAG.getMergeValues({Result, GetReg.getValue(1)}, SL);
}
SDValue SITargetLowering::lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const {
if (Op->isDivergent())
return SDValue();
switch (cast<MemSDNode>(Op)->getAddressSpace()) {
case AMDGPUAS::FLAT_ADDRESS:
case AMDGPUAS::GLOBAL_ADDRESS:
case AMDGPUAS::CONSTANT_ADDRESS:
case AMDGPUAS::CONSTANT_ADDRESS_32BIT:
break;
default:
return SDValue();
}
return Op;
}
// Work around DAG legality rules only based on the result type.
SDValue SITargetLowering::lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
bool IsStrict = Op.getOpcode() == ISD::STRICT_FP_EXTEND;
SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
EVT SrcVT = Src.getValueType();
if (SrcVT.getScalarType() != MVT::bf16)
return Op;
SDLoc SL(Op);
SDValue BitCast =
DAG.getNode(ISD::BITCAST, SL, SrcVT.changeTypeToInteger(), Src);
EVT DstVT = Op.getValueType();
if (IsStrict)
llvm_unreachable("Need STRICT_BF16_TO_FP");
return DAG.getNode(ISD::BF16_TO_FP, SL, DstVT, BitCast);
}
SDValue SITargetLowering::lowerGET_FPENV(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
if (Op.getValueType() != MVT::i64)
return Op;
uint32_t ModeHwReg =
AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 23);
SDValue ModeHwRegImm = DAG.getTargetConstant(ModeHwReg, SL, MVT::i32);
uint32_t TrapHwReg =
AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_TRAPSTS, 0, 5);
SDValue TrapHwRegImm = DAG.getTargetConstant(TrapHwReg, SL, MVT::i32);
SDVTList VTList = DAG.getVTList(MVT::i32, MVT::Other);
SDValue IntrinID =
DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32);
SDValue GetModeReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, VTList,
Op.getOperand(0), IntrinID, ModeHwRegImm);
SDValue GetTrapReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, VTList,
Op.getOperand(0), IntrinID, TrapHwRegImm);
SDValue TokenReg =
DAG.getNode(ISD::TokenFactor, SL, MVT::Other, GetModeReg.getValue(1),
GetTrapReg.getValue(1));
SDValue CvtPtr =
DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, GetModeReg, GetTrapReg);
SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
return DAG.getMergeValues({Result, TokenReg}, SL);
}
SDValue SITargetLowering::lowerSET_FPENV(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
if (Op.getOperand(1).getValueType() != MVT::i64)
return Op;
SDValue Input = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op.getOperand(1));
SDValue NewModeReg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Input,
DAG.getConstant(0, SL, MVT::i32));
SDValue NewTrapReg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Input,
DAG.getConstant(1, SL, MVT::i32));
SDValue ReadFirstLaneID =
DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, SL, MVT::i32);
NewModeReg = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32,
ReadFirstLaneID, NewModeReg);
NewTrapReg = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32,
ReadFirstLaneID, NewTrapReg);
unsigned ModeHwReg =
AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 23);
SDValue ModeHwRegImm = DAG.getTargetConstant(ModeHwReg, SL, MVT::i32);
unsigned TrapHwReg =
AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_TRAPSTS, 0, 5);
SDValue TrapHwRegImm = DAG.getTargetConstant(TrapHwReg, SL, MVT::i32);
SDValue IntrinID =
DAG.getTargetConstant(Intrinsic::amdgcn_s_setreg, SL, MVT::i32);
SDValue SetModeReg =
DAG.getNode(ISD::INTRINSIC_VOID, SL, MVT::Other, Op.getOperand(0),
IntrinID, ModeHwRegImm, NewModeReg);
SDValue SetTrapReg =
DAG.getNode(ISD::INTRINSIC_VOID, SL, MVT::Other, Op.getOperand(0),
IntrinID, TrapHwRegImm, NewTrapReg);
return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, SetTrapReg, SetModeReg);
}
Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
const MachineFunction &MF) const {
Register Reg = StringSwitch<Register>(RegName)
.Case("m0", AMDGPU::M0)
.Case("exec", AMDGPU::EXEC)
.Case("exec_lo", AMDGPU::EXEC_LO)
.Case("exec_hi", AMDGPU::EXEC_HI)
.Case("flat_scratch", AMDGPU::FLAT_SCR)
.Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
.Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
.Default(Register());
if (Reg == AMDGPU::NoRegister) {
report_fatal_error(Twine("invalid register name \""
+ StringRef(RegName) + "\"."));
}
if (!Subtarget->hasFlatScrRegister() &&
Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
report_fatal_error(Twine("invalid register \""
+ StringRef(RegName) + "\" for subtarget."));
}
switch (Reg) {
case AMDGPU::M0:
case AMDGPU::EXEC_LO:
case AMDGPU::EXEC_HI:
case AMDGPU::FLAT_SCR_LO:
case AMDGPU::FLAT_SCR_HI:
if (VT.getSizeInBits() == 32)
return Reg;
break;
case AMDGPU::EXEC:
case AMDGPU::FLAT_SCR:
if (VT.getSizeInBits() == 64)
return Reg;
break;
default:
llvm_unreachable("missing register type checking");
}
report_fatal_error(Twine("invalid type for register \""
+ StringRef(RegName) + "\"."));
}
// If kill is not the last instruction, split the block so kill is always a
// proper terminator.
MachineBasicBlock *
SITargetLowering::splitKillBlock(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
return SplitBB;
}
// Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
// \p MI will be the only instruction in the loop body block. Otherwise, it will
// be the first instruction in the remainder block.
//
/// \returns { LoopBody, Remainder }
static std::pair<MachineBasicBlock *, MachineBasicBlock *>
splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
MachineFunction *MF = MBB.getParent();
MachineBasicBlock::iterator I(&MI);
// To insert the loop we need to split the block. Move everything after this
// point to a new block, and insert a new empty block between the two.
MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
MachineFunction::iterator MBBI(MBB);
++MBBI;
MF->insert(MBBI, LoopBB);
MF->insert(MBBI, RemainderBB);
LoopBB->addSuccessor(LoopBB);
LoopBB->addSuccessor(RemainderBB);
// Move the rest of the block into a new block.
RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
if (InstInLoop) {
auto Next = std::next(I);
// Move instruction to loop body.
LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
// Move the rest of the block.
RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
} else {
RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
}
MBB.addSuccessor(LoopBB);
return std::pair(LoopBB, RemainderBB);
}
/// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
MachineBasicBlock *MBB = MI.getParent();
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
auto I = MI.getIterator();
auto E = std::next(I);
BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
.addImm(0);
MIBundleBuilder Bundler(*MBB, I, E);
finalizeBundle(*MBB, Bundler.begin());
}
MachineBasicBlock *
SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
MachineBasicBlock *BB) const {
const DebugLoc &DL = MI.getDebugLoc();
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
MachineBasicBlock *LoopBB;
MachineBasicBlock *RemainderBB;
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
// Apparently kill flags are only valid if the def is in the same block?
if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
Src->setIsKill(false);
std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
MachineBasicBlock::iterator I = LoopBB->end();
const unsigned EncodedReg = AMDGPU::Hwreg::HwregEncoding::encode(
AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
// Clear TRAP_STS.MEM_VIOL
BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
.addImm(0)
.addImm(EncodedReg);
bundleInstWithWaitcnt(MI);
Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
// Load and check TRAP_STS.MEM_VIOL
BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
.addImm(EncodedReg);
// FIXME: Do we need to use an isel pseudo that may clobber scc?
BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
.addReg(Reg, RegState::Kill)
.addImm(0);
BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
.addMBB(LoopBB);
return RemainderBB;
}
// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
// wavefront. If the value is uniform and just happens to be in a VGPR, this
// will only do one iteration. In the worst case, this will loop 64 times.
//
// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
static MachineBasicBlock::iterator
emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
const DebugLoc &DL, const MachineOperand &Idx,
unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
Register &SGPRIdxReg) {
MachineFunction *MF = OrigBB.getParent();
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
MachineBasicBlock::iterator I = LoopBB.begin();
const TargetRegisterClass *BoolRC = TRI->getBoolRC();
Register PhiExec = MRI.createVirtualRegister(BoolRC);
Register NewExec = MRI.createVirtualRegister(BoolRC);
Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
Register CondReg = MRI.createVirtualRegister(BoolRC);
BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
.addReg(InitReg)
.addMBB(&OrigBB)
.addReg(ResultReg)
.addMBB(&LoopBB);
BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
.addReg(InitSaveExecReg)
.addMBB(&OrigBB)
.addReg(NewExec)
.addMBB(&LoopBB);
// Read the next variant <- also loop target.
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
.addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
// Compare the just read M0 value to all possible Idx values.
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
.addReg(CurrentIdxReg)
.addReg(Idx.getReg(), 0, Idx.getSubReg());
// Update EXEC, save the original EXEC value to VCC.
BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
: AMDGPU::S_AND_SAVEEXEC_B64),
NewExec)
.addReg(CondReg, RegState::Kill);
MRI.setSimpleHint(NewExec, CondReg);
if (UseGPRIdxMode) {
if (Offset == 0) {
SGPRIdxReg = CurrentIdxReg;
} else {
SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
.addReg(CurrentIdxReg, RegState::Kill)
.addImm(Offset);
}
} else {
// Move index from VCC into M0
if (Offset == 0) {
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addReg(CurrentIdxReg, RegState::Kill);
} else {
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
.addReg(CurrentIdxReg, RegState::Kill)
.addImm(Offset);
}
}
// Update EXEC, switch all done bits to 0 and all todo bits to 1.
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
MachineInstr *InsertPt =
BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
: AMDGPU::S_XOR_B64_term), Exec)
.addReg(Exec)
.addReg(NewExec);
// XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
// s_cbranch_scc0?
// Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addMBB(&LoopBB);
return InsertPt->getIterator();
}
// This has slightly sub-optimal regalloc when the source vector is killed by
// the read. The register allocator does not understand that the kill is
// per-workitem, so is kept alive for the whole loop so we end up not re-using a
// subregister from it, using 1 more VGPR than necessary. This was saved when
// this was expanded after register allocation.
static MachineBasicBlock::iterator
loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
unsigned InitResultReg, unsigned PhiReg, int Offset,
bool UseGPRIdxMode, Register &SGPRIdxReg) {
MachineFunction *MF = MBB.getParent();
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock::iterator I(&MI);
const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
Register DstReg = MI.getOperand(0).getReg();
Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
// Save the EXEC mask
BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
.addReg(Exec);
MachineBasicBlock *LoopBB;
MachineBasicBlock *RemainderBB;
std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
InitResultReg, DstReg, PhiReg, TmpExec,
Offset, UseGPRIdxMode, SGPRIdxReg);
MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
MachineFunction::iterator MBBI(LoopBB);
++MBBI;
MF->insert(MBBI, LandingPad);
LoopBB->removeSuccessor(RemainderBB);
LandingPad->addSuccessor(RemainderBB);
LoopBB->addSuccessor(LandingPad);
MachineBasicBlock::iterator First = LandingPad->begin();
BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
.addReg(SaveExec);
return InsPt;
}
// Returns subreg index, offset
static std::pair<unsigned, int>
computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
const TargetRegisterClass *SuperRC,
unsigned VecReg,
int Offset) {
int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
// Skip out of bounds offsets, or else we would end up using an undefined
// register.
if (Offset >= NumElts || Offset < 0)
return std::pair(AMDGPU::sub0, Offset);
return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
}
static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
MachineRegisterInfo &MRI, MachineInstr &MI,
int Offset) {
MachineBasicBlock *MBB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock::iterator I(&MI);
const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
assert(Idx->getReg() != AMDGPU::NoRegister);
if (Offset == 0) {
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
} else {
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
.add(*Idx)
.addImm(Offset);
}
}
static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
MachineRegisterInfo &MRI, MachineInstr &MI,
int Offset) {
MachineBasicBlock *MBB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock::iterator I(&MI);
const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
if (Offset == 0)
return Idx->getReg();
Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
.add(*Idx)
.addImm(Offset);
return Tmp;
}
static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
MachineBasicBlock &MBB,
const GCNSubtarget &ST) {
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo &TRI = TII->getRegisterInfo();
MachineFunction *MF = MBB.getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
Register Dst = MI.getOperand(0).getReg();
const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
unsigned SubReg;
std::tie(SubReg, Offset)
= computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
const bool UseGPRIdxMode = ST.useVGPRIndexMode();
// Check for a SGPR index.
if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
MachineBasicBlock::iterator I(&MI);
const DebugLoc &DL = MI.getDebugLoc();
if (UseGPRIdxMode) {
// TODO: Look at the uses to avoid the copy. This may require rescheduling
// to avoid interfering with other uses, so probably requires a new
// optimization pass.
Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
const MCInstrDesc &GPRIDXDesc =
TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
.addReg(SrcReg)
.addReg(Idx)
.addImm(SubReg);
} else {
setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
.addReg(SrcReg, 0, SubReg)
.addReg(SrcReg, RegState::Implicit);
}
MI.eraseFromParent();
return &MBB;
}
// Control flow needs to be inserted if indexing with a VGPR.
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock::iterator I(&MI);
Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
Register SGPRIdxReg;
auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
UseGPRIdxMode, SGPRIdxReg);
MachineBasicBlock *LoopBB = InsPt->getParent();
if (UseGPRIdxMode) {
const MCInstrDesc &GPRIDXDesc =
TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
.addReg(SrcReg)
.addReg(SGPRIdxReg)
.addImm(SubReg);
} else {
BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
.addReg(SrcReg, 0, SubReg)
.addReg(SrcReg, RegState::Implicit);
}
MI.eraseFromParent();
return LoopBB;
}
static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
MachineBasicBlock &MBB,
const GCNSubtarget &ST) {
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo &TRI = TII->getRegisterInfo();
MachineFunction *MF = MBB.getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
Register Dst = MI.getOperand(0).getReg();
const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
// This can be an immediate, but will be folded later.
assert(Val->getReg());
unsigned SubReg;
std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
SrcVec->getReg(),
Offset);
const bool UseGPRIdxMode = ST.useVGPRIndexMode();
if (Idx->getReg() == AMDGPU::NoRegister) {
MachineBasicBlock::iterator I(&MI);
const DebugLoc &DL = MI.getDebugLoc();
assert(Offset == 0);
BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
.add(*SrcVec)
.add(*Val)
.addImm(SubReg);
MI.eraseFromParent();
return &MBB;
}
// Check for a SGPR index.
if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
MachineBasicBlock::iterator I(&MI);
const DebugLoc &DL = MI.getDebugLoc();
if (UseGPRIdxMode) {
Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
const MCInstrDesc &GPRIDXDesc =
TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
.addReg(SrcVec->getReg())
.add(*Val)
.addReg(Idx)
.addImm(SubReg);
} else {
setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
TRI.getRegSizeInBits(*VecRC), 32, false);
BuildMI(MBB, I, DL, MovRelDesc, Dst)
.addReg(SrcVec->getReg())
.add(*Val)
.addImm(SubReg);
}
MI.eraseFromParent();
return &MBB;
}
// Control flow needs to be inserted if indexing with a VGPR.
if (Val->isReg())
MRI.clearKillFlags(Val->getReg());
const DebugLoc &DL = MI.getDebugLoc();
Register PhiReg = MRI.createVirtualRegister(VecRC);
Register SGPRIdxReg;
auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
UseGPRIdxMode, SGPRIdxReg);
MachineBasicBlock *LoopBB = InsPt->getParent();
if (UseGPRIdxMode) {
const MCInstrDesc &GPRIDXDesc =
TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
.addReg(PhiReg)
.add(*Val)
.addReg(SGPRIdxReg)
.addImm(AMDGPU::sub0);
} else {
const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
TRI.getRegSizeInBits(*VecRC), 32, false);
BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
.addReg(PhiReg)
.add(*Val)
.addImm(AMDGPU::sub0);
}
MI.eraseFromParent();
return LoopBB;
}
static MachineBasicBlock *lowerWaveReduce(MachineInstr &MI,
MachineBasicBlock &BB,
const GCNSubtarget &ST,
unsigned Opc) {
MachineRegisterInfo &MRI = BB.getParent()->getRegInfo();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
const DebugLoc &DL = MI.getDebugLoc();
const SIInstrInfo *TII = ST.getInstrInfo();
// Reduction operations depend on whether the input operand is SGPR or VGPR.
Register SrcReg = MI.getOperand(1).getReg();
bool isSGPR = TRI->isSGPRClass(MRI.getRegClass(SrcReg));
Register DstReg = MI.getOperand(0).getReg();
MachineBasicBlock *RetBB = nullptr;
if (isSGPR) {
// These operations with a uniform value i.e. SGPR are idempotent.
// Reduced value will be same as given sgpr.
BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MOV_B32), DstReg).addReg(SrcReg);
RetBB = &BB;
} else {
// TODO: Implement DPP Strategy and switch based on immediate strategy
// operand. For now, for all the cases (default, Iterative and DPP we use
// iterative approach by default.)
// To reduce the VGPR using iterative approach, we need to iterate
// over all the active lanes. Lowering consists of ComputeLoop,
// which iterate over only active lanes. We use copy of EXEC register
// as induction variable and every active lane modifies it using bitset0
// so that we will get the next active lane for next iteration.
MachineBasicBlock::iterator I = BB.end();
Register SrcReg = MI.getOperand(1).getReg();
// Create Control flow for loop
// Split MI's Machine Basic block into For loop
auto [ComputeLoop, ComputeEnd] = splitBlockForLoop(MI, BB, true);
// Create virtual registers required for lowering.
const TargetRegisterClass *WaveMaskRegClass = TRI->getWaveMaskRegClass();
const TargetRegisterClass *DstRegClass = MRI.getRegClass(DstReg);
Register LoopIterator = MRI.createVirtualRegister(WaveMaskRegClass);
Register InitalValReg = MRI.createVirtualRegister(DstRegClass);
Register AccumulatorReg = MRI.createVirtualRegister(DstRegClass);
Register ActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass);
Register NewActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass);
Register FF1Reg = MRI.createVirtualRegister(DstRegClass);
Register LaneValueReg = MRI.createVirtualRegister(DstRegClass);
bool IsWave32 = ST.isWave32();
unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
// Create initail values of induction variable from Exec, Accumulator and
// insert branch instr to newly created ComputeBlockk
uint32_t InitalValue =
(Opc == AMDGPU::S_MIN_U32) ? std::numeric_limits<uint32_t>::max() : 0;
auto TmpSReg =
BuildMI(BB, I, DL, TII->get(MovOpc), LoopIterator).addReg(ExecReg);
BuildMI(BB, I, DL, TII->get(AMDGPU::S_MOV_B32), InitalValReg)
.addImm(InitalValue);
BuildMI(BB, I, DL, TII->get(AMDGPU::S_BRANCH)).addMBB(ComputeLoop);
// Start constructing ComputeLoop
I = ComputeLoop->end();
auto Accumulator =
BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), AccumulatorReg)
.addReg(InitalValReg)
.addMBB(&BB);
auto ActiveBits =
BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), ActiveBitsReg)
.addReg(TmpSReg->getOperand(0).getReg())
.addMBB(&BB);
// Perform the computations
unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64;
auto FF1 = BuildMI(*ComputeLoop, I, DL, TII->get(SFFOpc), FF1Reg)
.addReg(ActiveBits->getOperand(0).getReg());
auto LaneValue = BuildMI(*ComputeLoop, I, DL,
TII->get(AMDGPU::V_READLANE_B32), LaneValueReg)
.addReg(SrcReg)
.addReg(FF1->getOperand(0).getReg());
auto NewAccumulator = BuildMI(*ComputeLoop, I, DL, TII->get(Opc), DstReg)
.addReg(Accumulator->getOperand(0).getReg())
.addReg(LaneValue->getOperand(0).getReg());
// Manipulate the iterator to get the next active lane
unsigned BITSETOpc =
IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64;
auto NewActiveBits =
BuildMI(*ComputeLoop, I, DL, TII->get(BITSETOpc), NewActiveBitsReg)
.addReg(FF1->getOperand(0).getReg())
.addReg(ActiveBits->getOperand(0).getReg());
// Add phi nodes
Accumulator.addReg(NewAccumulator->getOperand(0).getReg())
.addMBB(ComputeLoop);
ActiveBits.addReg(NewActiveBits->getOperand(0).getReg())
.addMBB(ComputeLoop);
// Creating branching
unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64;
BuildMI(*ComputeLoop, I, DL, TII->get(CMPOpc))
.addReg(NewActiveBits->getOperand(0).getReg())
.addImm(0);
BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
.addMBB(ComputeLoop);
RetBB = ComputeEnd;
}
MI.eraseFromParent();
return RetBB;
}
MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
MachineInstr &MI, MachineBasicBlock *BB) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
MachineFunction *MF = BB->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
switch (MI.getOpcode()) {
case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32:
return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MIN_U32);
case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32:
return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MAX_U32);
case AMDGPU::S_UADDO_PSEUDO:
case AMDGPU::S_USUBO_PSEUDO: {
const DebugLoc &DL = MI.getDebugLoc();
MachineOperand &Dest0 = MI.getOperand(0);
MachineOperand &Dest1 = MI.getOperand(1);
MachineOperand &Src0 = MI.getOperand(2);
MachineOperand &Src1 = MI.getOperand(3);
unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
? AMDGPU::S_ADD_I32
: AMDGPU::S_SUB_I32;
BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
.addImm(1)
.addImm(0);
MI.eraseFromParent();
return BB;
}
case AMDGPU::S_ADD_U64_PSEUDO:
case AMDGPU::S_SUB_U64_PSEUDO: {
// For targets older than GFX12, we emit a sequence of 32-bit operations.
// For GFX12, we emit s_add_u64 and s_sub_u64.
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const DebugLoc &DL = MI.getDebugLoc();
MachineOperand &Dest = MI.getOperand(0);
MachineOperand &Src0 = MI.getOperand(1);
MachineOperand &Src1 = MI.getOperand(2);
bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
if (Subtarget->hasScalarAddSub64()) {
unsigned Opc = IsAdd ? AMDGPU::S_ADD_U64 : AMDGPU::S_SUB_U64;
BuildMI(*BB, MI, DL, TII->get(Opc), Dest.getReg())
.add(Src0)
.add(Src1);
} else {
const SIRegisterInfo *TRI = ST.getRegisterInfo();
const TargetRegisterClass *BoolRC = TRI->getBoolRC();
Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
.add(Src0Sub0)
.add(Src1Sub0);
BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
.add(Src0Sub1)
.add(Src1Sub1);
BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
.addReg(DestSub0)
.addImm(AMDGPU::sub0)
.addReg(DestSub1)
.addImm(AMDGPU::sub1);
}
MI.eraseFromParent();
return BB;
}
case AMDGPU::V_ADD_U64_PSEUDO:
case AMDGPU::V_SUB_U64_PSEUDO: {
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
const DebugLoc &DL = MI.getDebugLoc();
bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
MachineOperand &Dest = MI.getOperand(0);
MachineOperand &Src0 = MI.getOperand(1);
MachineOperand &Src1 = MI.getOperand(2);
if (IsAdd && ST.hasLshlAddB64()) {
auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64),
Dest.getReg())
.add(Src0)
.addImm(0)
.add(Src1);
TII->legalizeOperands(*Add);
MI.eraseFromParent();
return BB;
}
const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register CarryReg = MRI.createVirtualRegister(CarryRC);
Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
const TargetRegisterClass *Src0RC = Src0.isReg()
? MRI.getRegClass(Src0.getReg())
: &AMDGPU::VReg_64RegClass;
const TargetRegisterClass *Src1RC = Src1.isReg()
? MRI.getRegClass(Src1.getReg())
: &AMDGPU::VReg_64RegClass;
const TargetRegisterClass *Src0SubRC =
TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
const TargetRegisterClass *Src1SubRC =
TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
.addReg(CarryReg, RegState::Define)
.add(SrcReg0Sub0)
.add(SrcReg1Sub0)
.addImm(0); // clamp bit
unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
MachineInstr *HiHalf =
BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
.addReg(DeadCarryReg, RegState::Define | RegState::Dead)
.add(SrcReg0Sub1)
.add(SrcReg1Sub1)
.addReg(CarryReg, RegState::Kill)
.addImm(0); // clamp bit
BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
.addReg(DestSub0)
.addImm(AMDGPU::sub0)
.addReg(DestSub1)
.addImm(AMDGPU::sub1);
TII->legalizeOperands(*LoHalf);
TII->legalizeOperands(*HiHalf);
MI.eraseFromParent();
return BB;
}
case AMDGPU::S_ADD_CO_PSEUDO:
case AMDGPU::S_SUB_CO_PSEUDO: {
// This pseudo has a chance to be selected
// only from uniform add/subcarry node. All the VGPR operands
// therefore assumed to be splat vectors.
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
MachineBasicBlock::iterator MII = MI;
const DebugLoc &DL = MI.getDebugLoc();
MachineOperand &Dest = MI.getOperand(0);
MachineOperand &CarryDest = MI.getOperand(1);
MachineOperand &Src0 = MI.getOperand(2);
MachineOperand &Src1 = MI.getOperand(3);
MachineOperand &Src2 = MI.getOperand(4);
unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
? AMDGPU::S_ADDC_U32
: AMDGPU::S_SUBB_U32;
if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
.addReg(Src0.getReg());
Src0.setReg(RegOp0);
}
if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
.addReg(Src1.getReg());
Src1.setReg(RegOp1);
}
Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
if (TRI->isVectorRegister(MRI, Src2.getReg())) {
BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
.addReg(Src2.getReg());
Src2.setReg(RegOp2);
}
const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
assert(WaveSize == 64 || WaveSize == 32);
if (WaveSize == 64) {
if (ST.hasScalarCompareEq64()) {
BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
.addReg(Src2.getReg())
.addImm(0);
} else {
const TargetRegisterClass *SubRC =
TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0);
MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
.add(Src2Sub0)
.add(Src2Sub1);
BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
.addReg(Src2_32, RegState::Kill)
.addImm(0);
}
} else {
BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
.addReg(Src2.getReg())
.addImm(0);
}
BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
unsigned SelOpc =
(WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
.addImm(-1)
.addImm(0);
MI.eraseFromParent();
return BB;
}
case AMDGPU::SI_INIT_M0: {
BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.add(MI.getOperand(0));
MI.eraseFromParent();
return BB;
}
case AMDGPU::GET_GROUPSTATICSIZE: {
assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
DebugLoc DL = MI.getDebugLoc();
BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
.add(MI.getOperand(0))
.addImm(MFI->getLDSSize());
MI.eraseFromParent();
return BB;
}
case AMDGPU::GET_SHADERCYCLESHILO: {
assert(MF->getSubtarget<GCNSubtarget>().hasShaderCyclesHiLoRegisters());
MachineRegisterInfo &MRI = MF->getRegInfo();
const DebugLoc &DL = MI.getDebugLoc();
// The algorithm is:
//
// hi1 = getreg(SHADER_CYCLES_HI)
// lo1 = getreg(SHADER_CYCLES_LO)
// hi2 = getreg(SHADER_CYCLES_HI)
//
// If hi1 == hi2 then there was no overflow and the result is hi2:lo1.
// Otherwise there was overflow and the result is hi2:0. In both cases the
// result should represent the actual time at some point during the sequence
// of three getregs.
using namespace AMDGPU::Hwreg;
Register RegHi1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi1)
.addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32));
Register RegLo1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegLo1)
.addImm(HwregEncoding::encode(ID_SHADER_CYCLES, 0, 32));
Register RegHi2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi2)
.addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32));
BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CMP_EQ_U32))
.addReg(RegHi1)
.addReg(RegHi2);
Register RegLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B32), RegLo)
.addReg(RegLo1)
.addImm(0);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE))
.add(MI.getOperand(0))
.addReg(RegLo)
.addImm(AMDGPU::sub0)
.addReg(RegHi2)
.addImm(AMDGPU::sub1);
MI.eraseFromParent();
return BB;
}
case AMDGPU::SI_INDIRECT_SRC_V1:
case AMDGPU::SI_INDIRECT_SRC_V2:
case AMDGPU::SI_INDIRECT_SRC_V4:
case AMDGPU::SI_INDIRECT_SRC_V8:
case AMDGPU::SI_INDIRECT_SRC_V9:
case AMDGPU::SI_INDIRECT_SRC_V10:
case AMDGPU::SI_INDIRECT_SRC_V11:
case AMDGPU::SI_INDIRECT_SRC_V12:
case AMDGPU::SI_INDIRECT_SRC_V16:
case AMDGPU::SI_INDIRECT_SRC_V32:
return emitIndirectSrc(MI, *BB, *getSubtarget());
case AMDGPU::SI_INDIRECT_DST_V1:
case AMDGPU::SI_INDIRECT_DST_V2:
case AMDGPU::SI_INDIRECT_DST_V4:
case AMDGPU::SI_INDIRECT_DST_V8:
case AMDGPU::SI_INDIRECT_DST_V9:
case AMDGPU::SI_INDIRECT_DST_V10:
case AMDGPU::SI_INDIRECT_DST_V11:
case AMDGPU::SI_INDIRECT_DST_V12:
case AMDGPU::SI_INDIRECT_DST_V16:
case AMDGPU::SI_INDIRECT_DST_V32:
return emitIndirectDst(MI, *BB, *getSubtarget());
case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
case AMDGPU::SI_KILL_I1_PSEUDO:
return splitKillBlock(MI, BB);
case AMDGPU::V_CNDMASK_B64_PSEUDO: {
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
Register Dst = MI.getOperand(0).getReg();
const MachineOperand &Src0 = MI.getOperand(1);
const MachineOperand &Src1 = MI.getOperand(2);
const DebugLoc &DL = MI.getDebugLoc();
Register SrcCond = MI.getOperand(3).getReg();
Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
const TargetRegisterClass *Src0RC = Src0.isReg()
? MRI.getRegClass(Src0.getReg())
: &AMDGPU::VReg_64RegClass;
const TargetRegisterClass *Src1RC = Src1.isReg()
? MRI.getRegClass(Src1.getReg())
: &AMDGPU::VReg_64RegClass;
const TargetRegisterClass *Src0SubRC =
TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
const TargetRegisterClass *Src1SubRC =
TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
.addReg(SrcCond);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
.addImm(0)
.add(Src0Sub0)
.addImm(0)
.add(Src1Sub0)
.addReg(SrcCondCopy);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
.addImm(0)
.add(Src0Sub1)
.addImm(0)
.add(Src1Sub1)
.addReg(SrcCondCopy);
BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
.addReg(DstLo)
.addImm(AMDGPU::sub0)
.addReg(DstHi)
.addImm(AMDGPU::sub1);
MI.eraseFromParent();
return BB;
}
case AMDGPU::SI_BR_UNDEF: {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
const DebugLoc &DL = MI.getDebugLoc();
MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
.add(MI.getOperand(0));
Br->getOperand(1).setIsUndef(); // read undef SCC
MI.eraseFromParent();
return BB;
}
case AMDGPU::ADJCALLSTACKUP:
case AMDGPU::ADJCALLSTACKDOWN: {
const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
MachineInstrBuilder MIB(*MF, &MI);
MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
.addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
return BB;
}
case AMDGPU::SI_CALL_ISEL: {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
const DebugLoc &DL = MI.getDebugLoc();
unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
MachineInstrBuilder MIB;
MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
for (const MachineOperand &MO : MI.operands())
MIB.add(MO);
MIB.cloneMemRefs(MI);
MI.eraseFromParent();
return BB;
}
case AMDGPU::V_ADD_CO_U32_e32:
case AMDGPU::V_SUB_CO_U32_e32:
case AMDGPU::V_SUBREV_CO_U32_e32: {
// TODO: Define distinct V_*_I32_Pseudo instructions instead.
const DebugLoc &DL = MI.getDebugLoc();
unsigned Opc = MI.getOpcode();
bool NeedClampOperand = false;
if (TII->pseudoToMCOpcode(Opc) == -1) {
Opc = AMDGPU::getVOPe64(Opc);
NeedClampOperand = true;
}
auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
if (TII->isVOP3(*I)) {
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
I.addReg(TRI->getVCC(), RegState::Define);
}
I.add(MI.getOperand(1))
.add(MI.getOperand(2));
if (NeedClampOperand)
I.addImm(0); // clamp bit for e64 encoding
TII->legalizeOperands(*I);
MI.eraseFromParent();
return BB;
}
case AMDGPU::V_ADDC_U32_e32:
case AMDGPU::V_SUBB_U32_e32:
case AMDGPU::V_SUBBREV_U32_e32:
// These instructions have an implicit use of vcc which counts towards the
// constant bus limit.
TII->legalizeOperands(MI);
return BB;
case AMDGPU::DS_GWS_INIT:
case AMDGPU::DS_GWS_SEMA_BR:
case AMDGPU::DS_GWS_BARRIER:
TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0);
[[fallthrough]];
case AMDGPU::DS_GWS_SEMA_V:
case AMDGPU::DS_GWS_SEMA_P:
case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
// A s_waitcnt 0 is required to be the instruction immediately following.
if (getSubtarget()->hasGWSAutoReplay()) {
bundleInstWithWaitcnt(MI);
return BB;
}
return emitGWSMemViolTestLoop(MI, BB);
case AMDGPU::S_SETREG_B32: {
// Try to optimize cases that only set the denormal mode or rounding mode.
//
// If the s_setreg_b32 fully sets all of the bits in the rounding mode or
// denormal mode to a constant, we can use s_round_mode or s_denorm_mode
// instead.
//
// FIXME: This could be predicates on the immediate, but tablegen doesn't
// allow you to have a no side effect instruction in the output of a
// sideeffecting pattern.
auto [ID, Offset, Width] =
AMDGPU::Hwreg::HwregEncoding::decode(MI.getOperand(1).getImm());
if (ID != AMDGPU::Hwreg::ID_MODE)
return BB;
const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
const unsigned SetMask = WidthMask << Offset;
if (getSubtarget()->hasDenormModeInst()) {
unsigned SetDenormOp = 0;
unsigned SetRoundOp = 0;
// The dedicated instructions can only set the whole denorm or round mode
// at once, not a subset of bits in either.
if (SetMask ==
(AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
// If this fully sets both the round and denorm mode, emit the two
// dedicated instructions for these.
SetRoundOp = AMDGPU::S_ROUND_MODE;
SetDenormOp = AMDGPU::S_DENORM_MODE;
} else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
SetRoundOp = AMDGPU::S_ROUND_MODE;
} else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
SetDenormOp = AMDGPU::S_DENORM_MODE;
}
if (SetRoundOp || SetDenormOp) {
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
unsigned ImmVal = Def->getOperand(1).getImm();
if (SetRoundOp) {
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
.addImm(ImmVal & 0xf);
// If we also have the denorm mode, get just the denorm mode bits.
ImmVal >>= 4;
}
if (SetDenormOp) {
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
.addImm(ImmVal & 0xf);
}
MI.eraseFromParent();
return BB;
}
}
}
// If only FP bits are touched, used the no side effects pseudo.
if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
return BB;
}
case AMDGPU::S_INVERSE_BALLOT_U32:
case AMDGPU::S_INVERSE_BALLOT_U64: {
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
const DebugLoc &DL = MI.getDebugLoc();
const Register DstReg = MI.getOperand(0).getReg();
Register MaskReg = MI.getOperand(1).getReg();
const bool IsVALU = TRI->isVectorRegister(MRI, MaskReg);
if (IsVALU) {
MaskReg = TII->readlaneVGPRToSGPR(MaskReg, MI, MRI);
}
BuildMI(*BB, &MI, DL, TII->get(AMDGPU::COPY), DstReg).addReg(MaskReg);
MI.eraseFromParent();
return BB;
}
case AMDGPU::ENDPGM_TRAP: {
const DebugLoc &DL = MI.getDebugLoc();
if (BB->succ_empty() && std::next(MI.getIterator()) == BB->end()) {
MI.setDesc(TII->get(AMDGPU::S_ENDPGM));
MI.addOperand(MachineOperand::CreateImm(0));
return BB;
}
// We need a block split to make the real endpgm a terminator. We also don't
// want to break phis in successor blocks, so we can't just delete to the
// end of the block.
MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
MF->push_back(TrapBB);
BuildMI(*TrapBB, TrapBB->end(), DL, TII->get(AMDGPU::S_ENDPGM))
.addImm(0);
BuildMI(*BB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addMBB(TrapBB);
BB->addSuccessor(TrapBB);
MI.eraseFromParent();
return SplitBB;
}
default:
if (TII->isImage(MI) || TII->isMUBUF(MI)) {
if (!MI.mayStore())
AddMemOpInit(MI);
return BB;
}
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
}
}
bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
// This currently forces unfolding various combinations of fsub into fma with
// free fneg'd operands. As long as we have fast FMA (controlled by
// isFMAFasterThanFMulAndFAdd), we should perform these.
// When fma is quarter rate, for f64 where add / sub are at best half rate,
// most of these combines appear to be cycle neutral but save on instruction
// count / code size.
return true;
}
bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; }
EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
EVT VT) const {
if (!VT.isVector()) {
return MVT::i1;
}
return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
}
MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
// TODO: Should i16 be used always if legal? For now it would force VALU
// shifts.
return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
}
LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
? Ty.changeElementSize(16)
: Ty.changeElementSize(32);
}
// Answering this is somewhat tricky and depends on the specific device which
// have different rates for fma or all f64 operations.
//
// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
// regardless of which device (although the number of cycles differs between
// devices), so it is always profitable for f64.
//
// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
// only on full rate devices. Normally, we should prefer selecting v_mad_f32
// which we can always do even without fused FP ops since it returns the same
// result as the separate operations and since it is always full
// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
// however does not support denormals, so we do report fma as faster if we have
// a fast fma device and require denormals.
//
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT VT) const {
VT = VT.getScalarType();
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32: {
// If mad is not available this depends only on if f32 fma is full rate.
if (!Subtarget->hasMadMacF32Insts())
return Subtarget->hasFastFMAF32();
// Otherwise f32 mad is always full rate and returns the same result as
// the separate operations so should be preferred over fma.
// However does not support denormals.
if (!denormalModeIsFlushAllF32(MF))
return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
// If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
}
case MVT::f64:
return true;
case MVT::f16:
return Subtarget->has16BitInsts() && !denormalModeIsFlushAllF64F16(MF);
default:
break;
}
return false;
}
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
LLT Ty) const {
switch (Ty.getScalarSizeInBits()) {
case 16:
return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
case 32:
return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
case 64:
return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
default:
break;
}
return false;
}
bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const {
if (!Ty.isScalar())
return false;
if (Ty.getScalarSizeInBits() == 16)
return Subtarget->hasMadF16() && denormalModeIsFlushAllF64F16(*MI.getMF());
if (Ty.getScalarSizeInBits() == 32)
return Subtarget->hasMadMacF32Insts() &&
denormalModeIsFlushAllF32(*MI.getMF());
return false;
}
bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
const SDNode *N) const {
// TODO: Check future ftz flag
// v_mad_f32/v_mac_f32 do not support denormals.
EVT VT = N->getValueType(0);
if (VT == MVT::f32)
return Subtarget->hasMadMacF32Insts() &&
denormalModeIsFlushAllF32(DAG.getMachineFunction());
if (VT == MVT::f16) {
return Subtarget->hasMadF16() &&
denormalModeIsFlushAllF64F16(DAG.getMachineFunction());
}
return false;
}
//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//
// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
// wider vector type is legal.
SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
SelectionDAG &DAG) const {
unsigned Opc = Op.getOpcode();
EVT VT = Op.getValueType();
assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16);
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
SDLoc SL(Op);
SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
Op->getFlags());
SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
Op->getFlags());
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
}
// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
// wider vector type is legal.
SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
SelectionDAG &DAG) const {
unsigned Opc = Op.getOpcode();
EVT VT = Op.getValueType();
assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16);
SDValue Lo0, Hi0;
std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
SDValue Lo1, Hi1;
std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
SDLoc SL(Op);
SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
Op->getFlags());
SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
Op->getFlags());
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
}
SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
SelectionDAG &DAG) const {
unsigned Opc = Op.getOpcode();
EVT VT = Op.getValueType();
assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||
VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
VT == MVT::v32f32 || VT == MVT::v32f16 || VT == MVT::v32i16 ||
VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v16bf16 ||
VT == MVT::v32bf16);
SDValue Lo0, Hi0;
SDValue Op0 = Op.getOperand(0);
std::tie(Lo0, Hi0) = Op0.getValueType().isVector()
? DAG.SplitVectorOperand(Op.getNode(), 0)
: std::pair(Op0, Op0);
SDValue Lo1, Hi1;
std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
SDValue Lo2, Hi2;
std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
SDLoc SL(Op);
auto ResVT = DAG.GetSplitDestVTs(VT);
SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2,
Op->getFlags());
SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2,
Op->getFlags());
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
}
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::LOAD: {
SDValue Result = LowerLOAD(Op, DAG);
assert((!Result.getNode() ||
Result.getNode()->getNumValues() == 2) &&
"Load should return a value and a chain");
return Result;
}
case ISD::FSQRT: {
EVT VT = Op.getValueType();
if (VT == MVT::f32)
return lowerFSQRTF32(Op, DAG);
if (VT == MVT::f64)
return lowerFSQRTF64(Op, DAG);
return SDValue();
}
case ISD::FSIN:
case ISD::FCOS:
return LowerTrig(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::FDIV: return LowerFDIV(Op, DAG);
case ISD::FFREXP: return LowerFFREXP(Op, DAG);
case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::GlobalAddress: {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
return LowerGlobalAddress(MFI, Op, DAG);
}
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
case ISD::INSERT_SUBVECTOR:
return lowerINSERT_SUBVECTOR(Op, DAG);
case ISD::INSERT_VECTOR_ELT:
return lowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT:
return lowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::VECTOR_SHUFFLE:
return lowerVECTOR_SHUFFLE(Op, DAG);
case ISD::SCALAR_TO_VECTOR:
return lowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::BUILD_VECTOR:
return lowerBUILD_VECTOR(Op, DAG);
case ISD::FP_ROUND:
case ISD::STRICT_FP_ROUND:
return lowerFP_ROUND(Op, DAG);
case ISD::FPTRUNC_ROUND: {
unsigned Opc;
SDLoc DL(Op);
if (Op.getOperand(0)->getValueType(0) != MVT::f32)
return SDValue();
// Get the rounding mode from the last operand
int RoundMode = Op.getConstantOperandVal(1);
if (RoundMode == (int)RoundingMode::TowardPositive)
Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD;
else if (RoundMode == (int)RoundingMode::TowardNegative)
Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD;
else
return SDValue();
return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0));
}
case ISD::TRAP:
return lowerTRAP(Op, DAG);
case ISD::DEBUGTRAP:
return lowerDEBUGTRAP(Op, DAG);
case ISD::FABS:
case ISD::FNEG:
case ISD::FCANONICALIZE:
case ISD::BSWAP:
return splitUnaryVectorOp(Op, DAG);
case ISD::FMINNUM:
case ISD::FMAXNUM:
return lowerFMINNUM_FMAXNUM(Op, DAG);
case ISD::FLDEXP:
case ISD::STRICT_FLDEXP:
return lowerFLDEXP(Op, DAG);
case ISD::FMA:
return splitTernaryVectorOp(Op, DAG);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
return LowerFP_TO_INT(Op, DAG);
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ADD:
case ISD::SUB:
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX:
case ISD::FADD:
case ISD::FMUL:
case ISD::FMINNUM_IEEE:
case ISD::FMAXNUM_IEEE:
case ISD::UADDSAT:
case ISD::USUBSAT:
case ISD::SADDSAT:
case ISD::SSUBSAT:
return splitBinaryVectorOp(Op, DAG);
case ISD::MUL:
return lowerMUL(Op, DAG);
case ISD::SMULO:
case ISD::UMULO:
return lowerXMULO(Op, DAG);
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI:
return lowerXMUL_LOHI(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::STACKSAVE:
return LowerSTACKSAVE(Op, DAG);
case ISD::GET_ROUNDING:
return lowerGET_ROUNDING(Op, DAG);
case ISD::PREFETCH:
return lowerPREFETCH(Op, DAG);
case ISD::FP_EXTEND:
case ISD::STRICT_FP_EXTEND:
return lowerFP_EXTEND(Op, DAG);
case ISD::GET_FPENV:
return lowerGET_FPENV(Op, DAG);
case ISD::SET_FPENV:
return lowerSET_FPENV(Op, DAG);
}
return SDValue();
}
// Used for D16: Casts the result of an instruction into the right vector,
// packs values if loads return unpacked values.
static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
const SDLoc &DL,
SelectionDAG &DAG, bool Unpacked) {
if (!LoadVT.isVector())
return Result;
// Cast back to the original packed type or to a larger type that is a
// multiple of 32 bit for D16. Widening the return type is a required for
// legalization.
EVT FittingLoadVT = LoadVT;
if ((LoadVT.getVectorNumElements() % 2) == 1) {
FittingLoadVT =
EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
LoadVT.getVectorNumElements() + 1);
}
if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
// Truncate to v2i16/v4i16.
EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
// Workaround legalizer not scalarizing truncate after vector op
// legalization but not creating intermediate vector trunc.
SmallVector<SDValue, 4> Elts;
DAG.ExtractVectorElements(Result, Elts);
for (SDValue &Elt : Elts)
Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
// Pad illegal v1i16/v3fi6 to v4i16
if ((LoadVT.getVectorNumElements() % 2) == 1)
Elts.push_back(DAG.getUNDEF(MVT::i16));
Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
// Bitcast to original type (v2f16/v4f16).
return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
}
// Cast back to the original packed type.
return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
}
SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
MemSDNode *M,
SelectionDAG &DAG,
ArrayRef<SDValue> Ops,
bool IsIntrinsic) const {
SDLoc DL(M);
bool Unpacked = Subtarget->hasUnpackedD16VMem();
EVT LoadVT = M->getValueType(0);
EVT EquivLoadVT = LoadVT;
if (LoadVT.isVector()) {
if (Unpacked) {
EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
LoadVT.getVectorNumElements());
} else if ((LoadVT.getVectorNumElements() % 2) == 1) {
// Widen v3f16 to legal type
EquivLoadVT =
EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
LoadVT.getVectorNumElements() + 1);
}
}
// Change from v4f16/v2f16 to EquivLoadVT.
SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
SDValue Load
= DAG.getMemIntrinsicNode(
IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
VTList, Ops, M->getMemoryVT(),
M->getMemOperand());
SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
}
SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
SelectionDAG &DAG,
ArrayRef<SDValue> Ops) const {
SDLoc DL(M);
EVT LoadVT = M->getValueType(0);
EVT EltType = LoadVT.getScalarType();
EVT IntVT = LoadVT.changeTypeToInteger();
bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
assert(M->getNumValues() == 2 || M->getNumValues() == 3);
bool IsTFE = M->getNumValues() == 3;
unsigned Opc;
if (IsFormat) {
Opc = IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE
: AMDGPUISD::BUFFER_LOAD_FORMAT;
} else {
// TODO: Support non-format TFE loads.
if (IsTFE)
return SDValue();
Opc = AMDGPUISD::BUFFER_LOAD;
}
if (IsD16) {
return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
}
// Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M->getMemOperand());
if (isTypeLegal(LoadVT)) {
return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
M->getMemOperand(), DAG);
}
EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
M->getMemOperand(), DAG);
return DAG.getMergeValues(
{DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
DL);
}
static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
unsigned CondCode = N->getConstantOperandVal(3);
if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
return DAG.getUNDEF(VT);
ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
SDLoc DL(N);
EVT CmpVT = LHS.getValueType();
if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
}
ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
DAG.getCondCode(CCOpcode));
if (VT.bitsEq(CCVT))
return SetCC;
return DAG.getZExtOrTrunc(SetCC, DL, VT);
}
static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
unsigned CondCode = N->getConstantOperandVal(3);
if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
return DAG.getUNDEF(VT);
SDValue Src0 = N->getOperand(1);
SDValue Src1 = N->getOperand(2);
EVT CmpVT = Src0.getValueType();
SDLoc SL(N);
if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
}
FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
Src1, DAG.getCondCode(CCOpcode));
if (VT.bitsEq(CCVT))
return SetCC;
return DAG.getZExtOrTrunc(SetCC, SL, VT);
}
static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
SDValue Src = N->getOperand(1);
SDLoc SL(N);
if (Src.getOpcode() == ISD::SETCC) {
// (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
Src.getOperand(1), Src.getOperand(2));
}
if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
// (ballot 0) -> 0
if (Arg->isZero())
return DAG.getConstant(0, SL, VT);
// (ballot 1) -> EXEC/EXEC_LO
if (Arg->isOne()) {
Register Exec;
if (VT.getScalarSizeInBits() == 32)
Exec = AMDGPU::EXEC_LO;
else if (VT.getScalarSizeInBits() == 64)
Exec = AMDGPU::EXEC;
else
return SDValue();
return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
}
}
// (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
// ISD::SETNE)
return DAG.getNode(
AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
}
void SITargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
switch (N->getOpcode()) {
case ISD::INSERT_VECTOR_ELT: {
if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
Results.push_back(Res);
return;
}
case ISD::EXTRACT_VECTOR_ELT: {
if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
Results.push_back(Res);
return;
}
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IID = N->getConstantOperandVal(0);
switch (IID) {
case Intrinsic::amdgcn_make_buffer_rsrc:
Results.push_back(lowerPointerAsRsrcIntrin(N, DAG));
return;
case Intrinsic::amdgcn_cvt_pkrtz: {
SDValue Src0 = N->getOperand(1);
SDValue Src1 = N->getOperand(2);
SDLoc SL(N);
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
Src0, Src1);
Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
return;
}
case Intrinsic::amdgcn_cvt_pknorm_i16:
case Intrinsic::amdgcn_cvt_pknorm_u16:
case Intrinsic::amdgcn_cvt_pk_i16:
case Intrinsic::amdgcn_cvt_pk_u16: {
SDValue Src0 = N->getOperand(1);
SDValue Src1 = N->getOperand(2);
SDLoc SL(N);
unsigned Opcode;
if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
Opcode = AMDGPUISD::CVT_PK_I16_I32;
else
Opcode = AMDGPUISD::CVT_PK_U16_U32;
EVT VT = N->getValueType(0);
if (isTypeLegal(VT))
Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
else {
SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
}
return;
}
case Intrinsic::amdgcn_s_buffer_load: {
// Lower llvm.amdgcn.s.buffer.load.(i8, u8) intrinsics. First, we generate
// s_buffer_load_u8 for signed and unsigned load instructions. Next, DAG
// combiner tries to merge the s_buffer_load_u8 with a sext instruction
// (performSignExtendInRegCombine()) and it replaces s_buffer_load_u8 with
// s_buffer_load_i8.
if (!Subtarget->hasScalarSubwordLoads())
return;
SDValue Op = SDValue(N, 0);
SDValue Rsrc = Op.getOperand(1);
SDValue Offset = Op.getOperand(2);
SDValue CachePolicy = Op.getOperand(3);
EVT VT = Op.getValueType();
assert(VT == MVT::i8 && "Expected 8-bit s_buffer_load intrinsics.\n");
SDLoc DL(Op);
MachineFunction &MF = DAG.getMachineFunction();
const DataLayout &DataLayout = DAG.getDataLayout();
Align Alignment =
DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant,
VT.getStoreSize(), Alignment);
SDValue LoadVal;
if (!Offset->isDivergent()) {
SDValue Ops[] = {Rsrc, // source register
Offset, CachePolicy};
SDValue BufferLoad =
DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD_UBYTE, DL,
DAG.getVTList(MVT::i32), Ops, VT, MMO);
LoadVal = DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad);
} else {
SDValue Ops[] = {
DAG.getEntryNode(), // Chain
Rsrc, // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
{}, // voffset
{}, // soffset
{}, // offset
CachePolicy, // cachepolicy
DAG.getTargetConstant(0, DL, MVT::i1), // idxen
};
setBufferOffsets(Offset, DAG, &Ops[3], Align(4));
LoadVal = handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO);
}
Results.push_back(LoadVal);
return;
}
}
break;
}
case ISD::INTRINSIC_W_CHAIN: {
if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
if (Res.getOpcode() == ISD::MERGE_VALUES) {
// FIXME: Hacky
for (unsigned I = 0; I < Res.getNumOperands(); I++) {
Results.push_back(Res.getOperand(I));
}
} else {
Results.push_back(Res);
Results.push_back(Res.getValue(1));
}
return;
}
break;
}
case ISD::SELECT: {
SDLoc SL(N);
EVT VT = N->getValueType(0);
EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
EVT SelectVT = NewVT;
if (NewVT.bitsLT(MVT::i32)) {
LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
SelectVT = MVT::i32;
}
SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
N->getOperand(0), LHS, RHS);
if (NewVT != SelectVT)
NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
return;
}
case ISD::FNEG: {
if (N->getValueType(0) != MVT::v2f16)
break;
SDLoc SL(N);
SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
BC,
DAG.getConstant(0x80008000, SL, MVT::i32));
Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
return;
}
case ISD::FABS: {
if (N->getValueType(0) != MVT::v2f16)
break;
SDLoc SL(N);
SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
BC,
DAG.getConstant(0x7fff7fff, SL, MVT::i32));
Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
return;
}
case ISD::FSQRT: {
if (N->getValueType(0) != MVT::f16)
break;
Results.push_back(lowerFSQRTF16(SDValue(N, 0), DAG));
break;
}
default:
AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
break;
}
}
/// Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {
SDNode *Parent = Value.getNode();
for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
I != E; ++I) {
if (I.getUse().get() != Value)
continue;
if (I->getOpcode() == Opcode)
return *I;
}
return nullptr;
}
unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
switch (Intr->getConstantOperandVal(1)) {
case Intrinsic::amdgcn_if:
return AMDGPUISD::IF;
case Intrinsic::amdgcn_else:
return AMDGPUISD::ELSE;
case Intrinsic::amdgcn_loop:
return AMDGPUISD::LOOP;
case Intrinsic::amdgcn_end_cf:
llvm_unreachable("should not occur");
default:
return 0;
}
}
// break, if_break, else_break are all only used as inputs to loop, not
// directly as branch conditions.
return 0;
}
bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
const Triple &TT = getTargetMachine().getTargetTriple();
return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
AMDGPU::shouldEmitConstantsToTextSection(TT);
}
bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS())
return false;
// FIXME: Either avoid relying on address space here or change the default
// address space for functions to avoid the explicit check.
return (GV->getValueType()->isFunctionTy() ||
!isNonGlobalAddrSpace(GV->getAddressSpace())) &&
!shouldEmitFixup(GV) && !getTargetMachine().shouldAssumeDSOLocal(GV);
}
bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
}
bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
if (!GV->hasExternalLinkage())
return true;
const auto OS = getTargetMachine().getTargetTriple().getOS();
return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
}
/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
SelectionDAG &DAG) const {
SDLoc DL(BRCOND);
SDNode *Intr = BRCOND.getOperand(1).getNode();
SDValue Target = BRCOND.getOperand(2);
SDNode *BR = nullptr;
SDNode *SetCC = nullptr;
if (Intr->getOpcode() == ISD::SETCC) {
// As long as we negate the condition everything is fine
SetCC = Intr;
Intr = SetCC->getOperand(0).getNode();
} else {
// Get the target from BR if we don't negate the condition
BR = findUser(BRCOND, ISD::BR);
assert(BR && "brcond missing unconditional branch user");
Target = BR->getOperand(1);
}
unsigned CFNode = isCFIntrinsic(Intr);
if (CFNode == 0) {
// This is a uniform branch so we don't need to legalize.
return BRCOND;
}
bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
assert(!SetCC ||
(SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
ISD::SETNE));
// operands of the new intrinsic call
SmallVector<SDValue, 4> Ops;
if (HaveChain)
Ops.push_back(BRCOND.getOperand(0));
Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
Ops.push_back(Target);
ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
// build the new intrinsic call
SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
if (!HaveChain) {
SDValue Ops[] = {
SDValue(Result, 0),
BRCOND.getOperand(0)
};
Result = DAG.getMergeValues(Ops, DL).getNode();
}
if (BR) {
// Give the branch instruction our target
SDValue Ops[] = {
BR->getOperand(0),
BRCOND.getOperand(2)
};
SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
}
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
// Copy the intrinsic results to registers
for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
if (!CopyToReg)
continue;
Chain = DAG.getCopyToReg(
Chain, DL,
CopyToReg->getOperand(1),
SDValue(Result, i - 1),
SDValue());
DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
}
// Remove the old intrinsic from the chain
DAG.ReplaceAllUsesOfValueWith(
SDValue(Intr, Intr->getNumValues() - 1),
Intr->getOperand(0));
return Chain;
}
SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MVT VT = Op.getSimpleValueType();
SDLoc DL(Op);
// Checking the depth
if (Op.getConstantOperandVal(0) != 0)
return DAG.getConstant(0, DL, VT);
MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
// Check for kernel and shader functions
if (Info->isEntryFunction())
return DAG.getConstant(0, DL, VT);
MachineFrameInfo &MFI = MF.getFrameInfo();
// There is a call to @llvm.returnaddress in this function
MFI.setReturnAddressIsTaken(true);
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
// Get the return address reg and mark it as an implicit live-in
Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
}
SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
SDValue Op,
const SDLoc &DL,
EVT VT) const {
return Op.getValueType().bitsLE(VT) ?
DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
DAG.getTargetConstant(0, DL, MVT::i32));
}
SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::f16 &&
"Do not know how to custom lower FP_ROUND for non-f16 type");
SDValue Src = Op.getOperand(0);
EVT SrcVT = Src.getValueType();
if (SrcVT != MVT::f64)
return Op;
// TODO: Handle strictfp
if (Op.getOpcode() != ISD::FP_ROUND)
return Op;
SDLoc DL(Op);
SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
}
SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
const MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
bool IsIEEEMode = Info->getMode().IEEE;
// FIXME: Assert during selection that this is only selected for
// ieee_mode. Currently a combine can produce the ieee version for non-ieee
// mode functions, but this happens to be OK since it's only done in cases
// where there is known no sNaN.
if (IsIEEEMode)
return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 ||
VT == MVT::v16bf16)
return splitBinaryVectorOp(Op, DAG);
return Op;
}
SDValue SITargetLowering::lowerFLDEXP(SDValue Op, SelectionDAG &DAG) const {
bool IsStrict = Op.getOpcode() == ISD::STRICT_FLDEXP;
EVT VT = Op.getValueType();
assert(VT == MVT::f16);
SDValue Exp = Op.getOperand(IsStrict ? 2 : 1);
EVT ExpVT = Exp.getValueType();
if (ExpVT == MVT::i16)
return Op;
SDLoc DL(Op);
// Correct the exponent type for f16 to i16.
// Clamp the range of the exponent to the instruction's range.
// TODO: This should be a generic narrowing legalization, and can easily be
// for GlobalISel.
SDValue MinExp = DAG.getConstant(minIntN(16), DL, ExpVT);
SDValue ClampMin = DAG.getNode(ISD::SMAX, DL, ExpVT, Exp, MinExp);
SDValue MaxExp = DAG.getConstant(maxIntN(16), DL, ExpVT);
SDValue Clamp = DAG.getNode(ISD::SMIN, DL, ExpVT, ClampMin, MaxExp);
SDValue TruncExp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Clamp);
if (IsStrict) {
return DAG.getNode(ISD::STRICT_FLDEXP, DL, {VT, MVT::Other},
{Op.getOperand(0), Op.getOperand(1), TruncExp});
}
return DAG.getNode(ISD::FLDEXP, DL, VT, Op.getOperand(0), TruncExp);
}
// Custom lowering for vector multiplications and s_mul_u64.
SDValue SITargetLowering::lowerMUL(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
// Split vector operands.
if (VT.isVector())
return splitBinaryVectorOp(Op, DAG);
assert(VT == MVT::i64 && "The following code is a special for s_mul_u64");
// There are four ways to lower s_mul_u64:
//
// 1. If all the operands are uniform, then we lower it as it is.
//
// 2. If the operands are divergent, then we have to split s_mul_u64 in 32-bit
// multiplications because there is not a vector equivalent of s_mul_u64.
//
// 3. If the cost model decides that it is more efficient to use vector
// registers, then we have to split s_mul_u64 in 32-bit multiplications.
// This happens in splitScalarSMULU64() in SIInstrInfo.cpp .
//
// 4. If the cost model decides to use vector registers and both of the
// operands are zero-extended/sign-extended from 32-bits, then we split the
// s_mul_u64 in two 32-bit multiplications. The problem is that it is not
// possible to check if the operands are zero-extended or sign-extended in
// SIInstrInfo.cpp. For this reason, here, we replace s_mul_u64 with
// s_mul_u64_u32_pseudo if both operands are zero-extended and we replace
// s_mul_u64 with s_mul_i64_i32_pseudo if both operands are sign-extended.
// If the cost model decides that we have to use vector registers, then
// splitScalarSMulPseudo() (in SIInstrInfo.cpp) split s_mul_u64_u32/
// s_mul_i64_i32_pseudo in two vector multiplications. If the cost model
// decides that we should use scalar registers, then s_mul_u64_u32_pseudo/
// s_mul_i64_i32_pseudo is lowered as s_mul_u64 in expandPostRAPseudo() in
// SIInstrInfo.cpp .
if (Op->isDivergent())
return SDValue();
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
// If all the operands are zero-enteted to 32-bits, then we replace s_mul_u64
// with s_mul_u64_u32_pseudo. If all the operands are sign-extended to
// 32-bits, then we replace s_mul_u64 with s_mul_i64_i32_pseudo.
KnownBits Op0KnownBits = DAG.computeKnownBits(Op0);
unsigned Op0LeadingZeros = Op0KnownBits.countMinLeadingZeros();
KnownBits Op1KnownBits = DAG.computeKnownBits(Op1);
unsigned Op1LeadingZeros = Op1KnownBits.countMinLeadingZeros();
SDLoc SL(Op);
if (Op0LeadingZeros >= 32 && Op1LeadingZeros >= 32)
return SDValue(
DAG.getMachineNode(AMDGPU::S_MUL_U64_U32_PSEUDO, SL, VT, Op0, Op1), 0);
unsigned Op0SignBits = DAG.ComputeNumSignBits(Op0);
unsigned Op1SignBits = DAG.ComputeNumSignBits(Op1);
if (Op0SignBits >= 33 && Op1SignBits >= 33)
return SDValue(
DAG.getMachineNode(AMDGPU::S_MUL_I64_I32_PSEUDO, SL, VT, Op0, Op1), 0);
// If all the operands are uniform, then we lower s_mul_u64 as it is.
return Op;
}
SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
bool isSigned = Op.getOpcode() == ISD::SMULO;
if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
const APInt &C = RHSC->getAPIntValue();
// mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
if (C.isPowerOf2()) {
// smulo(x, signed_min) is same as umulo(x, signed_min).
bool UseArithShift = isSigned && !C.isMinSignedValue();
SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
SL, VT, Result, ShiftAmt),
LHS, ISD::SETNE);
return DAG.getMergeValues({ Result, Overflow }, SL);
}
}
SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
SL, VT, LHS, RHS);
SDValue Sign = isSigned
? DAG.getNode(ISD::SRA, SL, VT, Result,
DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
: DAG.getConstant(0, SL, VT);
SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
return DAG.getMergeValues({ Result, Overflow }, SL);
}
SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
if (Op->isDivergent()) {
// Select to V_MAD_[IU]64_[IU]32.
return Op;
}
if (Subtarget->hasSMulHi()) {
// Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
return SDValue();
}
// The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
// calculate the high part, so we might as well do the whole thing with
// V_MAD_[IU]64_[IU]32.
return Op;
}
SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
if (!Subtarget->isTrapHandlerEnabled() ||
Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
return lowerTrapEndpgm(Op, DAG);
return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG) :
lowerTrapHsaQueuePtr(Op, DAG);
}
SDValue SITargetLowering::lowerTrapEndpgm(
SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Chain = Op.getOperand(0);
return DAG.getNode(AMDGPUISD::ENDPGM_TRAP, SL, MVT::Other, Chain);
}
SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT,
const SDLoc &DL, Align Alignment, ImplicitParameter Param) const {
MachineFunction &MF = DAG.getMachineFunction();
uint64_t Offset = getImplicitParameterOffset(MF, Param);
SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset);
MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment,
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
}
SDValue SITargetLowering::lowerTrapHsaQueuePtr(
SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Chain = Op.getOperand(0);
SDValue QueuePtr;
// For code object version 5, QueuePtr is passed through implicit kernarg.
const Module *M = DAG.getMachineFunction().getFunction().getParent();
if (AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) {
QueuePtr =
loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR);
} else {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
Register UserSGPR = Info->getQueuePtrUserSGPR();
if (UserSGPR == AMDGPU::NoRegister) {
// We probably are in a function incorrectly marked with
// amdgpu-no-queue-ptr. This is undefined. We don't want to delete the
// trap, so just use a null pointer.
QueuePtr = DAG.getConstant(0, SL, MVT::i64);
} else {
QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR,
MVT::i64);
}
}
SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
QueuePtr, SDValue());
uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
SDValue Ops[] = {
ToReg,
DAG.getTargetConstant(TrapID, SL, MVT::i16),
SGPR01,
ToReg.getValue(1)
};
return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
}
SDValue SITargetLowering::lowerTrapHsa(
SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Chain = Op.getOperand(0);
uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
SDValue Ops[] = {
Chain,
DAG.getTargetConstant(TrapID, SL, MVT::i16)
};
return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
}
SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Chain = Op.getOperand(0);
MachineFunction &MF = DAG.getMachineFunction();
if (!Subtarget->isTrapHandlerEnabled() ||
Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
"debugtrap handler not supported",
Op.getDebugLoc(),
DS_Warning);
LLVMContext &Ctx = MF.getFunction().getContext();
Ctx.diagnose(NoTrap);
return Chain;
}
uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
SDValue Ops[] = {
Chain,
DAG.getTargetConstant(TrapID, SL, MVT::i16)
};
return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
}
SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
SelectionDAG &DAG) const {
if (Subtarget->hasApertureRegs()) {
const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS)
? AMDGPU::SRC_SHARED_BASE
: AMDGPU::SRC_PRIVATE_BASE;
// Note: this feature (register) is broken. When used as a 32-bit operand,
// it returns a wrong value (all zeroes?). The real value is in the upper 32
// bits.
//
// To work around the issue, directly emit a 64 bit mov from this register
// then extract the high bits. Note that this shouldn't even result in a
// shift being emitted and simply become a pair of registers (e.g.):
// s_mov_b64 s[6:7], src_shared_base
// v_mov_b32_e32 v1, s7
//
// FIXME: It would be more natural to emit a CopyFromReg here, but then copy
// coalescing would kick in and it would think it's okay to use the "HI"
// subregister directly (instead of extracting the HI 32 bits) which is an
// artificial (unusable) register.
// Register TableGen definitions would need an overhaul to get rid of the
// artificial "HI" aperture registers and prevent this kind of issue from
// happening.
SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64,
DAG.getRegister(ApertureRegNo, MVT::i64));
return DAG.getNode(
ISD::TRUNCATE, DL, MVT::i32,
DAG.getNode(ISD::SRL, DL, MVT::i64,
{SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)}));
}
// For code object version 5, private_base and shared_base are passed through
// implicit kernargs.
const Module *M = DAG.getMachineFunction().getFunction().getParent();
if (AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) {
ImplicitParameter Param =
(AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE;
return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param);
}
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
Register UserSGPR = Info->getQueuePtrUserSGPR();
if (UserSGPR == AMDGPU::NoRegister) {
// We probably are in a function incorrectly marked with
// amdgpu-no-queue-ptr. This is undefined.
return DAG.getUNDEF(MVT::i32);
}
SDValue QueuePtr = CreateLiveInRegister(
DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
// Offset into amd_queue_t for group_segment_aperture_base_hi /
// private_segment_aperture_base_hi.
uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
SDValue Ptr =
DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::getFixed(StructOffset));
// TODO: Use custom target PseudoSourceValue.
// TODO: We should use the value from the IR intrinsic call, but it might not
// be available and how do we get it?
MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
commonAlignment(Align(64), StructOffset),
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
}
/// Return true if the value is a known valid address, such that a null check is
/// not necessary.
static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG,
const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) ||
isa<BasicBlockSDNode>(Val))
return true;
if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
// TODO: Search through arithmetic, handle arguments and loads
// marked nonnull.
return false;
}
SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
const AMDGPUTargetMachine &TM =
static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
unsigned DestAS, SrcAS;
SDValue Src;
bool IsNonNull = false;
if (const auto *ASC = dyn_cast<AddrSpaceCastSDNode>(Op)) {
SrcAS = ASC->getSrcAddressSpace();
Src = ASC->getOperand(0);
DestAS = ASC->getDestAddressSpace();
} else {
assert(Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
Op.getConstantOperandVal(0) ==
Intrinsic::amdgcn_addrspacecast_nonnull);
Src = Op->getOperand(1);
SrcAS = Op->getConstantOperandVal(2);
DestAS = Op->getConstantOperandVal(3);
IsNonNull = true;
}
SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
// flat -> local/private
if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
if (IsNonNull || isKnownNonNull(Op, DAG, TM, SrcAS))
return Ptr;
unsigned NullVal = TM.getNullPointerValue(DestAS);
SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr,
SegmentNullPtr);
}
}
// local/private -> flat
if (DestAS == AMDGPUAS::FLAT_ADDRESS) {
if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
SDValue Aperture = getSegmentAperture(SrcAS, SL, DAG);
SDValue CvtPtr =
DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
if (IsNonNull || isKnownNonNull(Op, DAG, TM, SrcAS))
return CvtPtr;
unsigned NullVal = TM.getNullPointerValue(SrcAS);
SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
SDValue NonNull
= DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr,
FlatNullPtr);
}
}
if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
Op.getValueType() == MVT::i64) {
const SIMachineFunctionInfo *Info =
DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32);
SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi);
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
}
if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
Src.getValueType() == MVT::i64)
return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
// global <-> flat are no-ops and never emitted.
const MachineFunction &MF = DAG.getMachineFunction();
DiagnosticInfoUnsupported InvalidAddrSpaceCast(
MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
DAG.getContext()->diagnose(InvalidAddrSpaceCast);
return DAG.getUNDEF(Op->getValueType(0));
}
// This lowers an INSERT_SUBVECTOR by extracting the individual elements from
// the small vector and inserting them into the big vector. That is better than
// the default expansion of doing it via a stack slot. Even though the use of
// the stack slot would be optimized away afterwards, the stack slot itself
// remains.
SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDValue Vec = Op.getOperand(0);
SDValue Ins = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
EVT VecVT = Vec.getValueType();
EVT InsVT = Ins.getValueType();
EVT EltVT = VecVT.getVectorElementType();
unsigned InsNumElts = InsVT.getVectorNumElements();
unsigned IdxVal = Idx->getAsZExtVal();
SDLoc SL(Op);
if (EltVT.getScalarSizeInBits() == 16 && IdxVal % 2 == 0) {
// Insert 32-bit registers at a time.
assert(InsNumElts % 2 == 0 && "expect legal vector types");
unsigned VecNumElts = VecVT.getVectorNumElements();
EVT NewVecVT =
EVT::getVectorVT(*DAG.getContext(), MVT::i32, VecNumElts / 2);
EVT NewInsVT = InsNumElts == 2 ? MVT::i32
: EVT::getVectorVT(*DAG.getContext(),
MVT::i32, InsNumElts / 2);
Vec = DAG.getNode(ISD::BITCAST, SL, NewVecVT, Vec);
Ins = DAG.getNode(ISD::BITCAST, SL, NewInsVT, Ins);
for (unsigned I = 0; I != InsNumElts / 2; ++I) {
SDValue Elt;
if (InsNumElts == 2) {
Elt = Ins;
} else {
Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Ins,
DAG.getConstant(I, SL, MVT::i32));
}
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NewVecVT, Vec, Elt,
DAG.getConstant(IdxVal / 2 + I, SL, MVT::i32));
}
return DAG.getNode(ISD::BITCAST, SL, VecVT, Vec);
}
for (unsigned I = 0; I != InsNumElts; ++I) {
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
DAG.getConstant(I, SL, MVT::i32));
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
DAG.getConstant(IdxVal + I, SL, MVT::i32));
}
return Vec;
}
SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDValue Vec = Op.getOperand(0);
SDValue InsVal = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
EVT VecVT = Vec.getValueType();
EVT EltVT = VecVT.getVectorElementType();
unsigned VecSize = VecVT.getSizeInBits();
unsigned EltSize = EltVT.getSizeInBits();
SDLoc SL(Op);
// Specially handle the case of v4i16 with static indexing.
unsigned NumElts = VecVT.getVectorNumElements();
auto KIdx = dyn_cast<ConstantSDNode>(Idx);
if (NumElts == 4 && EltSize == 16 && KIdx) {
SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
DAG.getConstant(0, SL, MVT::i32));
SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
DAG.getConstant(1, SL, MVT::i32));
SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
unsigned Idx = KIdx->getZExtValue();
bool InsertLo = Idx < 2;
SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
InsertLo ? LoVec : HiVec,
DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
SDValue Concat = InsertLo ?
DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
}
// Static indexing does not lower to stack access, and hence there is no need
// for special custom lowering to avoid stack access.
if (isa<ConstantSDNode>(Idx))
return SDValue();
// Avoid stack access for dynamic indexing by custom lowering to
// v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits");
MVT IntVT = MVT::getIntegerVT(VecSize);
// Convert vector index to bit-index and get the required bit mask.
assert(isPowerOf2_32(EltSize));
const auto EltMask = maskTrailingOnes<uint64_t>(EltSize);
SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
DAG.getConstant(EltMask, SL, IntVT), ScaledIdx);
// 1. Create a congruent vector with the target value in each element.
SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
DAG.getSplatBuildVector(VecVT, SL, InsVal));
// 2. Mask off all other indicies except the required index within (1).
SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
// 3. Mask off the required index within the target vector.
SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
DAG.getNOT(SL, BFM, IntVT), BCVec);
// 4. Get (2) and (3) ORed into the target vector.
SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
}
SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
EVT ResultVT = Op.getValueType();
SDValue Vec = Op.getOperand(0);
SDValue Idx = Op.getOperand(1);
EVT VecVT = Vec.getValueType();
unsigned VecSize = VecVT.getSizeInBits();
EVT EltVT = VecVT.getVectorElementType();
DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
// Make sure we do any optimizations that will make it easier to fold
// source modifiers before obscuring it with bit operations.
// XXX - Why doesn't this get called when vector_shuffle is expanded?
if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
return Combined;
if (VecSize == 128 || VecSize == 256 || VecSize == 512) {
SDValue Lo, Hi;
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
if (VecSize == 128) {
SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec);
Lo = DAG.getBitcast(LoVT,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
DAG.getConstant(0, SL, MVT::i32)));
Hi = DAG.getBitcast(HiVT,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
DAG.getConstant(1, SL, MVT::i32)));
} else if (VecSize == 256) {
SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec);
SDValue Parts[4];
for (unsigned P = 0; P < 4; ++P) {
Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
DAG.getConstant(P, SL, MVT::i32));
}
Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
Parts[0], Parts[1]));
Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
Parts[2], Parts[3]));
} else {
assert(VecSize == 512);
SDValue V2 = DAG.getBitcast(MVT::v8i64, Vec);
SDValue Parts[8];
for (unsigned P = 0; P < 8; ++P) {
Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
DAG.getConstant(P, SL, MVT::i32));
}
Lo = DAG.getBitcast(LoVT,
DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64,
Parts[0], Parts[1], Parts[2], Parts[3]));
Hi = DAG.getBitcast(HiVT,
DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64,
Parts[4], Parts[5],Parts[6], Parts[7]));
}
EVT IdxVT = Idx.getValueType();
unsigned NElem = VecVT.getVectorNumElements();
assert(isPowerOf2_32(NElem));
SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT);
SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask);
SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx);
}
assert(VecSize <= 64);
MVT IntVT = MVT::getIntegerVT(VecSize);
// If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly.
SDValue VecBC = peekThroughBitcasts(Vec);
if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) {
SDValue Src = VecBC.getOperand(0);
Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src);
Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT);
}
unsigned EltSize = EltVT.getSizeInBits();
assert(isPowerOf2_32(EltSize));
SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
// Convert vector index to bit-index (* EltSize)
SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
if (ResultVT == MVT::f16 || ResultVT == MVT::bf16) {
SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
}
return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
}
static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
assert(Elt % 2 == 0);
return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
}
SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
EVT ResultVT = Op.getValueType();
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
EVT EltVT = PackVT.getVectorElementType();
int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
// vector_shuffle <0,1,6,7> lhs, rhs
// -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
//
// vector_shuffle <6,7,2,3> lhs, rhs
// -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
//
// vector_shuffle <6,7,0,1> lhs, rhs
// -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
// Avoid scalarizing when both halves are reading from consecutive elements.
SmallVector<SDValue, 4> Pieces;
for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
if (elementPairIsContiguous(SVN->getMask(), I)) {
const int Idx = SVN->getMaskElt(I);
int VecIdx = Idx < SrcNumElts ? 0 : 1;
int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
PackVT, SVN->getOperand(VecIdx),
DAG.getConstant(EltIdx, SL, MVT::i32));
Pieces.push_back(SubVec);
} else {
const int Idx0 = SVN->getMaskElt(I);
const int Idx1 = SVN->getMaskElt(I + 1);
int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
SDValue Vec0 = SVN->getOperand(VecIdx0);
SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
SDValue Vec1 = SVN->getOperand(VecIdx1);
SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
}
}
return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
}
SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDValue SVal = Op.getOperand(0);
EVT ResultVT = Op.getValueType();
EVT SValVT = SVal.getValueType();
SDValue UndefVal = DAG.getUNDEF(SValVT);
SDLoc SL(Op);
SmallVector<SDValue, 8> VElts;
VElts.push_back(SVal);
for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I)
VElts.push_back(UndefVal);
return DAG.getBuildVector(ResultVT, SL, VElts);
}
SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
EVT VT = Op.getValueType();
if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
VT.getVectorNumElements() / 2);
MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits());
// Turn into pair of packed build_vectors.
// TODO: Special case for constants that can be materialized with s_mov_b64.
SmallVector<SDValue, 4> LoOps, HiOps;
for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) {
LoOps.push_back(Op.getOperand(I));
HiOps.push_back(Op.getOperand(I + E));
}
SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps);
SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps);
SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo);
SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi);
SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL,
{ CastLo, CastHi });
return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
}
if (VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v16bf16) {
EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
VT.getVectorNumElements() / 4);
MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits());
SmallVector<SDValue, 4> Parts[4];
for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) {
for (unsigned P = 0; P < 4; ++P)
Parts[P].push_back(Op.getOperand(I + P * E));
}
SDValue Casts[4];
for (unsigned P = 0; P < 4; ++P) {
SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]);
Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec);
}
SDValue Blend =
DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts);
return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
}
if (VT == MVT::v32i16 || VT == MVT::v32f16 || VT == MVT::v32bf16) {
EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
VT.getVectorNumElements() / 8);
MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits());
SmallVector<SDValue, 8> Parts[8];
for (unsigned I = 0, E = VT.getVectorNumElements() / 8; I != E; ++I) {
for (unsigned P = 0; P < 8; ++P)
Parts[P].push_back(Op.getOperand(I + P * E));
}
SDValue Casts[8];
for (unsigned P = 0; P < 8; ++P) {
SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]);
Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec);
}
SDValue Blend =
DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 8), SL, Casts);
return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
}
assert(VT == MVT::v2f16 || VT == MVT::v2i16 || VT == MVT::v2bf16);
assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
// Avoid adding defined bits with the zero_extend.
if (Hi.isUndef()) {
Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
}
Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
DAG.getConstant(16, SL, MVT::i32));
if (Lo.isUndef())
return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
return DAG.getNode(ISD::BITCAST, SL, VT, Or);
}
bool
SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// OSes that use ELF REL relocations (instead of RELA) can only store a
// 32-bit addend in the instruction, so it is not safe to allow offset folding
// which can create arbitrary 64-bit addends. (This is only a problem for
// R_AMDGPU_*32_HI relocations since other relocation types are unaffected by
// the high 32 bits of the addend.)
//
// This should be kept in sync with how HasRelocationAddend is initialized in
// the constructor of ELFAMDGPUAsmBackend.
if (!Subtarget->isAmdHsaOS())
return false;
// We can fold offsets for anything that doesn't require a GOT relocation.
return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
!shouldEmitGOTReloc(GA->getGlobal());
}
static SDValue
buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
const SDLoc &DL, int64_t Offset, EVT PtrVT,
unsigned GAFlags = SIInstrInfo::MO_NONE) {
assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
// In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
// lowered to the following code sequence:
//
// For constant address space:
// s_getpc_b64 s[0:1]
// s_add_u32 s0, s0, $symbol
// s_addc_u32 s1, s1, 0
//
// s_getpc_b64 returns the address of the s_add_u32 instruction and then
// a fixup or relocation is emitted to replace $symbol with a literal
// constant, which is a pc-relative offset from the encoding of the $symbol
// operand to the global variable.
//
// For global address space:
// s_getpc_b64 s[0:1]
// s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
// s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
//
// s_getpc_b64 returns the address of the s_add_u32 instruction and then
// fixups or relocations are emitted to replace $symbol@*@lo and
// $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
// which is a 64-bit pc-relative offset from the encoding of the $symbol
// operand to the global variable.
SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags);
SDValue PtrHi;
if (GAFlags == SIInstrInfo::MO_NONE)
PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
else
PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags + 1);
return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
}
SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
SDLoc DL(GSD);
EVT PtrVT = Op.getValueType();
const GlobalValue *GV = GSD->getGlobal();
if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
shouldUseLDSConstAddress(GV)) ||
GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
GV->hasExternalLinkage()) {
Type *Ty = GV->getValueType();
// HIP uses an unsized array `extern __shared__ T s[]` or similar
// zero-sized type in other languages to declare the dynamic shared
// memory which size is not known at the compile time. They will be
// allocated by the runtime and placed directly after the static
// allocated ones. They all share the same offset.
if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
// Adjust alignment for that dynamic shared memory array.
Function &F = DAG.getMachineFunction().getFunction();
MFI->setDynLDSAlign(F, *cast<GlobalVariable>(GV));
MFI->setUsesDynamicLDS(true);
return SDValue(
DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
}
}
return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
}
if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
SIInstrInfo::MO_ABS32_LO);
return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
}
if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) {
SDValue AddrLo = DAG.getTargetGlobalAddress(
GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_LO);
AddrLo = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrLo), 0};
SDValue AddrHi = DAG.getTargetGlobalAddress(
GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_HI);
AddrHi = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrHi), 0};
return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, AddrLo, AddrHi);
}
if (shouldEmitFixup(GV))
return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
if (shouldEmitPCReloc(GV))
return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
SIInstrInfo::MO_REL32);
SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
SIInstrInfo::MO_GOTPCREL32);
Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
const DataLayout &DataLayout = DAG.getDataLayout();
Align Alignment = DataLayout.getABITypeAlign(PtrTy);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getGOT(DAG.getMachineFunction());
return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
}
SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
const SDLoc &DL, SDValue V) const {
// We can't use S_MOV_B32 directly, because there is no way to specify m0 as
// the destination register.
//
// We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
// so we will end up with redundant moves to m0.
//
// We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
// A Null SDValue creates a glue result.
SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
V, Chain);
return SDValue(M0, 0);
}
SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
SDValue Op,
MVT VT,
unsigned Offset) const {
SDLoc SL(Op);
SDValue Param = lowerKernargMemParameter(
DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
// The local size values will have the hi 16-bits as zero.
return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
DAG.getValueType(VT));
}
static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
EVT VT) {
DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
"non-hsa intrinsic with hsa target",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
EVT VT) {
DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
"intrinsic not supported on subtarget",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
ArrayRef<SDValue> Elts) {
assert(!Elts.empty());
MVT Type;
unsigned NumElts = Elts.size();
if (NumElts <= 12) {
Type = MVT::getVectorVT(MVT::f32, NumElts);
} else {
assert(Elts.size() <= 16);
Type = MVT::v16f32;
NumElts = 16;
}
SmallVector<SDValue, 16> VecElts(NumElts);
for (unsigned i = 0; i < Elts.size(); ++i) {
SDValue Elt = Elts[i];
if (Elt.getValueType() != MVT::f32)
Elt = DAG.getBitcast(MVT::f32, Elt);
VecElts[i] = Elt;
}
for (unsigned i = Elts.size(); i < NumElts; ++i)
VecElts[i] = DAG.getUNDEF(MVT::f32);
if (NumElts == 1)
return VecElts[0];
return DAG.getBuildVector(Type, DL, VecElts);
}
static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
SDValue Src, int ExtraElts) {
EVT SrcVT = Src.getValueType();
SmallVector<SDValue, 8> Elts;
if (SrcVT.isVector())
DAG.ExtractVectorElements(Src, Elts);
else
Elts.push_back(Src);
SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
while (ExtraElts--)
Elts.push_back(Undef);
return DAG.getBuildVector(CastVT, DL, Elts);
}
// Re-construct the required return value for a image load intrinsic.
// This is more complicated due to the optional use TexFailCtrl which means the required
// return type is an aggregate
static SDValue constructRetValue(SelectionDAG &DAG, MachineSDNode *Result,
ArrayRef<EVT> ResultTypes, bool IsTexFail,
bool Unpacked, bool IsD16, int DMaskPop,
int NumVDataDwords, bool IsAtomicPacked16Bit,
const SDLoc &DL) {
// Determine the required return type. This is the same regardless of IsTexFail flag
EVT ReqRetVT = ResultTypes[0];
int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
int NumDataDwords = ((IsD16 && !Unpacked) || IsAtomicPacked16Bit)
? (ReqRetNumElts + 1) / 2
: ReqRetNumElts;
int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
DMaskPop : (DMaskPop + 1) / 2;
MVT DataDwordVT = NumDataDwords == 1 ?
MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
MVT MaskPopVT = MaskPopDwords == 1 ?
MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
SDValue Data(Result, 0);
SDValue TexFail;
if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
if (MaskPopVT.isVector()) {
Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
SDValue(Result, 0), ZeroIdx);
} else {
Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
SDValue(Result, 0), ZeroIdx);
}
}
if (DataDwordVT.isVector() && !IsAtomicPacked16Bit)
Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
NumDataDwords - MaskPopDwords);
if (IsD16)
Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
EVT LegalReqRetVT = ReqRetVT;
if (!ReqRetVT.isVector()) {
if (!Data.getValueType().isInteger())
Data = DAG.getNode(ISD::BITCAST, DL,
Data.getValueType().changeTypeToInteger(), Data);
Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
} else {
// We need to widen the return vector to a legal type
if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
LegalReqRetVT =
EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
ReqRetVT.getVectorNumElements() + 1);
}
}
Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
if (IsTexFail) {
TexFail =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
DAG.getConstant(MaskPopDwords, DL, MVT::i32));
return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
}
if (Result->getNumValues() == 1)
return Data;
return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
}
static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
SDValue *LWE, bool &IsTexFail) {
auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
uint64_t Value = TexFailCtrlConst->getZExtValue();
if (Value) {
IsTexFail = true;
}
SDLoc DL(TexFailCtrlConst);
*TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
Value &= ~(uint64_t)0x1;
*LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
Value &= ~(uint64_t)0x2;
return Value == 0;
}
static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
MVT PackVectorVT,
SmallVectorImpl<SDValue> &PackedAddrs,
unsigned DimIdx, unsigned EndIdx,
unsigned NumGradients) {
SDLoc DL(Op);
for (unsigned I = DimIdx; I < EndIdx; I++) {
SDValue Addr = Op.getOperand(I);
// Gradients are packed with undef for each coordinate.
// In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
// 1D: undef,dx/dh; undef,dx/dv
// 2D: dy/dh,dx/dh; dy/dv,dx/dv
// 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
if (((I + 1) >= EndIdx) ||
((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
I == DimIdx + NumGradients - 1))) {
if (Addr.getValueType() != MVT::i16)
Addr = DAG.getBitcast(MVT::i16, Addr);
Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
} else {
Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
I++;
}
Addr = DAG.getBitcast(MVT::f32, Addr);
PackedAddrs.push_back(Addr);
}
}
SDValue SITargetLowering::lowerImage(SDValue Op,
const AMDGPU::ImageDimIntrinsicInfo *Intr,
SelectionDAG &DAG, bool WithChain) const {
SDLoc DL(Op);
MachineFunction &MF = DAG.getMachineFunction();
const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
unsigned IntrOpcode = Intr->BaseOpcode;
bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget);
SmallVector<EVT, 3> ResultTypes(Op->values());
SmallVector<EVT, 3> OrigResultTypes(Op->values());
bool IsD16 = false;
bool IsG16 = false;
bool IsA16 = false;
SDValue VData;
int NumVDataDwords;
bool AdjustRetType = false;
bool IsAtomicPacked16Bit = false;
// Offset of intrinsic arguments
const unsigned ArgOffset = WithChain ? 2 : 1;
unsigned DMask;
unsigned DMaskLanes = 0;
if (BaseOpcode->Atomic) {
VData = Op.getOperand(2);
IsAtomicPacked16Bit =
(Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 ||
Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16);
bool Is64Bit = VData.getValueSizeInBits() == 64;
if (BaseOpcode->AtomicX2) {
SDValue VData2 = Op.getOperand(3);
VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
{VData, VData2});
if (Is64Bit)
VData = DAG.getBitcast(MVT::v4i32, VData);
ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
DMask = Is64Bit ? 0xf : 0x3;
NumVDataDwords = Is64Bit ? 4 : 2;
} else {
DMask = Is64Bit ? 0x3 : 0x1;
NumVDataDwords = Is64Bit ? 2 : 1;
}
} else {
DMask = Op->getConstantOperandVal(ArgOffset + Intr->DMaskIndex);
DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask);
if (BaseOpcode->Store) {
VData = Op.getOperand(2);
MVT StoreVT = VData.getSimpleValueType();
if (StoreVT.getScalarType() == MVT::f16) {
if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
return Op; // D16 is unsupported for this instruction
IsD16 = true;
VData = handleD16VData(VData, DAG, true);
}
NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
} else {
// Work out the num dwords based on the dmask popcount and underlying type
// and whether packing is supported.
MVT LoadVT = ResultTypes[0].getSimpleVT();
if (LoadVT.getScalarType() == MVT::f16) {
if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
return Op; // D16 is unsupported for this instruction
IsD16 = true;
}
// Confirm that the return type is large enough for the dmask specified
if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
(!LoadVT.isVector() && DMaskLanes > 1))
return Op;
// The sq block of gfx8 and gfx9 do not estimate register use correctly
// for d16 image_gather4, image_gather4_l, and image_gather4_lz
// instructions.
if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
!(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
NumVDataDwords = (DMaskLanes + 1) / 2;
else
NumVDataDwords = DMaskLanes;
AdjustRetType = true;
}
}
unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
SmallVector<SDValue, 4> VAddrs;
// Check for 16 bit addresses or derivatives and pack if true.
MVT VAddrVT =
Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
MVT VAddrScalarVT = VAddrVT.getScalarType();
MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
VAddrScalarVT = VAddrVT.getScalarType();
MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
// Push back extra arguments.
for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) {
if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) {
assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
// Special handling of bias when A16 is on. Bias is of type half but
// occupies full 32-bit.
SDValue Bias = DAG.getBuildVector(
MVT::v2f16, DL,
{Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)});
VAddrs.push_back(Bias);
} else {
assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
"Bias needs to be converted to 16 bit in A16 mode");
VAddrs.push_back(Op.getOperand(ArgOffset + I));
}
}
if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
// 16 bit gradients are supported, but are tied to the A16 control
// so both gradients and addresses must be 16 bit
LLVM_DEBUG(
dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
"require 16 bit args for both gradients and addresses");
return Op;
}
if (IsA16) {
if (!ST->hasA16()) {
LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
"support 16 bit addresses\n");
return Op;
}
}
// We've dealt with incorrect input so we know that if IsA16, IsG16
// are set then we have to compress/pack operands (either address,
// gradient or both)
// In the case where a16 and gradients are tied (no G16 support) then we
// have already verified that both IsA16 and IsG16 are true
if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
// Activate g16
const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
}
// Add gradients (packed or unpacked)
if (IsG16) {
// Pack the gradients
// const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
ArgOffset + Intr->GradientStart,
ArgOffset + Intr->CoordStart, Intr->NumGradients);
} else {
for (unsigned I = ArgOffset + Intr->GradientStart;
I < ArgOffset + Intr->CoordStart; I++)
VAddrs.push_back(Op.getOperand(I));
}
// Add addresses (packed or unpacked)
if (IsA16) {
packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
ArgOffset + Intr->CoordStart, VAddrEnd,
0 /* No gradients */);
} else {
// Add uncompressed address
for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
VAddrs.push_back(Op.getOperand(I));
}
// If the register allocator cannot place the address registers contiguously
// without introducing moves, then using the non-sequential address encoding
// is always preferable, since it saves VALU instructions and is usually a
// wash in terms of code size or even better.
//
// However, we currently have no way of hinting to the register allocator that
// MIMG addresses should be placed contiguously when it is possible to do so,
// so force non-NSA for the common 2-address case as a heuristic.
//
// SIShrinkInstructions will convert NSA encodings to non-NSA after register
// allocation when possible.
//
// Partial NSA is allowed on GFX11+ where the final register is a contiguous
// set of the remaining addresses.
const unsigned NSAMaxSize = ST->getNSAMaxSize(BaseOpcode->Sampler);
const bool HasPartialNSAEncoding = ST->hasPartialNSAEncoding();
const bool UseNSA = ST->hasNSAEncoding() &&
VAddrs.size() >= ST->getNSAThreshold(MF) &&
(VAddrs.size() <= NSAMaxSize || HasPartialNSAEncoding);
const bool UsePartialNSA =
UseNSA && HasPartialNSAEncoding && VAddrs.size() > NSAMaxSize;
SDValue VAddr;
if (UsePartialNSA) {
VAddr = getBuildDwordsVector(DAG, DL,
ArrayRef(VAddrs).drop_front(NSAMaxSize - 1));
}
else if (!UseNSA) {
VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
}
SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
SDValue Unorm;
if (!BaseOpcode->Sampler) {
Unorm = True;
} else {
uint64_t UnormConst =
Op.getConstantOperandVal(ArgOffset + Intr->UnormIndex);
Unorm = UnormConst ? True : False;
}
SDValue TFE;
SDValue LWE;
SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
bool IsTexFail = false;
if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
return Op;
if (IsTexFail) {
if (!DMaskLanes) {
// Expecting to get an error flag since TFC is on - and dmask is 0
// Force dmask to be at least 1 otherwise the instruction will fail
DMask = 0x1;
DMaskLanes = 1;
NumVDataDwords = 1;
}
NumVDataDwords += 1;
AdjustRetType = true;
}
// Has something earlier tagged that the return type needs adjusting
// This happens if the instruction is a load or has set TexFailCtrl flags
if (AdjustRetType) {
// NumVDataDwords reflects the true number of dwords required in the return type
if (DMaskLanes == 0 && !BaseOpcode->Store) {
// This is a no-op load. This can be eliminated
SDValue Undef = DAG.getUNDEF(Op.getValueType());
if (isa<MemSDNode>(Op))
return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
return Undef;
}
EVT NewVT = NumVDataDwords > 1 ?
EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
: MVT::i32;
ResultTypes[0] = NewVT;
if (ResultTypes.size() == 3) {
// Original result was aggregate type used for TexFailCtrl results
// The actual instruction returns as a vector type which has now been
// created. Remove the aggregate result.
ResultTypes.erase(&ResultTypes[1]);
}
}
unsigned CPol = Op.getConstantOperandVal(ArgOffset + Intr->CachePolicyIndex);
if (BaseOpcode->Atomic)
CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
if (CPol & ~((IsGFX12Plus ? AMDGPU::CPol::ALL : AMDGPU::CPol::ALL_pregfx12) |
AMDGPU::CPol::VOLATILE))
return Op;
SmallVector<SDValue, 26> Ops;
if (BaseOpcode->Store || BaseOpcode->Atomic)
Ops.push_back(VData); // vdata
if (UsePartialNSA) {
append_range(Ops, ArrayRef(VAddrs).take_front(NSAMaxSize - 1));
Ops.push_back(VAddr);
}
else if (UseNSA)
append_range(Ops, VAddrs);
else
Ops.push_back(VAddr);
Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
if (BaseOpcode->Sampler)
Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
if (IsGFX10Plus)
Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
Ops.push_back(Unorm);
Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
Ops.push_back(IsA16 && // r128, a16 for gfx9
ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
if (IsGFX10Plus)
Ops.push_back(IsA16 ? True : False);
if (!Subtarget->hasGFX90AInsts()) {
Ops.push_back(TFE); //tfe
} else if (TFE->getAsZExtVal()) {
report_fatal_error("TFE is not supported on this GPU");
}
if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
Ops.push_back(LWE); // lwe
if (!IsGFX10Plus)
Ops.push_back(DimInfo->DA ? True : False);
if (BaseOpcode->HasD16)
Ops.push_back(IsD16 ? True : False);
if (isa<MemSDNode>(Op))
Ops.push_back(Op.getOperand(0)); // chain
int NumVAddrDwords =
UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
int Opcode = -1;
if (IsGFX12Plus) {
Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx12,
NumVDataDwords, NumVAddrDwords);
} else if (IsGFX11Plus) {
Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
UseNSA ? AMDGPU::MIMGEncGfx11NSA
: AMDGPU::MIMGEncGfx11Default,
NumVDataDwords, NumVAddrDwords);
} else if (IsGFX10Plus) {
Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
UseNSA ? AMDGPU::MIMGEncGfx10NSA
: AMDGPU::MIMGEncGfx10Default,
NumVDataDwords, NumVAddrDwords);
} else {
if (Subtarget->hasGFX90AInsts()) {
Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
NumVDataDwords, NumVAddrDwords);
if (Opcode == -1)
report_fatal_error(
"requested image instruction is not supported on this GPU");
}
if (Opcode == -1 &&
Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
NumVDataDwords, NumVAddrDwords);
if (Opcode == -1)
Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
NumVDataDwords, NumVAddrDwords);
}
if (Opcode == -1)
return Op;
MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
MachineMemOperand *MemRef = MemOp->getMemOperand();
DAG.setNodeMemRefs(NewNode, {MemRef});
}
if (BaseOpcode->AtomicX2) {
SmallVector<SDValue, 1> Elt;
DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
}
if (BaseOpcode->Store)
return SDValue(NewNode, 0);
return constructRetValue(DAG, NewNode, OrigResultTypes, IsTexFail,
Subtarget->hasUnpackedD16VMem(), IsD16, DMaskLanes,
NumVDataDwords, IsAtomicPacked16Bit, DL);
}
SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
SDValue Offset, SDValue CachePolicy,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const DataLayout &DataLayout = DAG.getDataLayout();
Align Alignment =
DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant,
VT.getStoreSize(), Alignment);
if (!Offset->isDivergent()) {
SDValue Ops[] = {Rsrc, Offset, CachePolicy};
// Lower llvm.amdgcn.s.buffer.load.{i16, u16} intrinsics. Initially, the
// s_buffer_load_u16 instruction is emitted for both signed and unsigned
// loads. Later, DAG combiner tries to combine s_buffer_load_u16 with sext
// and generates s_buffer_load_i16 (performSignExtendInRegCombine).
if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) {
SDValue BufferLoad =
DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD_USHORT, DL,
DAG.getVTList(MVT::i32), Ops, VT, MMO);
return DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad);
}
// Widen vec3 load to vec4.
if (VT.isVector() && VT.getVectorNumElements() == 3 &&
!Subtarget->hasScalarDwordx3Loads()) {
EVT WidenedVT =
EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
auto WidenedOp = DAG.getMemIntrinsicNode(
AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
DAG.getVectorIdxConstant(0, DL));
return Subvector;
}
return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
DAG.getVTList(VT), Ops, VT, MMO);
}
// We have a divergent offset. Emit a MUBUF buffer load instead. We can
// assume that the buffer is unswizzled.
SDValue Ops[] = {
DAG.getEntryNode(), // Chain
Rsrc, // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
{}, // voffset
{}, // soffset
{}, // offset
CachePolicy, // cachepolicy
DAG.getTargetConstant(0, DL, MVT::i1), // idxen
};
if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) {
setBufferOffsets(Offset, DAG, &Ops[3], Align(4));
return handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO);
}
SmallVector<SDValue, 4> Loads;
unsigned NumLoads = 1;
MVT LoadVT = VT.getSimpleVT();
unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
assert((LoadVT.getScalarType() == MVT::i32 ||
LoadVT.getScalarType() == MVT::f32));
if (NumElts == 8 || NumElts == 16) {
NumLoads = NumElts / 4;
LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
}
SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
// Use the alignment to ensure that the required offsets will fit into the
// immediate offsets.
setBufferOffsets(Offset, DAG, &Ops[3],
NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
uint64_t InstOffset = Ops[5]->getAsZExtVal();
for (unsigned i = 0; i < NumLoads; ++i) {
Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
LoadVT, MMO, DAG));
}
if (NumElts == 8 || NumElts == 16)
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
return Loads[0];
}
SDValue SITargetLowering::lowerWaveID(SelectionDAG &DAG, SDValue Op) const {
// With architected SGPRs, waveIDinGroup is in TTMP8[29:25].
if (!Subtarget->hasArchitectedSGPRs())
return {};
SDLoc SL(Op);
MVT VT = MVT::i32;
SDValue TTMP8 = DAG.getCopyFromReg(DAG.getEntryNode(), SL, AMDGPU::TTMP8, VT);
return DAG.getNode(AMDGPUISD::BFE_U32, SL, VT, TTMP8,
DAG.getConstant(25, SL, VT), DAG.getConstant(5, SL, VT));
}
SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op,
unsigned Dim,
const ArgDescriptor &Arg) const {
SDLoc SL(Op);
MachineFunction &MF = DAG.getMachineFunction();
unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim);
if (MaxID == 0)
return DAG.getConstant(0, SL, MVT::i32);
SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
SDLoc(DAG.getEntryNode()), Arg);
// Don't bother inserting AssertZext for packed IDs since we're emitting the
// masking operations anyway.
//
// TODO: We could assert the top bit is 0 for the source copy.
if (Arg.isMasked())
return Val;
// Preserve the known bits after expansion to a copy.
EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID));
return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val,
DAG.getValueType(SmallVT));
}
SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
auto MFI = MF.getInfo<SIMachineFunctionInfo>();
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned IntrinsicID = Op.getConstantOperandVal(0);
// TODO: Should this propagate fast-math-flags?
switch (IntrinsicID) {
case Intrinsic::amdgcn_implicit_buffer_ptr: {
if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
return emitNonHSAIntrinsicError(DAG, DL, VT);
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
}
case Intrinsic::amdgcn_dispatch_ptr:
case Intrinsic::amdgcn_queue_ptr: {
if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
DiagnosticInfoUnsupported BadIntrin(
MF.getFunction(), "unsupported hsa intrinsic without hsa target",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
return getPreloadedValue(DAG, *MFI, VT, RegID);
}
case Intrinsic::amdgcn_implicitarg_ptr: {
if (MFI->isEntryFunction())
return getImplicitArgPtr(DAG, DL);
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
}
case Intrinsic::amdgcn_kernarg_segment_ptr: {
if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
// This only makes sense to call in a kernel, so just lower to null.
return DAG.getConstant(0, DL, VT);
}
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
}
case Intrinsic::amdgcn_dispatch_id: {
return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
}
case Intrinsic::amdgcn_rcp:
return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rsq:
return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rsq_legacy:
if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return emitRemovedIntrinsicError(DAG, DL, VT);
return SDValue();
case Intrinsic::amdgcn_rcp_legacy:
if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return emitRemovedIntrinsicError(DAG, DL, VT);
return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rsq_clamp: {
if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
Type *Type = VT.getTypeForEVT(*DAG.getContext());
APFloat Max = APFloat::getLargest(Type->getFltSemantics());
APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
DAG.getConstantFP(Max, DL, VT));
return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
DAG.getConstantFP(Min, DL, VT));
}
case Intrinsic::r600_read_ngroups_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_X, Align(4),
false);
case Intrinsic::r600_read_ngroups_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_Y, Align(4),
false);
case Intrinsic::r600_read_ngroups_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_Z, Align(4),
false);
case Intrinsic::r600_read_global_size_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_X,
Align(4), false);
case Intrinsic::r600_read_global_size_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_Y,
Align(4), false);
case Intrinsic::r600_read_global_size_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_Z,
Align(4), false);
case Intrinsic::r600_read_local_size_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_X);
case Intrinsic::r600_read_local_size_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_Y);
case Intrinsic::r600_read_local_size_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_Z);
case Intrinsic::amdgcn_workgroup_id_x:
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
case Intrinsic::amdgcn_workgroup_id_y:
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
case Intrinsic::amdgcn_workgroup_id_z:
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
case Intrinsic::amdgcn_wave_id:
return lowerWaveID(DAG, Op);
case Intrinsic::amdgcn_lds_kernel_id: {
if (MFI->isEntryFunction())
return getLDSKernelId(DAG, DL);
return getPreloadedValue(DAG, *MFI, VT,
AMDGPUFunctionArgInfo::LDS_KERNEL_ID);
}
case Intrinsic::amdgcn_workitem_id_x:
return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX);
case Intrinsic::amdgcn_workitem_id_y:
return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY);
case Intrinsic::amdgcn_workitem_id_z:
return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ);
case Intrinsic::amdgcn_wavefrontsize:
return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
SDLoc(Op), MVT::i32);
case Intrinsic::amdgcn_s_buffer_load: {
unsigned CPol = Op.getConstantOperandVal(3);
// s_buffer_load, because of how it's optimized, can't be volatile
// so reject ones with the volatile bit set.
if (CPol & ~((Subtarget->getGeneration() >= AMDGPUSubtarget::GFX12)
? AMDGPU::CPol::ALL
: AMDGPU::CPol::ALL_pregfx12))
return Op;
return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
DAG);
}
case Intrinsic::amdgcn_fdiv_fast:
return lowerFDIV_FAST(Op, DAG);
case Intrinsic::amdgcn_sin:
return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_cos:
return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_mul_u24:
return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_mul_i24:
return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_log_clamp: {
if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
return SDValue();
return emitRemovedIntrinsicError(DAG, DL, VT);
}
case Intrinsic::amdgcn_fract:
return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_class:
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_div_fmas:
return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
Op.getOperand(4));
case Intrinsic::amdgcn_div_fixup:
return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_div_scale: {
const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
// Translate to the operands expected by the machine instruction. The
// first parameter must be the same as the first instruction.
SDValue Numerator = Op.getOperand(1);
SDValue Denominator = Op.getOperand(2);
// Note this order is opposite of the machine instruction's operations,
// which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
// intrinsic has the numerator as the first operand to match a normal
// division operation.
SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
Denominator, Numerator);
}
case Intrinsic::amdgcn_icmp: {
// There is a Pat that handles this variant, so return it as-is.
if (Op.getOperand(1).getValueType() == MVT::i1 &&
Op.getConstantOperandVal(2) == 0 &&
Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
return Op;
return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
}
case Intrinsic::amdgcn_fcmp: {
return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
}
case Intrinsic::amdgcn_ballot:
return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
case Intrinsic::amdgcn_fmed3:
return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_fdot2:
return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
Op.getOperand(4));
case Intrinsic::amdgcn_fmul_legacy:
return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_sffbh:
return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_sbfe:
return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_ubfe:
return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_cvt_pkrtz:
case Intrinsic::amdgcn_cvt_pknorm_i16:
case Intrinsic::amdgcn_cvt_pknorm_u16:
case Intrinsic::amdgcn_cvt_pk_i16:
case Intrinsic::amdgcn_cvt_pk_u16: {
// FIXME: Stop adding cast if v2f16/v2i16 are legal.
EVT VT = Op.getValueType();
unsigned Opcode;
if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
Opcode = AMDGPUISD::CVT_PK_I16_I32;
else
Opcode = AMDGPUISD::CVT_PK_U16_U32;
if (isTypeLegal(VT))
return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
Op.getOperand(1), Op.getOperand(2));
return DAG.getNode(ISD::BITCAST, DL, VT, Node);
}
case Intrinsic::amdgcn_fmad_ftz:
return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_if_break:
return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
Op->getOperand(1), Op->getOperand(2)), 0);
case Intrinsic::amdgcn_groupstaticsize: {
Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
return Op;
const Module *M = MF.getFunction().getParent();
const GlobalValue *GV =
M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
SIInstrInfo::MO_ABS32_LO);
return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
}
case Intrinsic::amdgcn_is_shared:
case Intrinsic::amdgcn_is_private: {
SDLoc SL(Op);
unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
SDValue Aperture = getSegmentAperture(AS, SL, DAG);
SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
Op.getOperand(1));
SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
DAG.getConstant(1, SL, MVT::i32));
return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
}
case Intrinsic::amdgcn_perm:
return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_reloc_constant: {
Module *M = const_cast<Module *>(MF.getFunction().getParent());
const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
auto RelocSymbol = cast<GlobalVariable>(
M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
SIInstrInfo::MO_ABS32_LO);
return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
}
case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16:
case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16:
case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16:
case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16:
case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8:
case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8:
case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8:
case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: {
if (Op.getOperand(4).getValueType() == MVT::i32)
return SDValue();
SDLoc SL(Op);
auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(4), SL, MVT::i32);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(),
Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
Op.getOperand(3), IndexKeyi32);
}
case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4:
case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8:
case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: {
if (Op.getOperand(6).getValueType() == MVT::i32)
return SDValue();
SDLoc SL(Op);
auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(6), SL, MVT::i32);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(),
{Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
Op.getOperand(3), Op.getOperand(4), Op.getOperand(5),
IndexKeyi32, Op.getOperand(7)});
}
case Intrinsic::amdgcn_addrspacecast_nonnull:
return lowerADDRSPACECAST(Op, DAG);
default:
if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
return lowerImage(Op, ImageDimIntr, DAG, false);
return Op;
}
}
// On targets not supporting constant in soffset field, turn zero to
// SGPR_NULL to avoid generating an extra s_mov with zero.
static SDValue selectSOffset(SDValue SOffset, SelectionDAG &DAG,
const GCNSubtarget *Subtarget) {
if (Subtarget->hasRestrictedSOffset() && isNullConstant(SOffset))
return DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32);
return SOffset;
}
SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
SelectionDAG &DAG,
unsigned NewOpcode) const {
SDLoc DL(Op);
SDValue VData = Op.getOperand(2);
SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
SDValue Ops[] = {
Op.getOperand(0), // Chain
VData, // vdata
Rsrc, // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
Offsets.first, // voffset
SOffset, // soffset
Offsets.second, // offset
Op.getOperand(6), // cachepolicy
DAG.getTargetConstant(0, DL, MVT::i1), // idxen
};
auto *M = cast<MemSDNode>(Op);
EVT MemVT = VData.getValueType();
return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
M->getMemOperand());
}
// Return a value to use for the idxen operand by examining the vindex operand.
static unsigned getIdxEn(SDValue VIndex) {
// No need to set idxen if vindex is known to be zero.
return isNullConstant(VIndex) ? 0 : 1;
}
SDValue
SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
unsigned NewOpcode) const {
SDLoc DL(Op);
SDValue VData = Op.getOperand(2);
SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
SDValue Ops[] = {
Op.getOperand(0), // Chain
VData, // vdata
Rsrc, // rsrc
Op.getOperand(4), // vindex
Offsets.first, // voffset
SOffset, // soffset
Offsets.second, // offset
Op.getOperand(7), // cachepolicy
DAG.getTargetConstant(1, DL, MVT::i1), // idxen
};
auto *M = cast<MemSDNode>(Op);
EVT MemVT = VData.getValueType();
return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
M->getMemOperand());
}
SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntrID = Op.getConstantOperandVal(1);
SDLoc DL(Op);
switch (IntrID) {
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap: {
MemSDNode *M = cast<MemSDNode>(Op);
SDValue Chain = M->getOperand(0);
SDValue M0 = M->getOperand(2);
SDValue Value = M->getOperand(3);
unsigned IndexOperand = M->getConstantOperandVal(7);
unsigned WaveRelease = M->getConstantOperandVal(8);
unsigned WaveDone = M->getConstantOperandVal(9);
unsigned OrderedCountIndex = IndexOperand & 0x3f;
IndexOperand &= ~0x3f;
unsigned CountDw = 0;
if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
CountDw = (IndexOperand >> 24) & 0xf;
IndexOperand &= ~(0xf << 24);
if (CountDw < 1 || CountDw > 4) {
report_fatal_error(
"ds_ordered_count: dword count must be between 1 and 4");
}
}
if (IndexOperand)
report_fatal_error("ds_ordered_count: bad index operand");
if (WaveDone && !WaveRelease)
report_fatal_error("ds_ordered_count: wave_done requires wave_release");
unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
unsigned ShaderType =
SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
unsigned Offset0 = OrderedCountIndex << 2;
unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4);
if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
Offset1 |= (CountDw - 1) << 6;
if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11)
Offset1 |= ShaderType << 2;
unsigned Offset = Offset0 | (Offset1 << 8);
SDValue Ops[] = {
Chain,
Value,
DAG.getTargetConstant(Offset, DL, MVT::i16),
copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
};
return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
M->getVTList(), Ops, M->getMemoryVT(),
M->getMemOperand());
}
case Intrinsic::amdgcn_ds_fadd: {
MemSDNode *M = cast<MemSDNode>(Op);
unsigned Opc;
switch (IntrID) {
case Intrinsic::amdgcn_ds_fadd:
Opc = ISD::ATOMIC_LOAD_FADD;
break;
}
return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
M->getOperand(0), M->getOperand(2), M->getOperand(3),
M->getMemOperand());
}
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax: {
MemSDNode *M = cast<MemSDNode>(Op);
unsigned Opc;
switch (IntrID) {
case Intrinsic::amdgcn_ds_fmin:
Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
break;
case Intrinsic::amdgcn_ds_fmax:
Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
break;
default:
llvm_unreachable("Unknown intrinsic!");
}
SDValue Ops[] = {
M->getOperand(0), // Chain
M->getOperand(2), // Ptr
M->getOperand(3) // Value
};
return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_buffer_load:
case Intrinsic::amdgcn_buffer_load_format: {
unsigned Glc = Op.getConstantOperandVal(5);
unsigned Slc = Op.getConstantOperandVal(6);
unsigned IdxEn = getIdxEn(Op.getOperand(3));
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // rsrc
Op.getOperand(3), // vindex
SDValue(), // voffset -- will be set by setBufferOffsets
SDValue(), // soffset -- will be set by setBufferOffsets
SDValue(), // offset -- will be set by setBufferOffsets
DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
};
setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
EVT VT = Op.getValueType();
EVT IntVT = VT.changeTypeToInteger();
auto *M = cast<MemSDNode>(Op);
EVT LoadVT = Op.getValueType();
if (LoadVT.getScalarType() == MVT::f16)
return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
M, DAG, Ops);
// Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
if (LoadVT.getScalarType() == MVT::i8 || LoadVT.getScalarType() == MVT::i16)
return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops,
M->getMemOperand());
return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
M->getMemOperand(), DAG);
}
case Intrinsic::amdgcn_raw_buffer_load:
case Intrinsic::amdgcn_raw_ptr_buffer_load:
case Intrinsic::amdgcn_raw_buffer_load_format:
case Intrinsic::amdgcn_raw_ptr_buffer_load_format: {
const bool IsFormat =
IntrID == Intrinsic::amdgcn_raw_buffer_load_format ||
IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format;
SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Rsrc, // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
Offsets.first, // voffset
SOffset, // soffset
Offsets.second, // offset
Op.getOperand(5), // cachepolicy, swizzled buffer
DAG.getTargetConstant(0, DL, MVT::i1), // idxen
};
auto *M = cast<MemSDNode>(Op);
return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
}
case Intrinsic::amdgcn_struct_buffer_load:
case Intrinsic::amdgcn_struct_ptr_buffer_load:
case Intrinsic::amdgcn_struct_buffer_load_format:
case Intrinsic::amdgcn_struct_ptr_buffer_load_format: {
const bool IsFormat =
IntrID == Intrinsic::amdgcn_struct_buffer_load_format ||
IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format;
SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Rsrc, // rsrc
Op.getOperand(3), // vindex
Offsets.first, // voffset
SOffset, // soffset
Offsets.second, // offset
Op.getOperand(6), // cachepolicy, swizzled buffer
DAG.getTargetConstant(1, DL, MVT::i1), // idxen
};
return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
}
case Intrinsic::amdgcn_tbuffer_load: {
MemSDNode *M = cast<MemSDNode>(Op);
EVT LoadVT = Op.getValueType();
auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
unsigned Dfmt = Op.getConstantOperandVal(7);
unsigned Nfmt = Op.getConstantOperandVal(8);
unsigned Glc = Op.getConstantOperandVal(9);
unsigned Slc = Op.getConstantOperandVal(10);
unsigned IdxEn = getIdxEn(Op.getOperand(3));
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // rsrc
Op.getOperand(3), // vindex
Op.getOperand(4), // voffset
SOffset, // soffset
Op.getOperand(6), // offset
DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
};
if (LoadVT.getScalarType() == MVT::f16)
return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
M, DAG, Ops);
return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
DAG);
}
case Intrinsic::amdgcn_raw_tbuffer_load:
case Intrinsic::amdgcn_raw_ptr_tbuffer_load: {
MemSDNode *M = cast<MemSDNode>(Op);
EVT LoadVT = Op.getValueType();
SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Rsrc, // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
Offsets.first, // voffset
SOffset, // soffset
Offsets.second, // offset
Op.getOperand(5), // format
Op.getOperand(6), // cachepolicy, swizzled buffer
DAG.getTargetConstant(0, DL, MVT::i1), // idxen
};
if (LoadVT.getScalarType() == MVT::f16)
return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
M, DAG, Ops);
return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
DAG);
}
case Intrinsic::amdgcn_struct_tbuffer_load:
case Intrinsic::amdgcn_struct_ptr_tbuffer_load: {
MemSDNode *M = cast<MemSDNode>(Op);
EVT LoadVT = Op.getValueType();
SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Rsrc, // rsrc
Op.getOperand(3), // vindex
Offsets.first, // voffset
SOffset, // soffset
Offsets.second, // offset
Op.getOperand(6), // format
Op.getOperand(7), // cachepolicy, swizzled buffer
DAG.getTargetConstant(1, DL, MVT::i1), // idxen
};
if (LoadVT.getScalarType() == MVT::f16)
return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
M, DAG, Ops);
return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
DAG);
}
case Intrinsic::amdgcn_buffer_atomic_swap:
case Intrinsic::amdgcn_buffer_atomic_add:
case Intrinsic::amdgcn_buffer_atomic_sub:
case Intrinsic::amdgcn_buffer_atomic_csub:
case Intrinsic::amdgcn_buffer_atomic_smin:
case Intrinsic::amdgcn_buffer_atomic_umin:
case Intrinsic::amdgcn_buffer_atomic_smax:
case Intrinsic::amdgcn_buffer_atomic_umax:
case Intrinsic::amdgcn_buffer_atomic_and:
case Intrinsic::amdgcn_buffer_atomic_or:
case Intrinsic::amdgcn_buffer_atomic_xor:
case Intrinsic::amdgcn_buffer_atomic_fadd: {
unsigned Slc = Op.getConstantOperandVal(6);
unsigned IdxEn = getIdxEn(Op.getOperand(4));
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // vdata
Op.getOperand(3), // rsrc
Op.getOperand(4), // vindex
SDValue(), // voffset -- will be set by setBufferOffsets
SDValue(), // soffset -- will be set by setBufferOffsets
SDValue(), // offset -- will be set by setBufferOffsets
DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
};
setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
EVT VT = Op.getValueType();
auto *M = cast<MemSDNode>(Op);
unsigned Opcode = 0;
switch (IntrID) {
case Intrinsic::amdgcn_buffer_atomic_swap:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
break;
case Intrinsic::amdgcn_buffer_atomic_add:
Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
break;
case Intrinsic::amdgcn_buffer_atomic_sub:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
break;
case Intrinsic::amdgcn_buffer_atomic_csub:
Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
break;
case Intrinsic::amdgcn_buffer_atomic_smin:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
break;
case Intrinsic::amdgcn_buffer_atomic_umin:
Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
break;
case Intrinsic::amdgcn_buffer_atomic_smax:
Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
break;
case Intrinsic::amdgcn_buffer_atomic_umax:
Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
break;
case Intrinsic::amdgcn_buffer_atomic_and:
Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
break;
case Intrinsic::amdgcn_buffer_atomic_or:
Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
break;
case Intrinsic::amdgcn_buffer_atomic_xor:
Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
break;
case Intrinsic::amdgcn_buffer_atomic_fadd:
Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
break;
default:
llvm_unreachable("unhandled atomic opcode");
}
return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
M->getMemOperand());
}
case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
case Intrinsic::amdgcn_raw_buffer_atomic_fadd_v2bf16:
return lowerRawBufferAtomicIntrin(Op, DAG,
AMDGPUISD::BUFFER_ATOMIC_FADD_BF16);
case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
case Intrinsic::amdgcn_struct_buffer_atomic_fadd_v2bf16:
return lowerStructBufferAtomicIntrin(Op, DAG,
AMDGPUISD::BUFFER_ATOMIC_FADD_BF16);
case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
case Intrinsic::amdgcn_raw_buffer_atomic_swap:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
case Intrinsic::amdgcn_raw_buffer_atomic_add:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
case Intrinsic::amdgcn_raw_buffer_atomic_sub:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
case Intrinsic::amdgcn_raw_buffer_atomic_smin:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
case Intrinsic::amdgcn_raw_buffer_atomic_umin:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
case Intrinsic::amdgcn_raw_buffer_atomic_smax:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
case Intrinsic::amdgcn_raw_buffer_atomic_umax:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
case Intrinsic::amdgcn_raw_buffer_atomic_and:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
case Intrinsic::amdgcn_raw_buffer_atomic_or:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
case Intrinsic::amdgcn_raw_buffer_atomic_xor:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
case Intrinsic::amdgcn_raw_buffer_atomic_inc:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
case Intrinsic::amdgcn_raw_buffer_atomic_dec:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
return lowerRawBufferAtomicIntrin(Op, DAG,
AMDGPUISD::BUFFER_ATOMIC_COND_SUB_U32);
case Intrinsic::amdgcn_struct_buffer_atomic_swap:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
return lowerStructBufferAtomicIntrin(Op, DAG,
AMDGPUISD::BUFFER_ATOMIC_SWAP);
case Intrinsic::amdgcn_struct_buffer_atomic_add:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
case Intrinsic::amdgcn_struct_buffer_atomic_sub:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
case Intrinsic::amdgcn_struct_buffer_atomic_smin:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
return lowerStructBufferAtomicIntrin(Op, DAG,
AMDGPUISD::BUFFER_ATOMIC_SMIN);
case Intrinsic::amdgcn_struct_buffer_atomic_umin:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
return lowerStructBufferAtomicIntrin(Op, DAG,
AMDGPUISD::BUFFER_ATOMIC_UMIN);
case Intrinsic::amdgcn_struct_buffer_atomic_smax:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
return lowerStructBufferAtomicIntrin(Op, DAG,
AMDGPUISD::BUFFER_ATOMIC_SMAX);
case Intrinsic::amdgcn_struct_buffer_atomic_umax:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
return lowerStructBufferAtomicIntrin(Op, DAG,
AMDGPUISD::BUFFER_ATOMIC_UMAX);
case Intrinsic::amdgcn_struct_buffer_atomic_and:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
case Intrinsic::amdgcn_struct_buffer_atomic_or:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
case Intrinsic::amdgcn_struct_buffer_atomic_xor:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
case Intrinsic::amdgcn_struct_buffer_atomic_inc:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
case Intrinsic::amdgcn_struct_buffer_atomic_dec:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
return lowerStructBufferAtomicIntrin(Op, DAG,
AMDGPUISD::BUFFER_ATOMIC_COND_SUB_U32);
case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
unsigned Slc = Op.getConstantOperandVal(7);
unsigned IdxEn = getIdxEn(Op.getOperand(5));
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // src
Op.getOperand(3), // cmp
Op.getOperand(4), // rsrc
Op.getOperand(5), // vindex
SDValue(), // voffset -- will be set by setBufferOffsets
SDValue(), // soffset -- will be set by setBufferOffsets
SDValue(), // offset -- will be set by setBufferOffsets
DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
};
setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
EVT VT = Op.getValueType();
auto *M = cast<MemSDNode>(Op);
return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
Op->getVTList(), Ops, VT, M->getMemOperand());
}
case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: {
SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(4), DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // src
Op.getOperand(3), // cmp
Rsrc, // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
Offsets.first, // voffset
SOffset, // soffset
Offsets.second, // offset
Op.getOperand(7), // cachepolicy
DAG.getTargetConstant(0, DL, MVT::i1), // idxen
};
EVT VT = Op.getValueType();
auto *M = cast<MemSDNode>(Op);
return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
Op->getVTList(), Ops, VT, M->getMemOperand());
}
case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: {
SDValue Rsrc = bufferRsrcPtrToVector(Op->getOperand(4), DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
auto SOffset = selectSOffset(Op.getOperand(7), DAG, Subtarget);
SDValue Ops[] = {
Op.getOperand(0), // Chain
Op.getOperand(2), // src
Op.getOperand(3), // cmp
Rsrc, // rsrc
Op.getOperand(5), // vindex
Offsets.first, // voffset
SOffset, // soffset
Offsets.second, // offset
Op.getOperand(8), // cachepolicy
DAG.getTargetConstant(1, DL, MVT::i1), // idxen
};
EVT VT = Op.getValueType();
auto *M = cast<MemSDNode>(Op);
return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
Op->getVTList(), Ops, VT, M->getMemOperand());
}
case Intrinsic::amdgcn_image_bvh_intersect_ray: {
MemSDNode *M = cast<MemSDNode>(Op);
SDValue NodePtr = M->getOperand(2);
SDValue RayExtent = M->getOperand(3);
SDValue RayOrigin = M->getOperand(4);
SDValue RayDir = M->getOperand(5);
SDValue RayInvDir = M->getOperand(6);
SDValue TDescr = M->getOperand(7);
assert(NodePtr.getValueType() == MVT::i32 ||
NodePtr.getValueType() == MVT::i64);
assert(RayDir.getValueType() == MVT::v3f16 ||
RayDir.getValueType() == MVT::v3f32);
if (!Subtarget->hasGFX10_AEncoding()) {
emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
return SDValue();
}
const bool IsGFX11 = AMDGPU::isGFX11(*Subtarget);
const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
const bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget);
const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
const bool Is64 = NodePtr.getValueType() == MVT::i64;
const unsigned NumVDataDwords = 4;
const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
const bool UseNSA = (Subtarget->hasNSAEncoding() &&
NumVAddrs <= Subtarget->getNSAMaxSize()) ||
IsGFX12Plus;
const unsigned BaseOpcodes[2][2] = {
{AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
{AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
int Opcode;
if (UseNSA) {
Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
IsGFX12Plus ? AMDGPU::MIMGEncGfx12
: IsGFX11 ? AMDGPU::MIMGEncGfx11NSA
: AMDGPU::MIMGEncGfx10NSA,
NumVDataDwords, NumVAddrDwords);
} else {
assert(!IsGFX12Plus);
Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
IsGFX11 ? AMDGPU::MIMGEncGfx11Default
: AMDGPU::MIMGEncGfx10Default,
NumVDataDwords, NumVAddrDwords);
}
assert(Opcode != -1);
SmallVector<SDValue, 16> Ops;
auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
SmallVector<SDValue, 3> Lanes;
DAG.ExtractVectorElements(Op, Lanes, 0, 3);
if (Lanes[0].getValueSizeInBits() == 32) {
for (unsigned I = 0; I < 3; ++I)
Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
} else {
if (IsAligned) {
Ops.push_back(
DAG.getBitcast(MVT::i32,
DAG.getBuildVector(MVT::v2f16, DL,
{ Lanes[0], Lanes[1] })));
Ops.push_back(Lanes[2]);
} else {
SDValue Elt0 = Ops.pop_back_val();
Ops.push_back(
DAG.getBitcast(MVT::i32,
DAG.getBuildVector(MVT::v2f16, DL,
{ Elt0, Lanes[0] })));
Ops.push_back(
DAG.getBitcast(MVT::i32,
DAG.getBuildVector(MVT::v2f16, DL,
{ Lanes[1], Lanes[2] })));
}
}
};
if (UseNSA && IsGFX11Plus) {
Ops.push_back(NodePtr);
Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
Ops.push_back(RayOrigin);
if (IsA16) {
SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes;
DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3);
DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3);
for (unsigned I = 0; I < 3; ++I) {
MergedLanes.push_back(DAG.getBitcast(
MVT::i32, DAG.getBuildVector(MVT::v2f16, DL,
{DirLanes[I], InvDirLanes[I]})));
}
Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes));
} else {
Ops.push_back(RayDir);
Ops.push_back(RayInvDir);
}
} else {
if (Is64)
DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0,
2);
else
Ops.push_back(NodePtr);
Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
packLanes(RayOrigin, true);
packLanes(RayDir, true);
packLanes(RayInvDir, false);
}
if (!UseNSA) {
// Build a single vector containing all the operands so far prepared.
if (NumVAddrDwords > 12) {
SDValue Undef = DAG.getUNDEF(MVT::i32);
Ops.append(16 - Ops.size(), Undef);
}
assert(Ops.size() >= 8 && Ops.size() <= 12);
SDValue MergedOps = DAG.getBuildVector(
MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops);
Ops.clear();
Ops.push_back(MergedOps);
}
Ops.push_back(TDescr);
Ops.push_back(DAG.getTargetConstant(IsA16, DL, MVT::i1));
Ops.push_back(M->getChain());
auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
MachineMemOperand *MemRef = M->getMemOperand();
DAG.setNodeMemRefs(NewNode, {MemRef});
return SDValue(NewNode, 0);
}
case Intrinsic::amdgcn_global_atomic_fmin:
case Intrinsic::amdgcn_global_atomic_fmax:
case Intrinsic::amdgcn_global_atomic_fmin_num:
case Intrinsic::amdgcn_global_atomic_fmax_num:
case Intrinsic::amdgcn_flat_atomic_fmin:
case Intrinsic::amdgcn_flat_atomic_fmax:
case Intrinsic::amdgcn_flat_atomic_fmin_num:
case Intrinsic::amdgcn_flat_atomic_fmax_num: {
MemSDNode *M = cast<MemSDNode>(Op);
SDValue Ops[] = {
M->getOperand(0), // Chain
M->getOperand(2), // Ptr
M->getOperand(3) // Value
};
unsigned Opcode = 0;
switch (IntrID) {
case Intrinsic::amdgcn_global_atomic_fmin:
case Intrinsic::amdgcn_global_atomic_fmin_num:
case Intrinsic::amdgcn_flat_atomic_fmin:
case Intrinsic::amdgcn_flat_atomic_fmin_num: {
Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
break;
}
case Intrinsic::amdgcn_global_atomic_fmax:
case Intrinsic::amdgcn_global_atomic_fmax_num:
case Intrinsic::amdgcn_flat_atomic_fmax:
case Intrinsic::amdgcn_flat_atomic_fmax_num: {
Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
break;
}
default:
llvm_unreachable("unhandled atomic opcode");
}
return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
M->getVTList(), Ops, M->getMemoryVT(),
M->getMemOperand());
}
case Intrinsic::amdgcn_s_get_barrier_state: {
SDValue Chain = Op->getOperand(0);
SmallVector<SDValue, 2> Ops;
unsigned Opc;
bool IsInlinableBarID = false;
int64_t BarID;
if (isa<ConstantSDNode>(Op->getOperand(2))) {
BarID = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
IsInlinableBarID = AMDGPU::isInlinableIntLiteral(BarID);
}
if (IsInlinableBarID) {
Opc = AMDGPU::S_GET_BARRIER_STATE_IMM;
SDValue K = DAG.getTargetConstant(BarID, DL, MVT::i32);
Ops.push_back(K);
} else {
Opc = AMDGPU::S_GET_BARRIER_STATE_M0;
SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(2));
Ops.push_back(M0Val.getValue(0));
}
auto NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
return SDValue(NewMI, 0);
}
default:
if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
AMDGPU::getImageDimIntrinsicInfo(IntrID))
return lowerImage(Op, ImageDimIntr, DAG, true);
return SDValue();
}
}
// Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
// dwordx4 if on SI and handle TFE loads.
SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
SDVTList VTList,
ArrayRef<SDValue> Ops, EVT MemVT,
MachineMemOperand *MMO,
SelectionDAG &DAG) const {
LLVMContext &C = *DAG.getContext();
MachineFunction &MF = DAG.getMachineFunction();
EVT VT = VTList.VTs[0];
assert(VTList.NumVTs == 2 || VTList.NumVTs == 3);
bool IsTFE = VTList.NumVTs == 3;
if (IsTFE) {
unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32);
unsigned NumOpDWords = NumValueDWords + 1;
EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords);
SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]);
MachineMemOperand *OpDWordsMMO =
MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4);
SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops,
OpDWordsVT, OpDWordsMMO, DAG);
SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op,
DAG.getVectorIdxConstant(NumValueDWords, DL));
SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL);
SDValue ValueDWords =
NumValueDWords == 1
? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx)
: DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op,
ZeroIdx);
SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords);
return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL);
}
if (!Subtarget->hasDwordx3LoadStores() &&
(VT == MVT::v3i32 || VT == MVT::v3f32)) {
EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4);
EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4);
MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16);
SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
WidenedMemVT, WidenedMMO);
SDValue Value = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Op,
DAG.getVectorIdxConstant(0, DL));
return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL);
}
return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO);
}
SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
bool ImageStore) const {
EVT StoreVT = VData.getValueType();
// No change for f16 and legal vector D16 types.
if (!StoreVT.isVector())
return VData;
SDLoc DL(VData);
unsigned NumElements = StoreVT.getVectorNumElements();
if (Subtarget->hasUnpackedD16VMem()) {
// We need to unpack the packed data to store.
EVT IntStoreVT = StoreVT.changeTypeToInteger();
SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
EVT EquivStoreVT =
EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
return DAG.UnrollVectorOp(ZExt.getNode());
}
// The sq block of gfx8.1 does not estimate register use correctly for d16
// image store instructions. The data operand is computed as if it were not a
// d16 image instruction.
if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
// Bitcast to i16
EVT IntStoreVT = StoreVT.changeTypeToInteger();
SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
// Decompose into scalars
SmallVector<SDValue, 4> Elts;
DAG.ExtractVectorElements(IntVData, Elts);
// Group pairs of i16 into v2i16 and bitcast to i32
SmallVector<SDValue, 4> PackedElts;
for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
SDValue Pair =
DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
PackedElts.push_back(IntPair);
}
if ((NumElements % 2) == 1) {
// Handle v3i16
unsigned I = Elts.size() / 2;
SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
{Elts[I * 2], DAG.getUNDEF(MVT::i16)});
SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
PackedElts.push_back(IntPair);
}
// Pad using UNDEF
PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
// Build final vector
EVT VecVT =
EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
return DAG.getBuildVector(VecVT, DL, PackedElts);
}
if (NumElements == 3) {
EVT IntStoreVT =
EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
EVT WidenedStoreVT = EVT::getVectorVT(
*DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
WidenedStoreVT.getStoreSizeInBits());
SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
}
assert(isTypeLegal(StoreVT));
return VData;
}
SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
unsigned IntrinsicID = Op.getConstantOperandVal(1);
MachineFunction &MF = DAG.getMachineFunction();
switch (IntrinsicID) {
case Intrinsic::amdgcn_exp_compr: {
if (!Subtarget->hasCompressedExport()) {
DiagnosticInfoUnsupported BadIntrin(
DAG.getMachineFunction().getFunction(),
"intrinsic not supported on subtarget", DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
}
SDValue Src0 = Op.getOperand(4);
SDValue Src1 = Op.getOperand(5);
// Hack around illegal type on SI by directly selecting it.
if (isTypeLegal(Src0.getValueType()))
return SDValue();
const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
SDValue Undef = DAG.getUNDEF(MVT::f32);
const SDValue Ops[] = {
Op.getOperand(2), // tgt
DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
Undef, // src2
Undef, // src3
Op.getOperand(7), // vm
DAG.getTargetConstant(1, DL, MVT::i1), // compr
Op.getOperand(3), // en
Op.getOperand(0) // Chain
};
unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
}
case Intrinsic::amdgcn_s_barrier: {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
if (getTargetMachine().getOptLevel() > CodeGenOptLevel::None) {
unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
if (WGSize <= ST.getWavefrontSize())
return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
Op.getOperand(0)), 0);
}
// On GFX12 lower s_barrier into s_barrier_signal_imm and s_barrier_wait
if (ST.hasSplitBarriers()) {
SDValue K =
DAG.getTargetConstant(AMDGPU::Barrier::WORKGROUP, DL, MVT::i32);
SDValue BarSignal =
SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_SIGNAL_IMM, DL,
MVT::Other, K, Op.getOperand(0)),
0);
SDValue BarWait =
SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_WAIT, DL, MVT::Other, K,
BarSignal.getValue(0)),
0);
return BarWait;
}
return SDValue();
};
case Intrinsic::amdgcn_tbuffer_store: {
SDValue VData = Op.getOperand(2);
bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
if (IsD16)
VData = handleD16VData(VData, DAG);
unsigned Dfmt = Op.getConstantOperandVal(8);
unsigned Nfmt = Op.getConstantOperandVal(9);
unsigned Glc = Op.getConstantOperandVal(10);
unsigned Slc = Op.getConstantOperandVal(11);
unsigned IdxEn = getIdxEn(Op.getOperand(4));
SDValue Ops[] = {
Chain,
VData, // vdata
Op.getOperand(3), // rsrc
Op.getOperand(4), // vindex
Op.getOperand(5), // voffset
Op.getOperand(6), // soffset
Op.getOperand(7), // offset
DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
};
unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
AMDGPUISD::TBUFFER_STORE_FORMAT;
MemSDNode *M = cast<MemSDNode>(Op);
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_struct_tbuffer_store:
case Intrinsic::amdgcn_struct_ptr_tbuffer_store: {
SDValue VData = Op.getOperand(2);
bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
if (IsD16)
VData = handleD16VData(VData, DAG);
SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
SDValue Ops[] = {
Chain,
VData, // vdata
Rsrc, // rsrc
Op.getOperand(4), // vindex
Offsets.first, // voffset
SOffset, // soffset
Offsets.second, // offset
Op.getOperand(7), // format
Op.getOperand(8), // cachepolicy, swizzled buffer
DAG.getTargetConstant(1, DL, MVT::i1), // idxen
};
unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
AMDGPUISD::TBUFFER_STORE_FORMAT;
MemSDNode *M = cast<MemSDNode>(Op);
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_raw_tbuffer_store:
case Intrinsic::amdgcn_raw_ptr_tbuffer_store: {
SDValue VData = Op.getOperand(2);
bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
if (IsD16)
VData = handleD16VData(VData, DAG);
SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
SDValue Ops[] = {
Chain,
VData, // vdata
Rsrc, // rsrc
DAG.getConstant(0, DL, MVT::i32), // vindex
Offsets.first, // voffset
SOffset, // soffset
Offsets.second, // offset
Op.getOperand(6), // format
Op.getOperand(7), // cachepolicy, swizzled buffer
DAG.getTargetConstant(0, DL, MVT::i1), // idxen
};
unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
AMDGPUISD::TBUFFER_STORE_FORMAT;
MemSDNode *M = cast<MemSDNode>(Op);
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_buffer_store:
case Intrinsic::amdgcn_buffer_store_format: {
SDValue VData = Op.getOperand(2);
bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
if (IsD16)
VData = handleD16VData(VData, DAG);
unsigned Glc = Op.getConstantOperandVal(6);
unsigned Slc = Op.getConstantOperandVal(7);
unsigned IdxEn = getIdxEn(Op.getOperand(4));
SDValue Ops[] = {
Chain,
VData,
Op.getOperand(3), // rsrc
Op.getOperand(4), // vindex
SDValue(), // voffset -- will be set by setBufferOffsets
SDValue(), // soffset -- will be set by setBufferOffsets
SDValue(), // offset -- will be set by setBufferOffsets
DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
};
setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
MemSDNode *M = cast<MemSDNode>(Op);
// Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
EVT VDataType = VData.getValueType().getScalarType();
if (VDataType == MVT::i8 || VDataType == MVT::i16)
return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_raw_buffer_store:
case Intrinsic::amdgcn_raw_ptr_buffer_store:
case Intrinsic::amdgcn_raw_buffer_store_format:
case Intrinsic::amdgcn_raw_ptr_buffer_store_format: {
const bool IsFormat =
IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format ||
IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format;
SDValue VData = Op.getOperand(2);
EVT VDataVT = VData.getValueType();
EVT EltType = VDataVT.getScalarType();
bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
if (IsD16) {
VData = handleD16VData(VData, DAG);
VDataVT = VData.getValueType();
}
if (!isTypeLegal(VDataVT)) {
VData =
DAG.getNode(ISD::BITCAST, DL,
getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
}
SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
SDValue Ops[] = {
Chain,
VData,
Rsrc,
DAG.getConstant(0, DL, MVT::i32), // vindex
Offsets.first, // voffset
SOffset, // soffset
Offsets.second, // offset
Op.getOperand(6), // cachepolicy, swizzled buffer
DAG.getTargetConstant(0, DL, MVT::i1), // idxen
};
unsigned Opc =
IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
MemSDNode *M = cast<MemSDNode>(Op);
// Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_struct_buffer_store:
case Intrinsic::amdgcn_struct_ptr_buffer_store:
case Intrinsic::amdgcn_struct_buffer_store_format:
case Intrinsic::amdgcn_struct_ptr_buffer_store_format: {
const bool IsFormat =
IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format ||
IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format;
SDValue VData = Op.getOperand(2);
EVT VDataVT = VData.getValueType();
EVT EltType = VDataVT.getScalarType();
bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
if (IsD16) {
VData = handleD16VData(VData, DAG);
VDataVT = VData.getValueType();
}
if (!isTypeLegal(VDataVT)) {
VData =
DAG.getNode(ISD::BITCAST, DL,
getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
}
auto Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
SDValue Ops[] = {
Chain,
VData,
Rsrc,
Op.getOperand(4), // vindex
Offsets.first, // voffset
SOffset, // soffset
Offsets.second, // offset
Op.getOperand(7), // cachepolicy, swizzled buffer
DAG.getTargetConstant(1, DL, MVT::i1), // idxen
};
unsigned Opc =
!IsFormat ? AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
MemSDNode *M = cast<MemSDNode>(Op);
// Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
EVT VDataType = VData.getValueType().getScalarType();
if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
case Intrinsic::amdgcn_raw_buffer_load_lds:
case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
case Intrinsic::amdgcn_struct_buffer_load_lds:
case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
assert(!AMDGPU::isGFX12Plus(*Subtarget));
unsigned Opc;
bool HasVIndex =
IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds ||
IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds;
unsigned OpOffset = HasVIndex ? 1 : 0;
SDValue VOffset = Op.getOperand(5 + OpOffset);
bool HasVOffset = !isNullConstant(VOffset);
unsigned Size = Op->getConstantOperandVal(4);
switch (Size) {
default:
return SDValue();
case 1:
Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN
: AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN
: HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN
: AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET;
break;
case 2:
Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN
: AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN
: HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN
: AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET;
break;
case 4:
Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN
: AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN
: HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN
: AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET;
break;
}
SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
SmallVector<SDValue, 8> Ops;
if (HasVIndex && HasVOffset)
Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL,
{ Op.getOperand(5), // VIndex
VOffset }));
else if (HasVIndex)
Ops.push_back(Op.getOperand(5));
else if (HasVOffset)
Ops.push_back(VOffset);
SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
Ops.push_back(Rsrc);
Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset
Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset
unsigned Aux = Op.getConstantOperandVal(8 + OpOffset);
Ops.push_back(
DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol
Ops.push_back(DAG.getTargetConstant(
Aux & AMDGPU::CPol::SWZ_pregfx12 ? 1 : 0, DL, MVT::i8)); // swz
Ops.push_back(M0Val.getValue(0)); // Chain
Ops.push_back(M0Val.getValue(1)); // Glue
auto *M = cast<MemSDNode>(Op);
MachineMemOperand *LoadMMO = M->getMemOperand();
// Don't set the offset value here because the pointer points to the base of
// the buffer.
MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
MachinePointerInfo StorePtrI = LoadPtrI;
LoadPtrI.V = PoisonValue::get(
PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS));
LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS;
StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
auto F = LoadMMO->getFlags() &
~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
LoadMMO =
MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size,
LoadMMO->getBaseAlign(), LoadMMO->getAAInfo());
MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t),
LoadMMO->getBaseAlign(), LoadMMO->getAAInfo());
auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops);
DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
return SDValue(Load, 0);
}
case Intrinsic::amdgcn_global_load_lds: {
unsigned Opc;
unsigned Size = Op->getConstantOperandVal(4);
switch (Size) {
default:
return SDValue();
case 1:
Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE;
break;
case 2:
Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT;
break;
case 4:
Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD;
break;
}
auto *M = cast<MemSDNode>(Op);
SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
SmallVector<SDValue, 6> Ops;
SDValue Addr = Op.getOperand(2); // Global ptr
SDValue VOffset;
// Try to split SAddr and VOffset. Global and LDS pointers share the same
// immediate offset, so we cannot use a regular SelectGlobalSAddr().
if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) {
SDValue LHS = Addr.getOperand(0);
SDValue RHS = Addr.getOperand(1);
if (LHS->isDivergent())
std::swap(LHS, RHS);
if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND &&
RHS.getOperand(0).getValueType() == MVT::i32) {
// add (i64 sgpr), (zero_extend (i32 vgpr))
Addr = LHS;
VOffset = RHS.getOperand(0);
}
}
Ops.push_back(Addr);
if (!Addr->isDivergent()) {
Opc = AMDGPU::getGlobalSaddrOp(Opc);
if (!VOffset)
VOffset = SDValue(
DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32,
DAG.getTargetConstant(0, DL, MVT::i32)), 0);
Ops.push_back(VOffset);
}
Ops.push_back(Op.getOperand(5)); // Offset
Ops.push_back(Op.getOperand(6)); // CPol
Ops.push_back(M0Val.getValue(0)); // Chain
Ops.push_back(M0Val.getValue(1)); // Glue
MachineMemOperand *LoadMMO = M->getMemOperand();
MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
LoadPtrI.Offset = Op->getConstantOperandVal(5);
MachinePointerInfo StorePtrI = LoadPtrI;
LoadPtrI.V = PoisonValue::get(
PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS));
LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS;
StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
auto F = LoadMMO->getFlags() &
~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
LoadMMO =
MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size,
LoadMMO->getBaseAlign(), LoadMMO->getAAInfo());
MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), Align(4),
LoadMMO->getAAInfo());
auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
return SDValue(Load, 0);
}
case Intrinsic::amdgcn_end_cf:
return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
Op->getOperand(2), Chain), 0);
case Intrinsic::amdgcn_s_barrier_init:
case Intrinsic::amdgcn_s_barrier_join:
case Intrinsic::amdgcn_s_wakeup_barrier: {
SDValue Chain = Op->getOperand(0);
SmallVector<SDValue, 2> Ops;
SDValue BarOp = Op->getOperand(2);
unsigned Opc;
bool IsInlinableBarID = false;
int64_t BarVal;
if (isa<ConstantSDNode>(BarOp)) {
BarVal = cast<ConstantSDNode>(BarOp)->getSExtValue();
IsInlinableBarID = AMDGPU::isInlinableIntLiteral(BarVal);
}
if (IsInlinableBarID) {
switch (IntrinsicID) {
default:
return SDValue();
case Intrinsic::amdgcn_s_barrier_init:
Opc = AMDGPU::S_BARRIER_INIT_IMM;
break;
case Intrinsic::amdgcn_s_barrier_join:
Opc = AMDGPU::S_BARRIER_JOIN_IMM;
break;
case Intrinsic::amdgcn_s_wakeup_barrier:
Opc = AMDGPU::S_WAKEUP_BARRIER_IMM;
break;
}
SDValue K = DAG.getTargetConstant(BarVal, DL, MVT::i32);
Ops.push_back(K);
} else {
switch (IntrinsicID) {
default:
return SDValue();
case Intrinsic::amdgcn_s_barrier_init:
Opc = AMDGPU::S_BARRIER_INIT_M0;
break;
case Intrinsic::amdgcn_s_barrier_join:
Opc = AMDGPU::S_BARRIER_JOIN_M0;
break;
case Intrinsic::amdgcn_s_wakeup_barrier:
Opc = AMDGPU::S_WAKEUP_BARRIER_M0;
break;
}
}
if (IntrinsicID == Intrinsic::amdgcn_s_barrier_init) {
SDValue M0Val;
// Member count will be read from M0[16:22]
M0Val = DAG.getNode(ISD::SHL, DL, MVT::i32, Op.getOperand(3),
DAG.getShiftAmountConstant(16, MVT::i32, DL));
if (!IsInlinableBarID) {
// If reference to barrier id is not an inline constant then it must be
// referenced with M0[4:0]. Perform an OR with the member count to
// include it in M0.
M0Val = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32,
Op.getOperand(2), M0Val),
0);
}
Ops.push_back(copyToM0(DAG, Chain, DL, M0Val).getValue(0));
} else if (!IsInlinableBarID) {
Ops.push_back(copyToM0(DAG, Chain, DL, BarOp).getValue(0));
}
auto NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
return SDValue(NewMI, 0);
}
default: {
if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
return lowerImage(Op, ImageDimIntr, DAG, true);
return Op;
}
}
}
// The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
// offset (the offset that is included in bounds checking and swizzling, to be
// split between the instruction's voffset and immoffset fields) and soffset
// (the offset that is excluded from bounds checking and swizzling, to go in
// the instruction's soffset field). This function takes the first kind of
// offset and figures out how to split it between voffset and immoffset.
std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
SDValue Offset, SelectionDAG &DAG) const {
SDLoc DL(Offset);
const unsigned MaxImm = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget);
SDValue N0 = Offset;
ConstantSDNode *C1 = nullptr;
if ((C1 = dyn_cast<ConstantSDNode>(N0)))
N0 = SDValue();
else if (DAG.isBaseWithConstantOffset(N0)) {
C1 = cast<ConstantSDNode>(N0.getOperand(1));
N0 = N0.getOperand(0);
}
if (C1) {
unsigned ImmOffset = C1->getZExtValue();
// If the immediate value is too big for the immoffset field, put only bits
// that would normally fit in the immoffset field. The remaining value that
// is copied/added for the voffset field is a large power of 2, and it
// stands more chance of being CSEd with the copy/add for another similar
// load/store.
// However, do not do that rounding down if that is a negative
// number, as it appears to be illegal to have a negative offset in the
// vgpr, even if adding the immediate offset makes it positive.
unsigned Overflow = ImmOffset & ~MaxImm;
ImmOffset -= Overflow;
if ((int32_t)Overflow < 0) {
Overflow += ImmOffset;
ImmOffset = 0;
}
C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
if (Overflow) {
auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
if (!N0)
N0 = OverflowVal;
else {
SDValue Ops[] = { N0, OverflowVal };
N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
}
}
}
if (!N0)
N0 = DAG.getConstant(0, DL, MVT::i32);
if (!C1)
C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
return {N0, SDValue(C1, 0)};
}
// Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
// three offsets (voffset, soffset and instoffset) into the SDValue[3] array
// pointed to by Offsets.
void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
SelectionDAG &DAG, SDValue *Offsets,
Align Alignment) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
SDLoc DL(CombinedOffset);
if (auto *C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
uint32_t Imm = C->getZExtValue();
uint32_t SOffset, ImmOffset;
if (TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) {
Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
return;
}
}
if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
SDValue N0 = CombinedOffset.getOperand(0);
SDValue N1 = CombinedOffset.getOperand(1);
uint32_t SOffset, ImmOffset;
int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
if (Offset >= 0 &&
TII->splitMUBUFOffset(Offset, SOffset, ImmOffset, Alignment)) {
Offsets[0] = N0;
Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
return;
}
}
SDValue SOffsetZero = Subtarget->hasRestrictedSOffset()
? DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32)
: DAG.getConstant(0, DL, MVT::i32);
Offsets[0] = CombinedOffset;
Offsets[1] = SOffsetZero;
Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
}
SDValue SITargetLowering::bufferRsrcPtrToVector(SDValue MaybePointer,
SelectionDAG &DAG) const {
if (!MaybePointer.getValueType().isScalarInteger())
return MaybePointer;
SDLoc DL(MaybePointer);
SDValue Rsrc = DAG.getBitcast(MVT::v4i32, MaybePointer);
return Rsrc;
}
// Wrap a global or flat pointer into a buffer intrinsic using the flags
// specified in the intrinsic.
SDValue SITargetLowering::lowerPointerAsRsrcIntrin(SDNode *Op,
SelectionDAG &DAG) const {
SDLoc Loc(Op);
SDValue Pointer = Op->getOperand(1);
SDValue Stride = Op->getOperand(2);
SDValue NumRecords = Op->getOperand(3);
SDValue Flags = Op->getOperand(4);
auto [LowHalf, HighHalf] = DAG.SplitScalar(Pointer, Loc, MVT::i32, MVT::i32);
SDValue Mask = DAG.getConstant(0x0000ffff, Loc, MVT::i32);
SDValue Masked = DAG.getNode(ISD::AND, Loc, MVT::i32, HighHalf, Mask);
std::optional<uint32_t> ConstStride = std::nullopt;
if (auto *ConstNode = dyn_cast<ConstantSDNode>(Stride))
ConstStride = ConstNode->getZExtValue();
SDValue NewHighHalf = Masked;
if (!ConstStride || *ConstStride != 0) {
SDValue ShiftedStride;
if (ConstStride) {
ShiftedStride = DAG.getConstant(*ConstStride << 16, Loc, MVT::i32);
} else {
SDValue ExtStride = DAG.getAnyExtOrTrunc(Stride, Loc, MVT::i32);
ShiftedStride =
DAG.getNode(ISD::SHL, Loc, MVT::i32, ExtStride,
DAG.getShiftAmountConstant(16, MVT::i32, Loc));
}
NewHighHalf = DAG.getNode(ISD::OR, Loc, MVT::i32, Masked, ShiftedStride);
}
SDValue Rsrc = DAG.getNode(ISD::BUILD_VECTOR, Loc, MVT::v4i32, LowHalf,
NewHighHalf, NumRecords, Flags);
SDValue RsrcPtr = DAG.getNode(ISD::BITCAST, Loc, MVT::i128, Rsrc);
return RsrcPtr;
}
// Handle 8 bit and 16 bit buffer loads
SDValue
SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, EVT LoadVT,
SDLoc DL, ArrayRef<SDValue> Ops,
MachineMemOperand *MMO) const {
EVT IntVT = LoadVT.changeTypeToInteger();
unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
SDValue BufferLoad =
DAG.getMemIntrinsicNode(Opc, DL, ResList, Ops, IntVT, MMO);
SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
}
// Handle 8 bit and 16 bit buffer stores
SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
EVT VDataType, SDLoc DL,
SDValue Ops[],
MemSDNode *M) const {
if (VDataType == MVT::f16)
Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
Ops[1] = BufferStoreExt;
unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
AMDGPUISD::BUFFER_STORE_SHORT;
ArrayRef<SDValue> OpsRef = ArrayRef(&Ops[0], 9);
return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
M->getMemOperand());
}
static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
ISD::LoadExtType ExtType, SDValue Op,
const SDLoc &SL, EVT VT) {
if (VT.bitsLT(Op.getValueType()))
return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
switch (ExtType) {
case ISD::SEXTLOAD:
return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
case ISD::ZEXTLOAD:
return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
case ISD::EXTLOAD:
return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
case ISD::NON_EXTLOAD:
return Op;
}
llvm_unreachable("invalid ext type");
}
// Try to turn 8 and 16-bit scalar loads into SMEM eligible 32-bit loads.
// TODO: Skip this on GFX12 which does have scalar sub-dword loads.
SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
if (Ld->getAlign() < Align(4) || Ld->isDivergent())
return SDValue();
// FIXME: Constant loads should all be marked invariant.
unsigned AS = Ld->getAddressSpace();
if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
(AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
return SDValue();
// Don't do this early, since it may interfere with adjacent load merging for
// illegal types. We can avoid losing alignment information for exotic types
// pre-legalize.
EVT MemVT = Ld->getMemoryVT();
if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
MemVT.getSizeInBits() >= 32)
return SDValue();
SDLoc SL(Ld);
assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
"unexpected vector extload");
// TODO: Drop only high part of range.
SDValue Ptr = Ld->getBasePtr();
SDValue NewLoad = DAG.getLoad(
ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr,
Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(),
Ld->getMemOperand()->getFlags(), Ld->getAAInfo(),
nullptr); // Drop ranges
EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
if (MemVT.isFloatingPoint()) {
assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
"unexpected fp extload");
TruncVT = MemVT.changeTypeToInteger();
}
SDValue Cvt = NewLoad;
if (Ld->getExtensionType() == ISD::SEXTLOAD) {
Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
DAG.getValueType(TruncVT));
} else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
Ld->getExtensionType() == ISD::NON_EXTLOAD) {
Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
} else {
assert(Ld->getExtensionType() == ISD::EXTLOAD);
}
EVT VT = Ld->getValueType(0);
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
DCI.AddToWorklist(Cvt.getNode());
// We may need to handle exotic cases, such as i16->i64 extloads, so insert
// the appropriate extension from the 32-bit load.
Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
DCI.AddToWorklist(Cvt.getNode());
// Handle conversion back to floating point if necessary.
Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
}
static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO,
const SIMachineFunctionInfo &Info) {
// TODO: Should check if the address can definitely not access stack.
if (Info.isEntryFunction())
return Info.getUserSGPRInfo().hasFlatScratchInit();
return true;
}
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *Load = cast<LoadSDNode>(Op);
ISD::LoadExtType ExtType = Load->getExtensionType();
EVT MemVT = Load->getMemoryVT();
if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
return SDValue();
// FIXME: Copied from PPC
// First, load into 32 bits, then truncate to 1 bit.
SDValue Chain = Load->getChain();
SDValue BasePtr = Load->getBasePtr();
MachineMemOperand *MMO = Load->getMemOperand();
EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
BasePtr, RealMemVT, MMO);
if (!MemVT.isVector()) {
SDValue Ops[] = {
DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
NewLD.getValue(1)
};
return DAG.getMergeValues(Ops, DL);
}
SmallVector<SDValue, 3> Elts;
for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
DAG.getConstant(I, DL, MVT::i32));
Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
}
SDValue Ops[] = {
DAG.getBuildVector(MemVT, DL, Elts),
NewLD.getValue(1)
};
return DAG.getMergeValues(Ops, DL);
}
if (!MemVT.isVector())
return SDValue();
assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented.");
Align Alignment = Load->getAlign();
unsigned AS = Load->getAddressSpace();
if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS &&
Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
return SplitVectorLoad(Op, DAG);
}
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
// If there is a possibility that flat instruction access scratch memory
// then we need to use the same legalization rules we use for private.
if (AS == AMDGPUAS::FLAT_ADDRESS &&
!Subtarget->hasMultiDwordFlatScratchAddressing())
AS = addressMayBeAccessedAsPrivate(Load->getMemOperand(), *MFI) ?
AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
unsigned NumElements = MemVT.getVectorNumElements();
if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) {
if (MemVT.isPow2VectorType() ||
(Subtarget->hasScalarDwordx3Loads() && NumElements == 3))
return SDValue();
return WidenOrSplitVectorLoad(Op, DAG);
}
// Non-uniform loads will be selected to MUBUF instructions, so they
// have the same legalization requirements as global and private
// loads.
//
}
if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
AS == AMDGPUAS::GLOBAL_ADDRESS) {
if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
Alignment >= Align(4) && NumElements < 32) {
if (MemVT.isPow2VectorType() ||
(Subtarget->hasScalarDwordx3Loads() && NumElements == 3))
return SDValue();
return WidenOrSplitVectorLoad(Op, DAG);
}
// Non-uniform loads will be selected to MUBUF instructions, so they
// have the same legalization requirements as global and private
// loads.
//
}
if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
AS == AMDGPUAS::GLOBAL_ADDRESS ||
AS == AMDGPUAS::FLAT_ADDRESS) {
if (NumElements > 4)
return SplitVectorLoad(Op, DAG);
// v3 loads not supported on SI.
if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
return WidenOrSplitVectorLoad(Op, DAG);
// v3 and v4 loads are supported for private and global memory.
return SDValue();
}
if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
// Depending on the setting of the private_element_size field in the
// resource descriptor, we can only make private accesses up to a certain
// size.
switch (Subtarget->getMaxPrivateElementSize()) {
case 4: {
SDValue Ops[2];
std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
return DAG.getMergeValues(Ops, DL);
}
case 8:
if (NumElements > 2)
return SplitVectorLoad(Op, DAG);
return SDValue();
case 16:
// Same as global/flat
if (NumElements > 4)
return SplitVectorLoad(Op, DAG);
// v3 loads not supported on SI.
if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
return WidenOrSplitVectorLoad(Op, DAG);
return SDValue();
default:
llvm_unreachable("unsupported private_element_size");
}
} else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
unsigned Fast = 0;
auto Flags = Load->getMemOperand()->getFlags();
if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
Load->getAlign(), Flags, &Fast) &&
Fast > 1)
return SDValue();
if (MemVT.isVector())
return SplitVectorLoad(Op, DAG);
}
if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
MemVT, *Load->getMemOperand())) {
SDValue Ops[2];
std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
return DAG.getMergeValues(Ops, DL);
}
return SDValue();
}
SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256 ||
VT.getSizeInBits() == 512)
return splitTernaryVectorOp(Op, DAG);
assert(VT.getSizeInBits() == 64);
SDLoc DL(Op);
SDValue Cond = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
SDValue One = DAG.getConstant(1, DL, MVT::i32);
SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
return DAG.getNode(ISD::BITCAST, DL, VT, Res);
}
// Catch division cases where we can use shortcuts with rcp and rsq
// instructions.
SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
EVT VT = Op.getValueType();
const SDNodeFlags Flags = Op->getFlags();
bool AllowInaccurateRcp = Flags.hasApproximateFuncs() ||
DAG.getTarget().Options.UnsafeFPMath;
if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
// Without !fpmath accuracy information, we can't do more because we don't
// know exactly whether rcp is accurate enough to meet !fpmath requirement.
// f16 is always accurate enough
if (!AllowInaccurateRcp && VT != MVT::f16)
return SDValue();
if (CLHS->isExactlyValue(1.0)) {
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
// the CI documentation has a worst case error of 1 ulp.
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
// use it as long as we aren't trying to use denormals.
//
// v_rcp_f16 and v_rsq_f16 DO support denormals and 0.51ulp.
// 1.0 / sqrt(x) -> rsq(x)
// XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
// error seems really high at 2^29 ULP.
// 1.0 / x -> rcp(x)
return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
}
// Same as for 1.0, but expand the sign out of the constant.
if (CLHS->isExactlyValue(-1.0)) {
// -1.0 / x -> rcp (fneg x)
SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
}
}
// For f16 require afn or arcp.
// For f32 require afn.
if (!AllowInaccurateRcp && (VT != MVT::f16 || !Flags.hasAllowReciprocal()))
return SDValue();
// Turn into multiply by the reciprocal.
// x / y -> x * (1.0 / y)
SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
}
SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue X = Op.getOperand(0);
SDValue Y = Op.getOperand(1);
EVT VT = Op.getValueType();
const SDNodeFlags Flags = Op->getFlags();
bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
DAG.getTarget().Options.UnsafeFPMath;
if (!AllowInaccurateDiv)
return SDValue();
SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
SDValue One = DAG.getConstantFP(1.0, SL, VT);
SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
}
static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
EVT VT, SDValue A, SDValue B, SDValue GlueChain,
SDNodeFlags Flags) {
if (GlueChain->getNumValues() <= 1) {
return DAG.getNode(Opcode, SL, VT, A, B, Flags);
}
assert(GlueChain->getNumValues() == 3);
SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
switch (Opcode) {
default: llvm_unreachable("no chain equivalent for opcode");
case ISD::FMUL:
Opcode = AMDGPUISD::FMUL_W_CHAIN;
break;
}
return DAG.getNode(Opcode, SL, VTList,
{GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
Flags);
}
static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
EVT VT, SDValue A, SDValue B, SDValue C,
SDValue GlueChain, SDNodeFlags Flags) {
if (GlueChain->getNumValues() <= 1) {
return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
}
assert(GlueChain->getNumValues() == 3);
SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
switch (Opcode) {
default: llvm_unreachable("no chain equivalent for opcode");
case ISD::FMA:
Opcode = AMDGPUISD::FMA_W_CHAIN;
break;
}
return DAG.getNode(Opcode, SL, VTList,
{GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
Flags);
}
SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
return FastLowered;
SDLoc SL(Op);
SDValue Src0 = Op.getOperand(0);
SDValue Src1 = Op.getOperand(1);
SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
}
// Faster 2.5 ULP division that does not support denormals.
SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
SDNodeFlags Flags = Op->getFlags();
SDLoc SL(Op);
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS, Flags);
const APFloat K0Val(0x1p+96f);
const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
const APFloat K1Val(0x1p-32f);
const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One, Flags);
r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3, Flags);
// rcp does not support denormals.
SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1, Flags);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0, Flags);
return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul, Flags);
}
// Returns immediate value for setting the F32 denorm mode when using the
// S_DENORM_MODE instruction.
static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG,
const SIMachineFunctionInfo *Info,
const GCNSubtarget *ST) {
assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
uint32_t DPDenormModeDefault = Info->getMode().fpDenormModeDPValue();
uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2);
return DAG.getTargetConstant(Mode, SDLoc(), MVT::i32);
}
SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
return FastLowered;
// The selection matcher assumes anything with a chain selecting to a
// mayRaiseFPException machine instruction. Since we're introducing a chain
// here, we need to explicitly report nofpexcept for the regular fdiv
// lowering.
SDNodeFlags Flags = Op->getFlags();
Flags.setNoFPExcept(true);
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
{RHS, RHS, LHS}, Flags);
SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
{LHS, RHS, LHS}, Flags);
// Denominator is scaled to not be denormal, so using rcp is ok.
SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
DenominatorScaled, Flags);
SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
DenominatorScaled, Flags);
using namespace AMDGPU::Hwreg;
const unsigned Denorm32Reg = HwregEncoding::encode(ID_MODE, 4, 2);
const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
const MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const DenormalMode DenormMode = Info->getMode().FP32Denormals;
const bool PreservesDenormals = DenormMode == DenormalMode::getIEEE();
const bool HasDynamicDenormals =
(DenormMode.Input == DenormalMode::Dynamic) ||
(DenormMode.Output == DenormalMode::Dynamic);
SDValue SavedDenormMode;
if (!PreservesDenormals) {
// Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
// lowering. The chain dependence is insufficient, and we need glue. We do
// not need the glue variants in a strictfp function.
SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Glue = DAG.getEntryNode();
if (HasDynamicDenormals) {
SDNode *GetReg = DAG.getMachineNode(AMDGPU::S_GETREG_B32, SL,
DAG.getVTList(MVT::i32, MVT::Glue),
{BitField, Glue});
SavedDenormMode = SDValue(GetReg, 0);
Glue = DAG.getMergeValues(
{DAG.getEntryNode(), SDValue(GetReg, 0), SDValue(GetReg, 1)}, SL);
}
SDNode *EnableDenorm;
if (Subtarget->hasDenormModeInst()) {
const SDValue EnableDenormValue =
getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, Info, Subtarget);
EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, Glue,
EnableDenormValue)
.getNode();
} else {
const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
SL, MVT::i32);
EnableDenorm = DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
{EnableDenormValue, BitField, Glue});
}
SDValue Ops[3] = {
NegDivScale0,
SDValue(EnableDenorm, 0),
SDValue(EnableDenorm, 1)
};
NegDivScale0 = DAG.getMergeValues(Ops, SL);
}
SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
ApproxRcp, One, NegDivScale0, Flags);
SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
ApproxRcp, Fma0, Flags);
SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
Fma1, Fma1, Flags);
SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
NumeratorScaled, Mul, Flags);
SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
Fma2, Fma1, Mul, Fma2, Flags);
SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
NumeratorScaled, Fma3, Flags);
if (!PreservesDenormals) {
SDNode *DisableDenorm;
if (!HasDynamicDenormals && Subtarget->hasDenormModeInst()) {
const SDValue DisableDenormValue = getSPDenormModeValue(
FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, Info, Subtarget);
DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
Fma4.getValue(1), DisableDenormValue,
Fma4.getValue(2)).getNode();
} else {
assert(HasDynamicDenormals == (bool)SavedDenormMode);
const SDValue DisableDenormValue =
HasDynamicDenormals
? SavedDenormMode
: DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
DisableDenorm = DAG.getMachineNode(
AMDGPU::S_SETREG_B32, SL, MVT::Other,
{DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
}
SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
SDValue(DisableDenorm, 0), DAG.getRoot());
DAG.setRoot(OutputChain);
}
SDValue Scale = NumeratorScaled.getValue(1);
SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
{Fma4, Fma1, Fma3, Scale}, Flags);
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
}
SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
return FastLowered;
SDLoc SL(Op);
SDValue X = Op.getOperand(0);
SDValue Y = Op.getOperand(1);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
NegDivScale0, Mul, DivScale1);
SDValue Scale;
if (!Subtarget->hasUsableDivScaleConditionOutput()) {
// Workaround a hardware bug on SI where the condition output from div_scale
// is not usable.
const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
// Figure out if the scale to use for div_fmas.
SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
SDValue Scale0Hi
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
SDValue Scale1Hi
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
} else {
Scale = DivScale1.getValue(1);
}
SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
Fma4, Fma3, Mul, Scale);
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
}
SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT == MVT::f32)
return LowerFDIV32(Op, DAG);
if (VT == MVT::f64)
return LowerFDIV64(Op, DAG);
if (VT == MVT::f16)
return LowerFDIV16(Op, DAG);
llvm_unreachable("Unexpected type for fdiv");
}
SDValue SITargetLowering::LowerFFREXP(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue Val = Op.getOperand(0);
EVT VT = Val.getValueType();
EVT ResultExpVT = Op->getValueType(1);
EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32;
SDValue Mant = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getTargetConstant(Intrinsic::amdgcn_frexp_mant, dl, MVT::i32), Val);
SDValue Exp = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, dl, InstrExpVT,
DAG.getTargetConstant(Intrinsic::amdgcn_frexp_exp, dl, MVT::i32), Val);
if (Subtarget->hasFractBug()) {
SDValue Fabs = DAG.getNode(ISD::FABS, dl, VT, Val);
SDValue Inf = DAG.getConstantFP(
APFloat::getInf(SelectionDAG::EVTToAPFloatSemantics(VT)), dl, VT);
SDValue IsFinite = DAG.getSetCC(dl, MVT::i1, Fabs, Inf, ISD::SETOLT);
SDValue Zero = DAG.getConstant(0, dl, InstrExpVT);
Exp = DAG.getNode(ISD::SELECT, dl, InstrExpVT, IsFinite, Exp, Zero);
Mant = DAG.getNode(ISD::SELECT, dl, VT, IsFinite, Mant, Val);
}
SDValue CastExp = DAG.getSExtOrTrunc(Exp, dl, ResultExpVT);
return DAG.getMergeValues({Mant, CastExp}, dl);
}
SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT VT = Store->getMemoryVT();
if (VT == MVT::i1) {
return DAG.getTruncStore(Store->getChain(), DL,
DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
Store->getBasePtr(), MVT::i1, Store->getMemOperand());
}
assert(VT.isVector() &&
Store->getValue().getValueType().getScalarType() == MVT::i32);
unsigned AS = Store->getAddressSpace();
if (Subtarget->hasLDSMisalignedBug() &&
AS == AMDGPUAS::FLAT_ADDRESS &&
Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
return SplitVectorStore(Op, DAG);
}
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
// If there is a possibility that flat instruction access scratch memory
// then we need to use the same legalization rules we use for private.
if (AS == AMDGPUAS::FLAT_ADDRESS &&
!Subtarget->hasMultiDwordFlatScratchAddressing())
AS = addressMayBeAccessedAsPrivate(Store->getMemOperand(), *MFI) ?
AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
unsigned NumElements = VT.getVectorNumElements();
if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
AS == AMDGPUAS::FLAT_ADDRESS) {
if (NumElements > 4)
return SplitVectorStore(Op, DAG);
// v3 stores not supported on SI.
if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
return SplitVectorStore(Op, DAG);
if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
VT, *Store->getMemOperand()))
return expandUnalignedStore(Store, DAG);
return SDValue();
} else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
switch (Subtarget->getMaxPrivateElementSize()) {
case 4:
return scalarizeVectorStore(Store, DAG);
case 8:
if (NumElements > 2)
return SplitVectorStore(Op, DAG);
return SDValue();
case 16:
if (NumElements > 4 ||
(NumElements == 3 && !Subtarget->enableFlatScratch()))
return SplitVectorStore(Op, DAG);
return SDValue();
default:
llvm_unreachable("unsupported private_element_size");
}
} else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
unsigned Fast = 0;
auto Flags = Store->getMemOperand()->getFlags();
if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
Store->getAlign(), Flags, &Fast) &&
Fast > 1)
return SDValue();
if (VT.isVector())
return SplitVectorStore(Op, DAG);
return expandUnalignedStore(Store, DAG);
}
// Probably an invalid store. If so we'll end up emitting a selection error.
return SDValue();
}
// Avoid the full correct expansion for f32 sqrt when promoting from f16.
SDValue SITargetLowering::lowerFSQRTF16(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
assert(!Subtarget->has16BitInsts());
SDNodeFlags Flags = Op->getFlags();
SDValue Ext =
DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Op.getOperand(0), Flags);
SDValue SqrtID = DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, SL, MVT::i32);
SDValue Sqrt =
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::f32, SqrtID, Ext, Flags);
return DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Sqrt,
DAG.getTargetConstant(0, SL, MVT::i32), Flags);
}
SDValue SITargetLowering::lowerFSQRTF32(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
SDNodeFlags Flags = Op->getFlags();
MVT VT = Op.getValueType().getSimpleVT();
const SDValue X = Op.getOperand(0);
if (allowApproxFunc(DAG, Flags)) {
// Instruction is 1ulp but ignores denormals.
return DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, VT,
DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32), X, Flags);
}
SDValue ScaleThreshold = DAG.getConstantFP(0x1.0p-96f, DL, VT);
SDValue NeedScale = DAG.getSetCC(DL, MVT::i1, X, ScaleThreshold, ISD::SETOLT);
SDValue ScaleUpFactor = DAG.getConstantFP(0x1.0p+32f, DL, VT);
SDValue ScaledX = DAG.getNode(ISD::FMUL, DL, VT, X, ScaleUpFactor, Flags);
SDValue SqrtX =
DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledX, X, Flags);
SDValue SqrtS;
if (needsDenormHandlingF32(DAG, X, Flags)) {
SDValue SqrtID =
DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32);
SqrtS = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, SqrtID, SqrtX, Flags);
SDValue SqrtSAsInt = DAG.getNode(ISD::BITCAST, DL, MVT::i32, SqrtS);
SDValue SqrtSNextDownInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt,
DAG.getConstant(-1, DL, MVT::i32));
SDValue SqrtSNextDown = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextDownInt);
SDValue NegSqrtSNextDown =
DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextDown, Flags);
SDValue SqrtVP =
DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextDown, SqrtS, SqrtX, Flags);
SDValue SqrtSNextUpInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt,
DAG.getConstant(1, DL, MVT::i32));
SDValue SqrtSNextUp = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextUpInt);
SDValue NegSqrtSNextUp = DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextUp, Flags);
SDValue SqrtVS =
DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextUp, SqrtS, SqrtX, Flags);
SDValue Zero = DAG.getConstantFP(0.0f, DL, VT);
SDValue SqrtVPLE0 = DAG.getSetCC(DL, MVT::i1, SqrtVP, Zero, ISD::SETOLE);
SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPLE0, SqrtSNextDown, SqrtS,
Flags);
SDValue SqrtVPVSGT0 = DAG.getSetCC(DL, MVT::i1, SqrtVS, Zero, ISD::SETOGT);
SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPVSGT0, SqrtSNextUp, SqrtS,
Flags);
} else {
SDValue SqrtR = DAG.getNode(AMDGPUISD::RSQ, DL, VT, SqrtX, Flags);
SqrtS = DAG.getNode(ISD::FMUL, DL, VT, SqrtX, SqrtR, Flags);
SDValue Half = DAG.getConstantFP(0.5f, DL, VT);
SDValue SqrtH = DAG.getNode(ISD::FMUL, DL, VT, SqrtR, Half, Flags);
SDValue NegSqrtH = DAG.getNode(ISD::FNEG, DL, VT, SqrtH, Flags);
SDValue SqrtE = DAG.getNode(ISD::FMA, DL, VT, NegSqrtH, SqrtS, Half, Flags);
SqrtH = DAG.getNode(ISD::FMA, DL, VT, SqrtH, SqrtE, SqrtH, Flags);
SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtS, SqrtE, SqrtS, Flags);
SDValue NegSqrtS = DAG.getNode(ISD::FNEG, DL, VT, SqrtS, Flags);
SDValue SqrtD =
DAG.getNode(ISD::FMA, DL, VT, NegSqrtS, SqrtS, SqrtX, Flags);
SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtD, SqrtH, SqrtS, Flags);
}
SDValue ScaleDownFactor = DAG.getConstantFP(0x1.0p-16f, DL, VT);
SDValue ScaledDown =
DAG.getNode(ISD::FMUL, DL, VT, SqrtS, ScaleDownFactor, Flags);
SqrtS = DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledDown, SqrtS, Flags);
SDValue IsZeroOrInf =
DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX,
DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32));
return DAG.getNode(ISD::SELECT, DL, VT, IsZeroOrInf, SqrtX, SqrtS, Flags);
}
SDValue SITargetLowering::lowerFSQRTF64(SDValue Op, SelectionDAG &DAG) const {
// For double type, the SQRT and RSQ instructions don't have required
// precision, we apply Goldschmidt's algorithm to improve the result:
//
// y0 = rsq(x)
// g0 = x * y0
// h0 = 0.5 * y0
//
// r0 = 0.5 - h0 * g0
// g1 = g0 * r0 + g0
// h1 = h0 * r0 + h0
//
// r1 = 0.5 - h1 * g1 => d0 = x - g1 * g1
// g2 = g1 * r1 + g1 g2 = d0 * h1 + g1
// h2 = h1 * r1 + h1
//
// r2 = 0.5 - h2 * g2 => d1 = x - g2 * g2
// g3 = g2 * r2 + g2 g3 = d1 * h1 + g2
//
// sqrt(x) = g3
SDNodeFlags Flags = Op->getFlags();
SDLoc DL(Op);
SDValue X = Op.getOperand(0);
SDValue ScaleConstant = DAG.getConstantFP(0x1.0p-767, DL, MVT::f64);
SDValue Scaling = DAG.getSetCC(DL, MVT::i1, X, ScaleConstant, ISD::SETOLT);
SDValue ZeroInt = DAG.getConstant(0, DL, MVT::i32);
// Scale up input if it is too small.
SDValue ScaleUpFactor = DAG.getConstant(256, DL, MVT::i32);
SDValue ScaleUp =
DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleUpFactor, ZeroInt);
SDValue SqrtX = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, X, ScaleUp, Flags);
SDValue SqrtY = DAG.getNode(AMDGPUISD::RSQ, DL, MVT::f64, SqrtX);
SDValue SqrtS0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtX, SqrtY);
SDValue Half = DAG.getConstantFP(0.5, DL, MVT::f64);
SDValue SqrtH0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtY, Half);
SDValue NegSqrtH0 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtH0);
SDValue SqrtR0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtH0, SqrtS0, Half);
SDValue SqrtH1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtH0, SqrtR0, SqrtH0);
SDValue SqrtS1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtS0, SqrtR0, SqrtS0);
SDValue NegSqrtS1 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS1);
SDValue SqrtD0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS1, SqrtS1, SqrtX);
SDValue SqrtS2 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD0, SqrtH1, SqrtS1);
SDValue NegSqrtS2 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS2);
SDValue SqrtD1 =
DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS2, SqrtS2, SqrtX);
SDValue SqrtRet = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD1, SqrtH1, SqrtS2);
SDValue ScaleDownFactor = DAG.getConstant(-128, DL, MVT::i32);
SDValue ScaleDown =
DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleDownFactor, ZeroInt);
SqrtRet = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, SqrtRet, ScaleDown, Flags);
// TODO: Switch to fcmp oeq 0 for finite only. Can't fully remove this check
// with finite only or nsz because rsq(+/-0) = +/-inf
// TODO: Check for DAZ and expand to subnormals
SDValue IsZeroOrInf =
DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX,
DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32));
// If x is +INF, +0, or -0, use its original value
return DAG.getNode(ISD::SELECT, DL, MVT::f64, IsZeroOrInf, SqrtX, SqrtRet,
Flags);
}
SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Arg = Op.getOperand(0);
SDValue TrigVal;
// Propagate fast-math flags so that the multiply we introduce can be folded
// if Arg is already the result of a multiply by constant.
auto Flags = Op->getFlags();
SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
if (Subtarget->hasTrigReducedRange()) {
SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
} else {
TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
}
switch (Op.getOpcode()) {
case ISD::FCOS:
return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
case ISD::FSIN:
return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
default:
llvm_unreachable("Wrong trig opcode");
}
}
SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
assert(AtomicNode->isCompareAndSwap());
unsigned AS = AtomicNode->getAddressSpace();
// No custom lowering required for local address space
if (!AMDGPU::isFlatGlobalAddrSpace(AS))
return Op;
// Non-local address space requires custom lowering for atomic compare
// and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
SDLoc DL(Op);
SDValue ChainIn = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
SDValue Old = Op.getOperand(2);
SDValue New = Op.getOperand(3);
EVT VT = Op.getValueType();
MVT SimpleVT = VT.getSimpleVT();
MVT VecType = MVT::getVectorVT(SimpleVT, 2);
SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
SDValue Ops[] = { ChainIn, Addr, NewOld };
return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
Ops, VT, AtomicNode->getMemOperand());
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
EVT ScalarVT = VT.getScalarType();
if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue Src = N->getOperand(0);
EVT SrcVT = Src.getValueType();
// TODO: We could try to match extracting the higher bytes, which would be
// easier if i8 vectors weren't promoted to i32 vectors, particularly after
// types are legalized. v4i8 -> v4f32 is probably the only case to worry
// about in practice.
if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
DCI.AddToWorklist(Cvt.getNode());
// For the f16 case, fold to a cast to f32 and then cast back to f16.
if (ScalarVT != MVT::f32) {
Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
DAG.getTargetConstant(0, DL, MVT::i32));
}
return Cvt;
}
}
return SDValue();
}
SDValue SITargetLowering::performFCopySignCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SDValue MagnitudeOp = N->getOperand(0);
SDValue SignOp = N->getOperand(1);
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
// f64 fcopysign is really an f32 copysign on the high bits, so replace the
// lower half with a copy.
// fcopysign f64:x, _:y -> x.lo32, (fcopysign (f32 x.hi32), _:y)
if (MagnitudeOp.getValueType() == MVT::f64) {
SDValue MagAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, MagnitudeOp);
SDValue MagLo =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector,
DAG.getConstant(0, DL, MVT::i32));
SDValue MagHi =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector,
DAG.getConstant(1, DL, MVT::i32));
SDValue HiOp =
DAG.getNode(ISD::FCOPYSIGN, DL, MVT::f32, MagHi, SignOp);
SDValue Vector = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32, MagLo, HiOp);
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Vector);
}
if (SignOp.getValueType() != MVT::f64)
return SDValue();
// Reduce width of sign operand, we only need the highest bit.
//
// fcopysign f64:x, f64:y ->
// fcopysign f64:x, (extract_vector_elt (bitcast f64:y to v2f32), 1)
// TODO: In some cases it might make sense to go all the way to f16.
SDValue SignAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, SignOp);
SDValue SignAsF32 =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, SignAsVector,
DAG.getConstant(1, DL, MVT::i32));
return DAG.getNode(ISD::FCOPYSIGN, DL, N->getValueType(0), N->getOperand(0),
SignAsF32);
}
// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
// (shl (or x, c1), c2) -> add (shl x, c2), (shl c1, c2) iff x and c1 share no
// bits
// This is a variant of
// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
//
// The normal DAG combiner will do this, but only if the add has one use since
// that would increase the number of instructions.
//
// This prevents us from seeing a constant offset that can be folded into a
// memory instruction's addressing mode. If we know the resulting add offset of
// a pointer can be folded into an addressing offset, we can replace the pointer
// operand with the add of new constant offset. This eliminates one of the uses,
// and may allow the remaining use to also be simplified.
//
SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
unsigned AddrSpace,
EVT MemVT,
DAGCombinerInfo &DCI) const {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// We only do this to handle cases where it's profitable when there are
// multiple uses of the add, so defer to the standard combine.
if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
N0->hasOneUse())
return SDValue();
const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
if (!CN1)
return SDValue();
const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!CAdd)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
if (N0->getOpcode() == ISD::OR &&
!DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1)))
return SDValue();
// If the resulting offset is too large, we can't fold it into the
// addressing mode offset.
APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
AddrMode AM;
AM.HasBaseReg = true;
AM.BaseOffs = Offset.getSExtValue();
if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
return SDValue();
SDLoc SL(N);
EVT VT = N->getValueType(0);
SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
SDValue COffset = DAG.getConstant(Offset, SL, VT);
SDNodeFlags Flags;
Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
(N0.getOpcode() == ISD::OR ||
N0->getFlags().hasNoUnsignedWrap()));
return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
}
/// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
/// by the chain and intrinsic ID. Theoretically we would also need to check the
/// specific intrinsic, but they all place the pointer operand first.
static unsigned getBasePtrIndex(const MemSDNode *N) {
switch (N->getOpcode()) {
case ISD::STORE:
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_VOID:
return 2;
default:
return 1;
}
}
SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
unsigned PtrIdx = getBasePtrIndex(N);
SDValue Ptr = N->getOperand(PtrIdx);
// TODO: We could also do this for multiplies.
if (Ptr.getOpcode() == ISD::SHL) {
SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
N->getMemoryVT(), DCI);
if (NewPtr) {
SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
NewOps[PtrIdx] = NewPtr;
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
}
return SDValue();
}
static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
(Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
(Opc == ISD::XOR && Val == 0);
}
// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
// integer combine opportunities since most 64-bit operations are decomposed
// this way. TODO: We won't want this for SALU especially if it is an inline
// immediate.
SDValue SITargetLowering::splitBinaryBitConstantOp(
DAGCombinerInfo &DCI,
const SDLoc &SL,
unsigned Opc, SDValue LHS,
const ConstantSDNode *CRHS) const {
uint64_t Val = CRHS->getZExtValue();
uint32_t ValLo = Lo_32(Val);
uint32_t ValHi = Hi_32(Val);
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
bitOpWithConstantIsReducible(Opc, ValHi)) ||
(CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
// If we need to materialize a 64-bit immediate, it will be split up later
// anyway. Avoid creating the harder to understand 64-bit immediate
// materialization.
return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
}
return SDValue();
}
bool llvm::isBoolSGPR(SDValue V) {
if (V.getValueType() != MVT::i1)
return false;
switch (V.getOpcode()) {
default:
break;
case ISD::SETCC:
case AMDGPUISD::FP_CLASS:
return true;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
}
return false;
}
// If a constant has all zeroes or all ones within each byte return it.
// Otherwise return 0.
static uint32_t getConstantPermuteMask(uint32_t C) {
// 0xff for any zero byte in the mask
uint32_t ZeroByteMask = 0;
if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
if ((NonZeroByteMask & C) != NonZeroByteMask)
return 0; // Partial bytes selected.
return C;
}
// Check if a node selects whole bytes from its operand 0 starting at a byte
// boundary while masking the rest. Returns select mask as in the v_perm_b32
// or -1 if not succeeded.
// Note byte select encoding:
// value 0-3 selects corresponding source byte;
// value 0xc selects zero;
// value 0xff selects 0xff.
static uint32_t getPermuteMask(SDValue V) {
assert(V.getValueSizeInBits() == 32);
if (V.getNumOperands() != 2)
return ~0;
ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
if (!N1)
return ~0;
uint32_t C = N1->getZExtValue();
switch (V.getOpcode()) {
default:
break;
case ISD::AND:
if (uint32_t ConstMask = getConstantPermuteMask(C))
return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
break;
case ISD::OR:
if (uint32_t ConstMask = getConstantPermuteMask(C))
return (0x03020100 & ~ConstMask) | ConstMask;
break;
case ISD::SHL:
if (C % 8)
return ~0;
return uint32_t((0x030201000c0c0c0cull << C) >> 32);
case ISD::SRL:
if (C % 8)
return ~0;
return uint32_t(0x0c0c0c0c03020100ull >> C);
}
return ~0;
}
SDValue SITargetLowering::performAndCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (DCI.isBeforeLegalize())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
if (VT == MVT::i64 && CRHS) {
if (SDValue Split
= splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
return Split;
}
if (CRHS && VT == MVT::i32) {
// and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
// nb = number of trailing zeroes in mask
// It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
// given that we are selecting 8 or 16 bit fields starting at byte boundary.
uint64_t Mask = CRHS->getZExtValue();
unsigned Bits = llvm::popcount(Mask);
if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
(Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
unsigned Shift = CShift->getZExtValue();
unsigned NB = CRHS->getAPIntValue().countr_zero();
unsigned Offset = NB + Shift;
if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
SDLoc SL(N);
SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
LHS->getOperand(0),
DAG.getConstant(Offset, SL, MVT::i32),
DAG.getConstant(Bits, SL, MVT::i32));
EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
DAG.getValueType(NarrowVT));
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
return Shl;
}
}
}
// and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
isa<ConstantSDNode>(LHS.getOperand(2))) {
uint32_t Sel = getConstantPermuteMask(Mask);
if (!Sel)
return SDValue();
// Select 0xc for all zero bytes
Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
}
}
// (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
// fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
SDValue X = LHS.getOperand(0);
SDValue Y = RHS.getOperand(0);
if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X ||
!isTypeLegal(X.getValueType()))
return SDValue();
if (LCC == ISD::SETO) {
if (X != LHS.getOperand(1))
return SDValue();
if (RCC == ISD::SETUNE) {
const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
if (!C1 || !C1->isInfinity() || C1->isNegative())
return SDValue();
const uint32_t Mask = SIInstrFlags::N_NORMAL |
SIInstrFlags::N_SUBNORMAL |
SIInstrFlags::N_ZERO |
SIInstrFlags::P_ZERO |
SIInstrFlags::P_SUBNORMAL |
SIInstrFlags::P_NORMAL;
static_assert(((~(SIInstrFlags::S_NAN |
SIInstrFlags::Q_NAN |
SIInstrFlags::N_INFINITY |
SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
"mask not equal");
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
X, DAG.getConstant(Mask, DL, MVT::i32));
}
}
}
if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
std::swap(LHS, RHS);
if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
RHS.hasOneUse()) {
ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
// and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
// and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
(RHS.getOperand(0) == LHS.getOperand(0) &&
LHS.getOperand(0) == LHS.getOperand(1))) {
const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
unsigned NewMask = LCC == ISD::SETO ?
Mask->getZExtValue() & ~OrdMask :
Mask->getZExtValue() & OrdMask;
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
DAG.getConstant(NewMask, DL, MVT::i32));
}
}
if (VT == MVT::i32 &&
(RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
// and x, (sext cc from i1) => select cc, x, 0
if (RHS.getOpcode() != ISD::SIGN_EXTEND)
std::swap(LHS, RHS);
if (isBoolSGPR(RHS.getOperand(0)))
return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
}
// and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
uint32_t LHSMask = getPermuteMask(LHS);
uint32_t RHSMask = getPermuteMask(RHS);
if (LHSMask != ~0u && RHSMask != ~0u) {
// Canonicalize the expression in an attempt to have fewer unique masks
// and therefore fewer registers used to hold the masks.
if (LHSMask > RHSMask) {
std::swap(LHSMask, RHSMask);
std::swap(LHS, RHS);
}
// Select 0xc for each lane used from source operand. Zero has 0xc mask
// set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
// Check of we need to combine values from two sources within a byte.
if (!(LHSUsedLanes & RHSUsedLanes) &&
// If we select high and lower word keep it for SDWA.
// TODO: teach SDWA to work with v_perm_b32 and remove the check.
!(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
// Each byte in each mask is either selector mask 0-3, or has higher
// bits set in either of masks, which can be 0xff for 0xff or 0x0c for
// zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
// mask which is not 0xff wins. By anding both masks we have a correct
// result except that 0x0c shall be corrected to give 0x0c only.
uint32_t Mask = LHSMask & RHSMask;
for (unsigned I = 0; I < 32; I += 8) {
uint32_t ByteSel = 0xff << I;
if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
Mask &= (0x0c << I) & 0xffffffff;
}
// Add 4 to each active LHS lane. It will not affect any existing 0xff
// or 0x0c.
uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
LHS.getOperand(0), RHS.getOperand(0),
DAG.getConstant(Sel, DL, MVT::i32));
}
}
}
return SDValue();
}
// A key component of v_perm is a mapping between byte position of the src
// operands, and the byte position of the dest. To provide such, we need: 1. the
// node that provides x byte of the dest of the OR, and 2. the byte of the node
// used to provide that x byte. calculateByteProvider finds which node provides
// a certain byte of the dest of the OR, and calculateSrcByte takes that node,
// and finds an ultimate src and byte position For example: The supported
// LoadCombine pattern for vector loads is as follows
// t1
// or
// / \
// t2 t3
// zext shl
// | | \
// t4 t5 16
// or anyext
// / \ |
// t6 t7 t8
// srl shl or
// / | / \ / \
// t9 t10 t11 t12 t13 t14
// trunc* 8 trunc* 8 and and
// | | / | | \
// t15 t16 t17 t18 t19 t20
// trunc* 255 srl -256
// | / \
// t15 t15 16
//
// *In this example, the truncs are from i32->i16
//
// calculateByteProvider would find t6, t7, t13, and t14 for bytes 0-3
// respectively. calculateSrcByte would find (given node) -> ultimate src &
// byteposition: t6 -> t15 & 1, t7 -> t16 & 0, t13 -> t15 & 0, t14 -> t15 & 3.
// After finding the mapping, we can combine the tree into vperm t15, t16,
// 0x05000407
// Find the source and byte position from a node.
// \p DestByte is the byte position of the dest of the or that the src
// ultimately provides. \p SrcIndex is the byte of the src that maps to this
// dest of the or byte. \p Depth tracks how many recursive iterations we have
// performed.
static const std::optional<ByteProvider<SDValue>>
calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex = 0,
unsigned Depth = 0) {
// We may need to recursively traverse a series of SRLs
if (Depth >= 6)
return std::nullopt;
if (Op.getValueSizeInBits() < 8)
return std::nullopt;
if (Op.getValueType().isVector())
return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex);
switch (Op->getOpcode()) {
case ISD::TRUNCATE: {
return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
}
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND_INREG: {
SDValue NarrowOp = Op->getOperand(0);
auto NarrowVT = NarrowOp.getValueType();
if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG) {
auto *VTSign = cast<VTSDNode>(Op->getOperand(1));
NarrowVT = VTSign->getVT();
}
if (!NarrowVT.isByteSized())
return std::nullopt;
uint64_t NarrowByteWidth = NarrowVT.getStoreSize();
if (SrcIndex >= NarrowByteWidth)
return std::nullopt;
return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
}
case ISD::SRA:
case ISD::SRL: {
auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!ShiftOp)
return std::nullopt;
uint64_t BitShift = ShiftOp->getZExtValue();
if (BitShift % 8 != 0)
return std::nullopt;
SrcIndex += BitShift / 8;
return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
}
default: {
return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex);
}
}
llvm_unreachable("fully handled switch");
}
// For a byte position in the result of an Or, traverse the tree and find the
// node (and the byte of the node) which ultimately provides this {Or,
// BytePosition}. \p Op is the operand we are currently examining. \p Index is
// the byte position of the Op that corresponds with the originally requested
// byte of the Or \p Depth tracks how many recursive iterations we have
// performed. \p StartingIndex is the originally requested byte of the Or
static const std::optional<ByteProvider<SDValue>>
calculateByteProvider(const SDValue &Op, unsigned Index, unsigned Depth,
unsigned StartingIndex = 0) {
// Finding Src tree of RHS of or typically requires at least 1 additional
// depth
if (Depth > 6)
return std::nullopt;
unsigned BitWidth = Op.getScalarValueSizeInBits();
if (BitWidth % 8 != 0)
return std::nullopt;
if (Index > BitWidth / 8 - 1)
return std::nullopt;
bool IsVec = Op.getValueType().isVector();
switch (Op.getOpcode()) {
case ISD::OR: {
if (IsVec)
return std::nullopt;
auto RHS = calculateByteProvider(Op.getOperand(1), Index, Depth + 1,
StartingIndex);
if (!RHS)
return std::nullopt;
auto LHS = calculateByteProvider(Op.getOperand(0), Index, Depth + 1,
StartingIndex);
if (!LHS)
return std::nullopt;
// A well formed Or will have two ByteProviders for each byte, one of which
// is constant zero
if (!LHS->isConstantZero() && !RHS->isConstantZero())
return std::nullopt;
if (!LHS || LHS->isConstantZero())
return RHS;
if (!RHS || RHS->isConstantZero())
return LHS;
return std::nullopt;
}
case ISD::AND: {
if (IsVec)
return std::nullopt;
auto BitMaskOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!BitMaskOp)
return std::nullopt;
uint32_t BitMask = BitMaskOp->getZExtValue();
// Bits we expect for our StartingIndex
uint32_t IndexMask = 0xFF << (Index * 8);
if ((IndexMask & BitMask) != IndexMask) {
// If the result of the and partially provides the byte, then it
// is not well formatted
if (IndexMask & BitMask)
return std::nullopt;
return ByteProvider<SDValue>::getConstantZero();
}
return calculateSrcByte(Op->getOperand(0), StartingIndex, Index);
}
case ISD::FSHR: {
if (IsVec)
return std::nullopt;
// fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(2));
if (!ShiftOp || Op.getValueType().isVector())
return std::nullopt;
uint64_t BitsProvided = Op.getValueSizeInBits();
if (BitsProvided % 8 != 0)
return std::nullopt;
uint64_t BitShift = ShiftOp->getAPIntValue().urem(BitsProvided);
if (BitShift % 8)
return std::nullopt;
uint64_t ConcatSizeInBytes = BitsProvided / 4;
uint64_t ByteShift = BitShift / 8;
uint64_t NewIndex = (Index + ByteShift) % ConcatSizeInBytes;
uint64_t BytesProvided = BitsProvided / 8;
SDValue NextOp = Op.getOperand(NewIndex >= BytesProvided ? 0 : 1);
NewIndex %= BytesProvided;
return calculateByteProvider(NextOp, NewIndex, Depth + 1, StartingIndex);
}
case ISD::SRA:
case ISD::SRL: {
if (IsVec)
return std::nullopt;
auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!ShiftOp)
return std::nullopt;
uint64_t BitShift = ShiftOp->getZExtValue();
if (BitShift % 8)
return std::nullopt;
auto BitsProvided = Op.getScalarValueSizeInBits();
if (BitsProvided % 8 != 0)
return std::nullopt;
uint64_t BytesProvided = BitsProvided / 8;
uint64_t ByteShift = BitShift / 8;
// The dest of shift will have good [0 : (BytesProvided - ByteShift)] bytes.
// If the byte we are trying to provide (as tracked by index) falls in this
// range, then the SRL provides the byte. The byte of interest of the src of
// the SRL is Index + ByteShift
return BytesProvided - ByteShift > Index
? calculateSrcByte(Op->getOperand(0), StartingIndex,
Index + ByteShift)
: ByteProvider<SDValue>::getConstantZero();
}
case ISD::SHL: {
if (IsVec)
return std::nullopt;
auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!ShiftOp)
return std::nullopt;
uint64_t BitShift = ShiftOp->getZExtValue();
if (BitShift % 8 != 0)
return std::nullopt;
uint64_t ByteShift = BitShift / 8;
// If we are shifting by an amount greater than (or equal to)
// the index we are trying to provide, then it provides 0s. If not,
// then this bytes are not definitively 0s, and the corresponding byte
// of interest is Index - ByteShift of the src
return Index < ByteShift
? ByteProvider<SDValue>::getConstantZero()
: calculateByteProvider(Op.getOperand(0), Index - ByteShift,
Depth + 1, StartingIndex);
}
case ISD::ANY_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND_INREG:
case ISD::AssertZext:
case ISD::AssertSext: {
if (IsVec)
return std::nullopt;
SDValue NarrowOp = Op->getOperand(0);
unsigned NarrowBitWidth = NarrowOp.getValueSizeInBits();
if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG ||
Op->getOpcode() == ISD::AssertZext ||
Op->getOpcode() == ISD::AssertSext) {
auto *VTSign = cast<VTSDNode>(Op->getOperand(1));
NarrowBitWidth = VTSign->getVT().getSizeInBits();
}
if (NarrowBitWidth % 8 != 0)
return std::nullopt;
uint64_t NarrowByteWidth = NarrowBitWidth / 8;
if (Index >= NarrowByteWidth)
return Op.getOpcode() == ISD::ZERO_EXTEND
? std::optional<ByteProvider<SDValue>>(
ByteProvider<SDValue>::getConstantZero())
: std::nullopt;
return calculateByteProvider(NarrowOp, Index, Depth + 1, StartingIndex);
}
case ISD::TRUNCATE: {
if (IsVec)
return std::nullopt;
uint64_t NarrowByteWidth = BitWidth / 8;
if (NarrowByteWidth >= Index) {
return calculateByteProvider(Op.getOperand(0), Index, Depth + 1,
StartingIndex);
}
return std::nullopt;
}
case ISD::CopyFromReg: {
if (BitWidth / 8 > Index)
return calculateSrcByte(Op, StartingIndex, Index);
return std::nullopt;
}
case ISD::LOAD: {
auto L = cast<LoadSDNode>(Op.getNode());
unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
if (NarrowBitWidth % 8 != 0)
return std::nullopt;
uint64_t NarrowByteWidth = NarrowBitWidth / 8;
// If the width of the load does not reach byte we are trying to provide for
// and it is not a ZEXTLOAD, then the load does not provide for the byte in
// question
if (Index >= NarrowByteWidth) {
return L->getExtensionType() == ISD::ZEXTLOAD
? std::optional<ByteProvider<SDValue>>(
ByteProvider<SDValue>::getConstantZero())
: std::nullopt;
}
if (NarrowByteWidth > Index) {
return calculateSrcByte(Op, StartingIndex, Index);
}
return std::nullopt;
}
case ISD::BSWAP: {
if (IsVec)
return std::nullopt;
return calculateByteProvider(Op->getOperand(0), BitWidth / 8 - Index - 1,
Depth + 1, StartingIndex);
}
case ISD::EXTRACT_VECTOR_ELT: {
auto IdxOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!IdxOp)
return std::nullopt;
auto VecIdx = IdxOp->getZExtValue();
auto ScalarSize = Op.getScalarValueSizeInBits();
if (ScalarSize != 32) {
Index = ScalarSize == 8 ? VecIdx : VecIdx * 2 + Index;
}
return calculateSrcByte(ScalarSize == 32 ? Op : Op.getOperand(0),
StartingIndex, Index);
}
case AMDGPUISD::PERM: {
if (IsVec)
return std::nullopt;
auto PermMask = dyn_cast<ConstantSDNode>(Op->getOperand(2));
if (!PermMask)
return std::nullopt;
auto IdxMask =
(PermMask->getZExtValue() & (0xFF << (Index * 8))) >> (Index * 8);
if (IdxMask > 0x07 && IdxMask != 0x0c)
return std::nullopt;
auto NextOp = Op.getOperand(IdxMask > 0x03 ? 0 : 1);
auto NextIndex = IdxMask > 0x03 ? IdxMask % 4 : IdxMask;
return IdxMask != 0x0c ? calculateSrcByte(NextOp, StartingIndex, NextIndex)
: ByteProvider<SDValue>(
ByteProvider<SDValue>::getConstantZero());
}
default: {
return std::nullopt;
}
}
llvm_unreachable("fully handled switch");
}
// Returns true if the Operand is a scalar and is 16 bits
static bool isExtendedFrom16Bits(SDValue &Operand) {
switch (Operand.getOpcode()) {
case ISD::ANY_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND: {
auto OpVT = Operand.getOperand(0).getValueType();
return !OpVT.isVector() && OpVT.getSizeInBits() == 16;
}
case ISD::LOAD: {
LoadSDNode *L = cast<LoadSDNode>(Operand.getNode());
auto ExtType = cast<LoadSDNode>(L)->getExtensionType();
if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::SEXTLOAD ||
ExtType == ISD::EXTLOAD) {
auto MemVT = L->getMemoryVT();
return !MemVT.isVector() && MemVT.getSizeInBits() == 16;
}
return L->getMemoryVT().getSizeInBits() == 16;
}
default:
return false;
}
}
// Returns true if the mask matches consecutive bytes, and the first byte
// begins at a power of 2 byte offset from 0th byte
static bool addresses16Bits(int Mask) {
int Low8 = Mask & 0xff;
int Hi8 = (Mask & 0xff00) >> 8;
assert(Low8 < 8 && Hi8 < 8);
// Are the bytes contiguous in the order of increasing addresses.
bool IsConsecutive = (Hi8 - Low8 == 1);
// Is the first byte at location that is aligned for 16 bit instructions.
// A counter example is taking 2 consecutive bytes starting at the 8th bit.
// In this case, we still need code to extract the 16 bit operand, so it
// is better to use i8 v_perm
bool Is16Aligned = !(Low8 % 2);
return IsConsecutive && Is16Aligned;
}
// Do not lower into v_perm if the operands are actually 16 bit
// and the selected bits (based on PermMask) correspond with two
// easily addressable 16 bit operands.
static bool hasNon16BitAccesses(uint64_t PermMask, SDValue &Op,
SDValue &OtherOp) {
int Low16 = PermMask & 0xffff;
int Hi16 = (PermMask & 0xffff0000) >> 16;
auto TempOp = peekThroughBitcasts(Op);
auto TempOtherOp = peekThroughBitcasts(OtherOp);
auto OpIs16Bit =
TempOtherOp.getValueSizeInBits() == 16 || isExtendedFrom16Bits(TempOp);
if (!OpIs16Bit)
return true;
auto OtherOpIs16Bit = TempOtherOp.getValueSizeInBits() == 16 ||
isExtendedFrom16Bits(TempOtherOp);
if (!OtherOpIs16Bit)
return true;
// Do we cleanly address both
return !addresses16Bits(Low16) || !addresses16Bits(Hi16);
}
static SDValue getDWordFromOffset(SelectionDAG &DAG, SDLoc SL, SDValue Src,
unsigned DWordOffset) {
SDValue Ret;
auto TypeSize = Src.getValueSizeInBits().getFixedValue();
// ByteProvider must be at least 8 bits
assert(Src.getValueSizeInBits().isKnownMultipleOf(8));
if (TypeSize <= 32)
return DAG.getBitcastedAnyExtOrTrunc(Src, SL, MVT::i32);
if (Src.getValueType().isVector()) {
auto ScalarTySize = Src.getScalarValueSizeInBits();
auto ScalarTy = Src.getValueType().getScalarType();
if (ScalarTySize == 32) {
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Src,
DAG.getConstant(DWordOffset, SL, MVT::i32));
}
if (ScalarTySize > 32) {
Ret = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, SL, ScalarTy, Src,
DAG.getConstant(DWordOffset / (ScalarTySize / 32), SL, MVT::i32));
auto ShiftVal = 32 * (DWordOffset % (ScalarTySize / 32));
if (ShiftVal)
Ret = DAG.getNode(ISD::SRL, SL, Ret.getValueType(), Ret,
DAG.getConstant(ShiftVal, SL, MVT::i32));
return DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32);
}
assert(ScalarTySize < 32);
auto NumElements = TypeSize / ScalarTySize;
auto Trunc32Elements = (ScalarTySize * NumElements) / 32;
auto NormalizedTrunc = Trunc32Elements * 32 / ScalarTySize;
auto NumElementsIn32 = 32 / ScalarTySize;
auto NumAvailElements = DWordOffset < Trunc32Elements
? NumElementsIn32
: NumElements - NormalizedTrunc;
SmallVector<SDValue, 4> VecSrcs;
DAG.ExtractVectorElements(Src, VecSrcs, DWordOffset * NumElementsIn32,
NumAvailElements);
Ret = DAG.getBuildVector(
MVT::getVectorVT(MVT::getIntegerVT(ScalarTySize), NumAvailElements), SL,
VecSrcs);
return Ret = DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32);
}
/// Scalar Type
auto ShiftVal = 32 * DWordOffset;
Ret = DAG.getNode(ISD::SRL, SL, Src.getValueType(), Src,
DAG.getConstant(ShiftVal, SL, MVT::i32));
return DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32);
}
static SDValue matchPERM(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
[[maybe_unused]] EVT VT = N->getValueType(0);
SmallVector<ByteProvider<SDValue>, 8> PermNodes;
// VT is known to be MVT::i32, so we need to provide 4 bytes.
assert(VT == MVT::i32);
for (int i = 0; i < 4; i++) {
// Find the ByteProvider that provides the ith byte of the result of OR
std::optional<ByteProvider<SDValue>> P =
calculateByteProvider(SDValue(N, 0), i, 0, /*StartingIndex = */ i);
// TODO support constantZero
if (!P || P->isConstantZero())
return SDValue();
PermNodes.push_back(*P);
}
if (PermNodes.size() != 4)
return SDValue();
std::pair<unsigned, unsigned> FirstSrc(0, PermNodes[0].SrcOffset / 4);
std::optional<std::pair<unsigned, unsigned>> SecondSrc;
uint64_t PermMask = 0x00000000;
for (size_t i = 0; i < PermNodes.size(); i++) {
auto PermOp = PermNodes[i];
// Since the mask is applied to Src1:Src2, Src1 bytes must be offset
// by sizeof(Src2) = 4
int SrcByteAdjust = 4;
// If the Src uses a byte from a different DWORD, then it corresponds
// with a difference source
if (!PermOp.hasSameSrc(PermNodes[FirstSrc.first]) ||
((PermOp.SrcOffset / 4) != FirstSrc.second)) {
if (SecondSrc)
if (!PermOp.hasSameSrc(PermNodes[SecondSrc->first]) ||
((PermOp.SrcOffset / 4) != SecondSrc->second))
return SDValue();
// Set the index of the second distinct Src node
SecondSrc = {i, PermNodes[i].SrcOffset / 4};
assert(!(PermNodes[SecondSrc->first].Src->getValueSizeInBits() % 8));
SrcByteAdjust = 0;
}
assert((PermOp.SrcOffset % 4) + SrcByteAdjust < 8);
assert(!DAG.getDataLayout().isBigEndian());
PermMask |= ((PermOp.SrcOffset % 4) + SrcByteAdjust) << (i * 8);
}
SDLoc DL(N);
SDValue Op = *PermNodes[FirstSrc.first].Src;
Op = getDWordFromOffset(DAG, DL, Op, FirstSrc.second);
assert(Op.getValueSizeInBits() == 32);
// Check that we are not just extracting the bytes in order from an op
if (!SecondSrc) {
int Low16 = PermMask & 0xffff;
int Hi16 = (PermMask & 0xffff0000) >> 16;
bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100);
bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302);
// The perm op would really just produce Op. So combine into Op
if (WellFormedLow && WellFormedHi)
return DAG.getBitcast(MVT::getIntegerVT(32), Op);
}
SDValue OtherOp = SecondSrc ? *PermNodes[SecondSrc->first].Src : Op;
if (SecondSrc) {
OtherOp = getDWordFromOffset(DAG, DL, OtherOp, SecondSrc->second);
assert(OtherOp.getValueSizeInBits() == 32);
}
if (hasNon16BitAccesses(PermMask, Op, OtherOp)) {
assert(Op.getValueType().isByteSized() &&
OtherOp.getValueType().isByteSized());
// If the ultimate src is less than 32 bits, then we will only be
// using bytes 0: Op.getValueSizeInBytes() - 1 in the or.
// CalculateByteProvider would not have returned Op as source if we
// used a byte that is outside its ValueType. Thus, we are free to
// ANY_EXTEND as the extended bits are dont-cares.
Op = DAG.getBitcastedAnyExtOrTrunc(Op, DL, MVT::i32);
OtherOp = DAG.getBitcastedAnyExtOrTrunc(OtherOp, DL, MVT::i32);
return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op, OtherOp,
DAG.getConstant(PermMask, DL, MVT::i32));
}
return SDValue();
}
SDValue SITargetLowering::performOrCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = N->getValueType(0);
if (VT == MVT::i1) {
// or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
SDValue Src = LHS.getOperand(0);
if (Src != RHS.getOperand(0))
return SDValue();
const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
if (!CLHS || !CRHS)
return SDValue();
// Only 10 bits are used.
static const uint32_t MaxMask = 0x3ff;
uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
Src, DAG.getConstant(NewMask, DL, MVT::i32));
}
return SDValue();
}
// or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
LHS.getOpcode() == AMDGPUISD::PERM &&
isa<ConstantSDNode>(LHS.getOperand(2))) {
uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
if (!Sel)
return SDValue();
Sel |= LHS.getConstantOperandVal(2);
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
}
// or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
// If all the uses of an or need to extract the individual elements, do not
// attempt to lower into v_perm
auto usesCombinedOperand = [](SDNode *OrUse) {
// If we have any non-vectorized use, then it is a candidate for v_perm
if (OrUse->getOpcode() != ISD::BITCAST ||
!OrUse->getValueType(0).isVector())
return true;
// If we have any non-vectorized use, then it is a candidate for v_perm
for (auto VUse : OrUse->uses()) {
if (!VUse->getValueType(0).isVector())
return true;
// If the use of a vector is a store, then combining via a v_perm
// is beneficial.
// TODO -- whitelist more uses
for (auto VectorwiseOp : {ISD::STORE, ISD::CopyToReg, ISD::CopyFromReg})
if (VUse->getOpcode() == VectorwiseOp)
return true;
}
return false;
};
if (!any_of(N->uses(), usesCombinedOperand))
return SDValue();
uint32_t LHSMask = getPermuteMask(LHS);
uint32_t RHSMask = getPermuteMask(RHS);
if (LHSMask != ~0u && RHSMask != ~0u) {
// Canonicalize the expression in an attempt to have fewer unique masks
// and therefore fewer registers used to hold the masks.
if (LHSMask > RHSMask) {
std::swap(LHSMask, RHSMask);
std::swap(LHS, RHS);
}
// Select 0xc for each lane used from source operand. Zero has 0xc mask
// set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
// Check of we need to combine values from two sources within a byte.
if (!(LHSUsedLanes & RHSUsedLanes) &&
// If we select high and lower word keep it for SDWA.
// TODO: teach SDWA to work with v_perm_b32 and remove the check.
!(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
// Kill zero bytes selected by other mask. Zero value is 0xc.
LHSMask &= ~RHSUsedLanes;
RHSMask &= ~LHSUsedLanes;
// Add 4 to each active LHS lane
LHSMask |= LHSUsedLanes & 0x04040404;
// Combine masks
uint32_t Sel = LHSMask | RHSMask;
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
LHS.getOperand(0), RHS.getOperand(0),
DAG.getConstant(Sel, DL, MVT::i32));
}
}
if (LHSMask == ~0u || RHSMask == ~0u) {
if (SDValue Perm = matchPERM(N, DCI))
return Perm;
}
}
if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
return SDValue();
// TODO: This could be a generic combine with a predicate for extracting the
// high half of an integer being free.
// (or i64:x, (zero_extend i32:y)) ->
// i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
RHS.getOpcode() != ISD::ZERO_EXTEND)
std::swap(LHS, RHS);
if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
SDValue ExtSrc = RHS.getOperand(0);
EVT SrcVT = ExtSrc.getValueType();
if (SrcVT == MVT::i32) {
SDLoc SL(N);
SDValue LowLHS, HiBits;
std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
DCI.AddToWorklist(LowOr.getNode());
DCI.AddToWorklist(HiBits.getNode());
SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
LowOr, HiBits);
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
}
}
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (CRHS) {
if (SDValue Split
= splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
N->getOperand(0), CRHS))
return Split;
}
return SDValue();
}
SDValue SITargetLowering::performXorCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (SDValue RV = reassociateScalarOps(N, DCI.DAG))
return RV;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
if (CRHS && VT == MVT::i64) {
if (SDValue Split
= splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
return Split;
}
// Make sure to apply the 64-bit constant splitting fold before trying to fold
// fneg-like xors into 64-bit select.
if (LHS.getOpcode() == ISD::SELECT && VT == MVT::i32) {
// This looks like an fneg, try to fold as a source modifier.
if (CRHS && CRHS->getAPIntValue().isSignMask() &&
shouldFoldFNegIntoSrc(N, LHS)) {
// xor (select c, a, b), 0x80000000 ->
// bitcast (select c, (fneg (bitcast a)), (fneg (bitcast b)))
SDLoc DL(N);
SDValue CastLHS =
DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(1));
SDValue CastRHS =
DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(2));
SDValue FNegLHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastLHS);
SDValue FNegRHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastRHS);
SDValue NewSelect = DAG.getNode(ISD::SELECT, DL, MVT::f32,
LHS->getOperand(0), FNegLHS, FNegRHS);
return DAG.getNode(ISD::BITCAST, DL, VT, NewSelect);
}
}
return SDValue();
}
SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (!Subtarget->has16BitInsts() ||
DCI.getDAGCombineLevel() < AfterLegalizeDAG)
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i32)
return SDValue();
SDValue Src = N->getOperand(0);
if (Src.getValueType() != MVT::i16)
return SDValue();
return SDValue();
}
SDValue
SITargetLowering::performSignExtendInRegCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SDValue Src = N->getOperand(0);
auto *VTSign = cast<VTSDNode>(N->getOperand(1));
// Combine s_buffer_load_u8 or s_buffer_load_u16 with sext and replace them
// with s_buffer_load_i8 and s_buffer_load_i16 respectively.
if (((Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE &&
VTSign->getVT() == MVT::i8) ||
(Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_USHORT &&
VTSign->getVT() == MVT::i16))) {
assert(Subtarget->hasScalarSubwordLoads() &&
"s_buffer_load_{u8, i8} are supported "
"in GFX12 (or newer) architectures.");
EVT VT = Src.getValueType();
unsigned Opc = (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE)
? AMDGPUISD::SBUFFER_LOAD_BYTE
: AMDGPUISD::SBUFFER_LOAD_SHORT;
SDLoc DL(N);
SDVTList ResList = DCI.DAG.getVTList(MVT::i32);
SDValue Ops[] = {
Src.getOperand(0), // source register
Src.getOperand(1), // offset
Src.getOperand(2) // cachePolicy
};
auto *M = cast<MemSDNode>(Src);
SDValue BufferLoad = DCI.DAG.getMemIntrinsicNode(
Opc, DL, ResList, Ops, M->getMemoryVT(), M->getMemOperand());
SDValue LoadVal = DCI.DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad);
return LoadVal;
} else if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
VTSign->getVT() == MVT::i8) ||
(Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
VTSign->getVT() == MVT::i16)) &&
Src.hasOneUse()) {
auto *M = cast<MemSDNode>(Src);
SDValue Ops[] = {
Src.getOperand(0), // Chain
Src.getOperand(1), // rsrc
Src.getOperand(2), // vindex
Src.getOperand(3), // voffset
Src.getOperand(4), // soffset
Src.getOperand(5), // offset
Src.getOperand(6),
Src.getOperand(7)
};
// replace with BUFFER_LOAD_BYTE/SHORT
SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
Src.getOperand(0).getValueType());
unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
ResList,
Ops, M->getMemoryVT(),
M->getMemOperand());
return DCI.DAG.getMergeValues({BufferLoadSignExt,
BufferLoadSignExt.getValue(1)}, SDLoc(N));
}
return SDValue();
}
SDValue SITargetLowering::performClassCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue Mask = N->getOperand(1);
// fp_class x, 0 -> false
if (isNullConstant(Mask))
return DAG.getConstant(0, SDLoc(N), MVT::i1);
if (N->getOperand(0).isUndef())
return DAG.getUNDEF(MVT::i1);
return SDValue();
}
SDValue SITargetLowering::performRcpCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
if (N0.isUndef()) {
return DCI.DAG.getConstantFP(
APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)), SDLoc(N),
VT);
}
if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
N0.getOpcode() == ISD::SINT_TO_FP)) {
return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
N->getFlags());
}
// TODO: Could handle f32 + amdgcn.sqrt but probably never reaches here.
if ((VT == MVT::f16 && N0.getOpcode() == ISD::FSQRT) &&
N->getFlags().hasAllowContract() && N0->getFlags().hasAllowContract()) {
return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
N0.getOperand(0), N->getFlags());
}
return AMDGPUTargetLowering::performRcpCombine(N, DCI);
}
bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
unsigned MaxDepth) const {
unsigned Opcode = Op.getOpcode();
if (Opcode == ISD::FCANONICALIZE)
return true;
if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
const auto &F = CFP->getValueAPF();
if (F.isNaN() && F.isSignaling())
return false;
if (!F.isDenormal())
return true;
DenormalMode Mode =
DAG.getMachineFunction().getDenormalMode(F.getSemantics());
return Mode == DenormalMode::getIEEE();
}
// If source is a result of another standard FP operation it is already in
// canonical form.
if (MaxDepth == 0)
return false;
switch (Opcode) {
// These will flush denorms if required.
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FCEIL:
case ISD::FFLOOR:
case ISD::FMA:
case ISD::FMAD:
case ISD::FSQRT:
case ISD::FDIV:
case ISD::FREM:
case ISD::FP_ROUND:
case ISD::FP_EXTEND:
case ISD::FP16_TO_FP:
case ISD::FP_TO_FP16:
case ISD::BF16_TO_FP:
case ISD::FP_TO_BF16:
case ISD::FLDEXP:
case AMDGPUISD::FMUL_LEGACY:
case AMDGPUISD::FMAD_FTZ:
case AMDGPUISD::RCP:
case AMDGPUISD::RSQ:
case AMDGPUISD::RSQ_CLAMP:
case AMDGPUISD::RCP_LEGACY:
case AMDGPUISD::RCP_IFLAG:
case AMDGPUISD::LOG:
case AMDGPUISD::EXP:
case AMDGPUISD::DIV_SCALE:
case AMDGPUISD::DIV_FMAS:
case AMDGPUISD::DIV_FIXUP:
case AMDGPUISD::FRACT:
case AMDGPUISD::CVT_PKRTZ_F16_F32:
case AMDGPUISD::CVT_F32_UBYTE0:
case AMDGPUISD::CVT_F32_UBYTE1:
case AMDGPUISD::CVT_F32_UBYTE2:
case AMDGPUISD::CVT_F32_UBYTE3:
case AMDGPUISD::FP_TO_FP16:
case AMDGPUISD::SIN_HW:
case AMDGPUISD::COS_HW:
return true;
// It can/will be lowered or combined as a bit operation.
// Need to check their input recursively to handle.
case ISD::FNEG:
case ISD::FABS:
case ISD::FCOPYSIGN:
return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
case ISD::AND:
if (Op.getValueType() == MVT::i32) {
// Be careful as we only know it is a bitcast floating point type. It
// could be f32, v2f16, we have no way of knowing. Luckily the constant
// value that we optimize for, which comes up in fp32 to bf16 conversions,
// is valid to optimize for all types.
if (auto *RHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
if (RHS->getZExtValue() == 0xffff0000) {
return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
}
}
}
break;
case ISD::FSIN:
case ISD::FCOS:
case ISD::FSINCOS:
return Op.getValueType().getScalarType() != MVT::f16;
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FMINNUM_IEEE:
case ISD::FMAXNUM_IEEE:
case ISD::FMINIMUM:
case ISD::FMAXIMUM:
case AMDGPUISD::CLAMP:
case AMDGPUISD::FMED3:
case AMDGPUISD::FMAX3:
case AMDGPUISD::FMIN3:
case AMDGPUISD::FMAXIMUM3:
case AMDGPUISD::FMINIMUM3: {
// FIXME: Shouldn't treat the generic operations different based these.
// However, we aren't really required to flush the result from
// minnum/maxnum..
// snans will be quieted, so we only need to worry about denormals.
if (Subtarget->supportsMinMaxDenormModes() ||
// FIXME: denormalsEnabledForType is broken for dynamic
denormalsEnabledForType(DAG, Op.getValueType()))
return true;
// Flushing may be required.
// In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
// targets need to check their input recursively.
// FIXME: Does this apply with clamp? It's implemented with max.
for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
return false;
}
return true;
}
case ISD::SELECT: {
return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
}
case ISD::BUILD_VECTOR: {
for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
SDValue SrcOp = Op.getOperand(i);
if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
return false;
}
return true;
}
case ISD::EXTRACT_VECTOR_ELT:
case ISD::EXTRACT_SUBVECTOR: {
return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
}
case ISD::INSERT_VECTOR_ELT: {
return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
}
case ISD::UNDEF:
// Could be anything.
return false;
case ISD::BITCAST:
// TODO: This is incorrect as it loses track of the operand's type. We may
// end up effectively bitcasting from f32 to v2f16 or vice versa, and the
// same bits that are canonicalized in one type need not be in the other.
return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
case ISD::TRUNCATE: {
// Hack round the mess we make when legalizing extract_vector_elt
if (Op.getValueType() == MVT::i16) {
SDValue TruncSrc = Op.getOperand(0);
if (TruncSrc.getValueType() == MVT::i32 &&
TruncSrc.getOpcode() == ISD::BITCAST &&
TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
}
}
return false;
}
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntrinsicID = Op.getConstantOperandVal(0);
// TODO: Handle more intrinsics
switch (IntrinsicID) {
case Intrinsic::amdgcn_cvt_pkrtz:
case Intrinsic::amdgcn_cubeid:
case Intrinsic::amdgcn_frexp_mant:
case Intrinsic::amdgcn_fdot2:
case Intrinsic::amdgcn_rcp:
case Intrinsic::amdgcn_rsq:
case Intrinsic::amdgcn_rsq_clamp:
case Intrinsic::amdgcn_rcp_legacy:
case Intrinsic::amdgcn_rsq_legacy:
case Intrinsic::amdgcn_trig_preop:
case Intrinsic::amdgcn_log:
case Intrinsic::amdgcn_exp2:
case Intrinsic::amdgcn_sqrt:
return true;
default:
break;
}
break;
}
default:
break;
}
// FIXME: denormalsEnabledForType is broken for dynamic
return denormalsEnabledForType(DAG, Op.getValueType()) &&
DAG.isKnownNeverSNaN(Op);
}
bool SITargetLowering::isCanonicalized(Register Reg, const MachineFunction &MF,
unsigned MaxDepth) const {
const MachineRegisterInfo &MRI = MF.getRegInfo();
MachineInstr *MI = MRI.getVRegDef(Reg);
unsigned Opcode = MI->getOpcode();
if (Opcode == AMDGPU::G_FCANONICALIZE)
return true;
std::optional<FPValueAndVReg> FCR;
// Constant splat (can be padded with undef) or scalar constant.
if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) {
if (FCR->Value.isSignaling())
return false;
if (!FCR->Value.isDenormal())
return true;
DenormalMode Mode = MF.getDenormalMode(FCR->Value.getSemantics());
return Mode == DenormalMode::getIEEE();
}
if (MaxDepth == 0)
return false;
switch (Opcode) {
case AMDGPU::G_FADD:
case AMDGPU::G_FSUB:
case AMDGPU::G_FMUL:
case AMDGPU::G_FCEIL:
case AMDGPU::G_FFLOOR:
case AMDGPU::G_FRINT:
case AMDGPU::G_FNEARBYINT:
case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND:
case AMDGPU::G_INTRINSIC_TRUNC:
case AMDGPU::G_INTRINSIC_ROUNDEVEN:
case AMDGPU::G_FMA:
case AMDGPU::G_FMAD:
case AMDGPU::G_FSQRT:
case AMDGPU::G_FDIV:
case AMDGPU::G_FREM:
case AMDGPU::G_FPOW:
case AMDGPU::G_FPEXT:
case AMDGPU::G_FLOG:
case AMDGPU::G_FLOG2:
case AMDGPU::G_FLOG10:
case AMDGPU::G_FPTRUNC:
case AMDGPU::G_AMDGPU_RCP_IFLAG:
case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0:
case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1:
case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2:
case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3:
return true;
case AMDGPU::G_FNEG:
case AMDGPU::G_FABS:
case AMDGPU::G_FCOPYSIGN:
return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1);
case AMDGPU::G_FMINNUM:
case AMDGPU::G_FMAXNUM:
case AMDGPU::G_FMINNUM_IEEE:
case AMDGPU::G_FMAXNUM_IEEE:
case AMDGPU::G_FMINIMUM:
case AMDGPU::G_FMAXIMUM: {
if (Subtarget->supportsMinMaxDenormModes() ||
// FIXME: denormalsEnabledForType is broken for dynamic
denormalsEnabledForType(MRI.getType(Reg), MF))
return true;
[[fallthrough]];
}
case AMDGPU::G_BUILD_VECTOR:
for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
return false;
return true;
case AMDGPU::G_INTRINSIC:
case AMDGPU::G_INTRINSIC_CONVERGENT:
switch (cast<GIntrinsic>(MI)->getIntrinsicID()) {
case Intrinsic::amdgcn_fmul_legacy:
case Intrinsic::amdgcn_fmad_ftz:
case Intrinsic::amdgcn_sqrt:
case Intrinsic::amdgcn_fmed3:
case Intrinsic::amdgcn_sin:
case Intrinsic::amdgcn_cos:
case Intrinsic::amdgcn_log:
case Intrinsic::amdgcn_exp2:
case Intrinsic::amdgcn_log_clamp:
case Intrinsic::amdgcn_rcp:
case Intrinsic::amdgcn_rcp_legacy:
case Intrinsic::amdgcn_rsq:
case Intrinsic::amdgcn_rsq_clamp:
case Intrinsic::amdgcn_rsq_legacy:
case Intrinsic::amdgcn_div_scale:
case Intrinsic::amdgcn_div_fmas:
case Intrinsic::amdgcn_div_fixup:
case Intrinsic::amdgcn_fract:
case Intrinsic::amdgcn_cvt_pkrtz:
case Intrinsic::amdgcn_cubeid:
case Intrinsic::amdgcn_cubema:
case Intrinsic::amdgcn_cubesc:
case Intrinsic::amdgcn_cubetc:
case Intrinsic::amdgcn_frexp_mant:
case Intrinsic::amdgcn_fdot2:
case Intrinsic::amdgcn_trig_preop:
return true;
default:
break;
}
[[fallthrough]];
default:
return false;
}
llvm_unreachable("invalid operation");
}
// Constant fold canonicalize.
SDValue SITargetLowering::getCanonicalConstantFP(
SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
// Flush denormals to 0 if not enabled.
if (C.isDenormal()) {
DenormalMode Mode =
DAG.getMachineFunction().getDenormalMode(C.getSemantics());
if (Mode == DenormalMode::getPreserveSign()) {
return DAG.getConstantFP(
APFloat::getZero(C.getSemantics(), C.isNegative()), SL, VT);
}
if (Mode != DenormalMode::getIEEE())
return SDValue();
}
if (C.isNaN()) {
APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
if (C.isSignaling()) {
// Quiet a signaling NaN.
// FIXME: Is this supposed to preserve payload bits?
return DAG.getConstantFP(CanonicalQNaN, SL, VT);
}
// Make sure it is the canonical NaN bitpattern.
//
// TODO: Can we use -1 as the canonical NaN value since it's an inline
// immediate?
if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
return DAG.getConstantFP(CanonicalQNaN, SL, VT);
}
// Already canonical.
return DAG.getConstantFP(C, SL, VT);
}
static bool vectorEltWillFoldAway(SDValue Op) {
return Op.isUndef() || isa<ConstantFPSDNode>(Op);
}
SDValue SITargetLowering::performFCanonicalizeCombine(
SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// fcanonicalize undef -> qnan
if (N0.isUndef()) {
APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
return DAG.getConstantFP(QNaN, SDLoc(N), VT);
}
if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
EVT VT = N->getValueType(0);
return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
}
// fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
// (fcanonicalize k)
//
// fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
// TODO: This could be better with wider vectors that will be split to v2f16,
// and to consider uses since there aren't that many packed operations.
if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
isTypeLegal(MVT::v2f16)) {
SDLoc SL(N);
SDValue NewElts[2];
SDValue Lo = N0.getOperand(0);
SDValue Hi = N0.getOperand(1);
EVT EltVT = Lo.getValueType();
if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
for (unsigned I = 0; I != 2; ++I) {
SDValue Op = N0.getOperand(I);
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
CFP->getValueAPF());
} else if (Op.isUndef()) {
// Handled below based on what the other operand is.
NewElts[I] = Op;
} else {
NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
}
}
// If one half is undef, and one is constant, prefer a splat vector rather
// than the normal qNaN. If it's a register, prefer 0.0 since that's
// cheaper to use and may be free with a packed operation.
if (NewElts[0].isUndef()) {
if (isa<ConstantFPSDNode>(NewElts[1]))
NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
}
if (NewElts[1].isUndef()) {
NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
}
return DAG.getBuildVector(VT, SL, NewElts);
}
}
return SDValue();
}
static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
switch (Opc) {
case ISD::FMAXNUM:
case ISD::FMAXNUM_IEEE:
return AMDGPUISD::FMAX3;
case ISD::FMAXIMUM:
return AMDGPUISD::FMAXIMUM3;
case ISD::SMAX:
return AMDGPUISD::SMAX3;
case ISD::UMAX:
return AMDGPUISD::UMAX3;
case ISD::FMINNUM:
case ISD::FMINNUM_IEEE:
return AMDGPUISD::FMIN3;
case ISD::FMINIMUM:
return AMDGPUISD::FMINIMUM3;
case ISD::SMIN:
return AMDGPUISD::SMIN3;
case ISD::UMIN:
return AMDGPUISD::UMIN3;
default:
llvm_unreachable("Not a min/max opcode");
}
}
SDValue SITargetLowering::performIntMed3ImmCombine(SelectionDAG &DAG,
const SDLoc &SL, SDValue Src,
SDValue MinVal,
SDValue MaxVal,
bool Signed) const {
// med3 comes from
// min(max(x, K0), K1), K0 < K1
// max(min(x, K0), K1), K1 < K0
//
// "MinVal" and "MaxVal" respectively refer to the rhs of the
// min/max op.
ConstantSDNode *MinK = dyn_cast<ConstantSDNode>(MinVal);
ConstantSDNode *MaxK = dyn_cast<ConstantSDNode>(MaxVal);
if (!MinK || !MaxK)
return SDValue();
if (Signed) {
if (MaxK->getAPIntValue().sge(MinK->getAPIntValue()))
return SDValue();
} else {
if (MaxK->getAPIntValue().uge(MinK->getAPIntValue()))
return SDValue();
}
EVT VT = MinK->getValueType(0);
unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16()))
return DAG.getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal);
// Note: we could also extend to i32 and use i32 med3 if i16 med3 is
// not available, but this is unlikely to be profitable as constants
// will often need to be materialized & extended, especially on
// pre-GFX10 where VOP3 instructions couldn't take literal operands.
return SDValue();
}
static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
return C;
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
return C;
}
return nullptr;
}
SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
const SDLoc &SL,
SDValue Op0,
SDValue Op1) const {
ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
if (!K1)
return SDValue();
ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
if (!K0)
return SDValue();
// Ordered >= (although NaN inputs should have folded away by now).
if (K0->getValueAPF() > K1->getValueAPF())
return SDValue();
const MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
// TODO: Check IEEE bit enabled?
EVT VT = Op0.getValueType();
if (Info->getMode().DX10Clamp) {
// If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
// hardware fmed3 behavior converting to a min.
// FIXME: Should this be allowing -0.0?
if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
}
// med3 for f16 is only available on gfx9+, and not available for v2f16.
if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
// This isn't safe with signaling NaNs because in IEEE mode, min/max on a
// signaling NaN gives a quiet NaN. The quiet NaN input to the min would
// then give the other result, which is different from med3 with a NaN
// input.
SDValue Var = Op0.getOperand(0);
if (!DAG.isKnownNeverSNaN(Var))
return SDValue();
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
if ((!K0->hasOneUse() || TII->isInlineConstant(K0->getValueAPF())) &&
(!K1->hasOneUse() || TII->isInlineConstant(K1->getValueAPF()))) {
return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
Var, SDValue(K0, 0), SDValue(K1, 0));
}
}
return SDValue();
}
SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
unsigned Opc = N->getOpcode();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// Only do this if the inner op has one use since this will just increases
// register pressure for no benefit.
if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
!VT.isVector() &&
(VT == MVT::i32 || VT == MVT::f32 ||
((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
// max(max(a, b), c) -> max3(a, b, c)
// min(min(a, b), c) -> min3(a, b, c)
if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
SDLoc DL(N);
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
DL,
N->getValueType(0),
Op0.getOperand(0),
Op0.getOperand(1),
Op1);
}
// Try commuted.
// max(a, max(b, c)) -> max3(a, b, c)
// min(a, min(b, c)) -> min3(a, b, c)
if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
SDLoc DL(N);
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
DL,
N->getValueType(0),
Op0,
Op1.getOperand(0),
Op1.getOperand(1));
}
}
// min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
// max(min(x, K0), K1), K1 < K0 -> med3(x, K1, K0)
if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
if (SDValue Med3 = performIntMed3ImmCombine(
DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), true))
return Med3;
}
if (Opc == ISD::SMAX && Op0.getOpcode() == ISD::SMIN && Op0.hasOneUse()) {
if (SDValue Med3 = performIntMed3ImmCombine(
DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, true))
return Med3;
}
if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
if (SDValue Med3 = performIntMed3ImmCombine(
DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), false))
return Med3;
}
if (Opc == ISD::UMAX && Op0.getOpcode() == ISD::UMIN && Op0.hasOneUse()) {
if (SDValue Med3 = performIntMed3ImmCombine(
DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, false))
return Med3;
}
// fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
(Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
(Opc == AMDGPUISD::FMIN_LEGACY &&
Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
(VT == MVT::f32 || VT == MVT::f64 ||
(VT == MVT::f16 && Subtarget->has16BitInsts()) ||
(VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
Op0.hasOneUse()) {
if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
return Res;
}
return SDValue();
}
static bool isClampZeroToOne(SDValue A, SDValue B) {
if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
// FIXME: Should this be allowing -0.0?
return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
(CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
}
}
return false;
}
// FIXME: Should only worry about snans for version with chain.
SDValue SITargetLowering::performFMed3Combine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
// v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
// NaNs. With a NaN input, the order of the operands may change the result.
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
SDValue Src0 = N->getOperand(0);
SDValue Src1 = N->getOperand(1);
SDValue Src2 = N->getOperand(2);
if (isClampZeroToOne(Src0, Src1)) {
// const_a, const_b, x -> clamp is safe in all cases including signaling
// nans.
// FIXME: Should this be allowing -0.0?
return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
}
const MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
// FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
// handling no dx10-clamp?
if (Info->getMode().DX10Clamp) {
// If NaNs is clamped to 0, we are free to reorder the inputs.
if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
std::swap(Src0, Src1);
if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
std::swap(Src1, Src2);
if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
std::swap(Src0, Src1);
if (isClampZeroToOne(Src1, Src2))
return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
}
return SDValue();
}
SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SDValue Src0 = N->getOperand(0);
SDValue Src1 = N->getOperand(1);
if (Src0.isUndef() && Src1.isUndef())
return DCI.DAG.getUNDEF(N->getValueType(0));
return SDValue();
}
// Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
// expanded into a set of cmp/select instructions.
bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
unsigned NumElem,
bool IsDivergentIdx,
const GCNSubtarget *Subtarget) {
if (UseDivergentRegisterIndexing)
return false;
unsigned VecSize = EltSize * NumElem;
// Sub-dword vectors of size 2 dword or less have better implementation.
if (VecSize <= 64 && EltSize < 32)
return false;
// Always expand the rest of sub-dword instructions, otherwise it will be
// lowered via memory.
if (EltSize < 32)
return true;
// Always do this if var-idx is divergent, otherwise it will become a loop.
if (IsDivergentIdx)
return true;
// Large vectors would yield too many compares and v_cndmask_b32 instructions.
unsigned NumInsts = NumElem /* Number of compares */ +
((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
// On some architectures (GFX9) movrel is not available and it's better
// to expand.
if (!Subtarget->hasMovrel())
return NumInsts <= 16;
// If movrel is available, use it instead of expanding for vector of 8
// elements.
return NumInsts <= 15;
}
bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const {
SDValue Idx = N->getOperand(N->getNumOperands() - 1);
if (isa<ConstantSDNode>(Idx))
return false;
SDValue Vec = N->getOperand(0);
EVT VecVT = Vec.getValueType();
EVT EltVT = VecVT.getVectorElementType();
unsigned EltSize = EltVT.getSizeInBits();
unsigned NumElem = VecVT.getVectorNumElements();
return SITargetLowering::shouldExpandVectorDynExt(
EltSize, NumElem, Idx->isDivergent(), getSubtarget());
}
SDValue SITargetLowering::performExtractVectorEltCombine(
SDNode *N, DAGCombinerInfo &DCI) const {
SDValue Vec = N->getOperand(0);
SelectionDAG &DAG = DCI.DAG;
EVT VecVT = Vec.getValueType();
EVT VecEltVT = VecVT.getVectorElementType();
EVT ResVT = N->getValueType(0);
unsigned VecSize = VecVT.getSizeInBits();
unsigned VecEltSize = VecEltVT.getSizeInBits();
if ((Vec.getOpcode() == ISD::FNEG ||
Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
SDLoc SL(N);
SDValue Idx = N->getOperand(1);
SDValue Elt =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx);
return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt);
}
// ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
// =>
// Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
// Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
// ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) {
SDLoc SL(N);
SDValue Idx = N->getOperand(1);
unsigned Opc = Vec.getOpcode();
switch(Opc) {
default:
break;
// TODO: Support other binary operations.
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::ADD:
case ISD::UMIN:
case ISD::UMAX:
case ISD::SMIN:
case ISD::SMAX:
case ISD::FMAXNUM:
case ISD::FMINNUM:
case ISD::FMAXNUM_IEEE:
case ISD::FMINNUM_IEEE:
case ISD::FMAXIMUM:
case ISD::FMINIMUM: {
SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT,
Vec.getOperand(0), Idx);
SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT,
Vec.getOperand(1), Idx);
DCI.AddToWorklist(Elt0.getNode());
DCI.AddToWorklist(Elt1.getNode());
return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags());
}
}
}
// EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
if (shouldExpandVectorDynExt(N)) {
SDLoc SL(N);
SDValue Idx = N->getOperand(1);
SDValue V;
for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
SDValue IC = DAG.getVectorIdxConstant(I, SL);
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC);
if (I == 0)
V = Elt;
else
V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
}
return V;
}
if (!DCI.isBeforeLegalize())
return SDValue();
// Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
// elements. This exposes more load reduction opportunities by replacing
// multiple small extract_vector_elements with a single 32-bit extract.
auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (isa<MemSDNode>(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() &&
VecSize > 32 && VecSize % 32 == 0 && Idx) {
EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
unsigned BitIndex = Idx->getZExtValue() * VecEltSize;
unsigned EltIdx = BitIndex / 32;
unsigned LeftoverBitIdx = BitIndex % 32;
SDLoc SL(N);
SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
DCI.AddToWorklist(Cast.getNode());
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
DAG.getConstant(EltIdx, SL, MVT::i32));
DCI.AddToWorklist(Elt.getNode());
SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
DCI.AddToWorklist(Srl.getNode());
EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger();
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl);
DCI.AddToWorklist(Trunc.getNode());
if (VecEltVT == ResVT) {
return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc);
}
assert(ResVT.isScalarInteger());
return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT);
}
return SDValue();
}
SDValue
SITargetLowering::performInsertVectorEltCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(2);
EVT VecVT = Vec.getValueType();
EVT EltVT = VecVT.getVectorElementType();
// INSERT_VECTOR_ELT (<n x e>, var-idx)
// => BUILD_VECTOR n x select (e, const-idx)
if (!shouldExpandVectorDynExt(N))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
SDValue Ins = N->getOperand(1);
EVT IdxVT = Idx.getValueType();
SmallVector<SDValue, 16> Ops;
for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
SDValue IC = DAG.getConstant(I, SL, IdxVT);
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
Ops.push_back(V);
}
return DAG.getBuildVector(VecVT, SL, Ops);
}
/// Return the source of an fp_extend from f16 to f32, or a converted FP
/// constant.
static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src) {
if (Src.getOpcode() == ISD::FP_EXTEND &&
Src.getOperand(0).getValueType() == MVT::f16) {
return Src.getOperand(0);
}
if (auto *CFP = dyn_cast<ConstantFPSDNode>(Src)) {
APFloat Val = CFP->getValueAPF();
bool LosesInfo = true;
Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo);
if (!LosesInfo)
return DAG.getConstantFP(Val, SDLoc(Src), MVT::f16);
}
return SDValue();
}
SDValue SITargetLowering::performFPRoundCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
assert(Subtarget->has16BitInsts() && !Subtarget->hasMed3_16() &&
"combine only useful on gfx8");
SDValue TruncSrc = N->getOperand(0);
EVT VT = N->getValueType(0);
if (VT != MVT::f16)
return SDValue();
if (TruncSrc.getOpcode() != AMDGPUISD::FMED3 ||
TruncSrc.getValueType() != MVT::f32 || !TruncSrc.hasOneUse())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
// Optimize f16 fmed3 pattern performed on f32. On gfx8 there is no f16 fmed3,
// and expanding it with min/max saves 1 instruction vs. casting to f32 and
// casting back.
// fptrunc (f32 (fmed3 (fpext f16:a, fpext f16:b, fpext f16:c))) =>
// fmin(fmax(a, b), fmax(fmin(a, b), c))
SDValue A = strictFPExtFromF16(DAG, TruncSrc.getOperand(0));
if (!A)
return SDValue();
SDValue B = strictFPExtFromF16(DAG, TruncSrc.getOperand(1));
if (!B)
return SDValue();
SDValue C = strictFPExtFromF16(DAG, TruncSrc.getOperand(2));
if (!C)
return SDValue();
// This changes signaling nan behavior. If an input is a signaling nan, it
// would have been quieted by the fpext originally. We don't care because
// these are unconstrained ops. If we needed to insert quieting canonicalizes
// we would be worse off than just doing the promotion.
SDValue A1 = DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, A, B);
SDValue B1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A, B);
SDValue C1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A1, C);
return DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, B1, C1);
}
unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
const SDNode *N0,
const SDNode *N1) const {
EVT VT = N0->getValueType(0);
// Only do this if we are not trying to support denormals. v_mad_f32 does not
// support denormals ever.
if (((VT == MVT::f32 &&
denormalModeIsFlushAllF32(DAG.getMachineFunction())) ||
(VT == MVT::f16 && Subtarget->hasMadF16() &&
denormalModeIsFlushAllF64F16(DAG.getMachineFunction()))) &&
isOperationLegal(ISD::FMAD, VT))
return ISD::FMAD;
const TargetOptions &Options = DAG.getTarget().Options;
if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
(N0->getFlags().hasAllowContract() &&
N1->getFlags().hasAllowContract())) &&
isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
return ISD::FMA;
}
return 0;
}
// For a reassociatable opcode perform:
// op x, (op y, z) -> op (op x, z), y, if x and z are uniform
SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
SelectionDAG &DAG) const {
EVT VT = N->getValueType(0);
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
if (DAG.isBaseWithConstantOffset(SDValue(N, 0)))
return SDValue();
unsigned Opc = N->getOpcode();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (!(Op0->isDivergent() ^ Op1->isDivergent()))
return SDValue();
if (Op0->isDivergent())
std::swap(Op0, Op1);
if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
return SDValue();
SDValue Op2 = Op1.getOperand(1);
Op1 = Op1.getOperand(0);
if (!(Op1->isDivergent() ^ Op2->isDivergent()))
return SDValue();
if (Op1->isDivergent())
std::swap(Op1, Op2);
SDLoc SL(N);
SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
return DAG.getNode(Opc, SL, VT, Add1, Op2);
}
static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
EVT VT,
SDValue N0, SDValue N1, SDValue N2,
bool Signed) {
unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
}
// Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high
// multiplies, if any.
//
// Full 64-bit multiplies that feed into an addition are lowered here instead
// of using the generic expansion. The generic expansion ends up with
// a tree of ADD nodes that prevents us from using the "add" part of the
// MAD instruction. The expansion produced here results in a chain of ADDs
// instead of a tree.
SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N,
DAGCombinerInfo &DCI) const {
assert(N->getOpcode() == ISD::ADD);
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (VT.isVector())
return SDValue();
// S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall
// result in scalar registers for uniform values.
if (!N->isDivergent() && Subtarget->hasSMulHi())
return SDValue();
unsigned NumBits = VT.getScalarSizeInBits();
if (NumBits <= 32 || NumBits > 64)
return SDValue();
if (LHS.getOpcode() != ISD::MUL) {
assert(RHS.getOpcode() == ISD::MUL);
std::swap(LHS, RHS);
}
// Avoid the fold if it would unduly increase the number of multiplies due to
// multiple uses, except on hardware with full-rate multiply-add (which is
// part of full-rate 64-bit ops).
if (!Subtarget->hasFullRate64Ops()) {
unsigned NumUsers = 0;
for (SDNode *Use : LHS->uses()) {
// There is a use that does not feed into addition, so the multiply can't
// be removed. We prefer MUL + ADD + ADDC over MAD + MUL.
if (Use->getOpcode() != ISD::ADD)
return SDValue();
// We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer
// MUL + 3xADD + 3xADDC over 3xMAD.
++NumUsers;
if (NumUsers >= 3)
return SDValue();
}
}
SDValue MulLHS = LHS.getOperand(0);
SDValue MulRHS = LHS.getOperand(1);
SDValue AddRHS = RHS;
// Always check whether operands are small unsigned values, since that
// knowledge is useful in more cases. Check for small signed values only if
// doing so can unlock a shorter code sequence.
bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32;
bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32;
bool MulSignedLo = false;
if (!MulLHSUnsigned32 || !MulRHSUnsigned32) {
MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 &&
numBitsSigned(MulRHS, DAG) <= 32;
}
// The operands and final result all have the same number of bits. If
// operands need to be extended, they can be extended with garbage. The
// resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is
// truncated away in the end.
if (VT != MVT::i64) {
MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS);
MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS);
AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS);
}
// The basic code generated is conceptually straightforward. Pseudo code:
//
// accum = mad_64_32 lhs.lo, rhs.lo, accum
// accum.hi = add (mul lhs.hi, rhs.lo), accum.hi
// accum.hi = add (mul lhs.lo, rhs.hi), accum.hi
//
// The second and third lines are optional, depending on whether the factors
// are {sign,zero}-extended or not.
//
// The actual DAG is noisier than the pseudo code, but only due to
// instructions that disassemble values into low and high parts, and
// assemble the final result.
SDValue One = DAG.getConstant(1, SL, MVT::i32);
auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS);
auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS);
SDValue Accum =
getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo);
if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) {
SDValue AccumLo, AccumHi;
std::tie(AccumLo, AccumHi) = DAG.SplitScalar(Accum, SL, MVT::i32, MVT::i32);
if (!MulLHSUnsigned32) {
auto MulLHSHi =
DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One);
SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo);
AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
}
if (!MulRHSUnsigned32) {
auto MulRHSHi =
DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One);
SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi);
AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
}
Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi});
Accum = DAG.getBitcast(MVT::i64, Accum);
}
if (VT != MVT::i64)
Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum);
return Accum;
}
// Collect the ultimate src of each of the mul node's operands, and confirm
// each operand is 8 bytes.
static std::optional<ByteProvider<SDValue>>
handleMulOperand(const SDValue &MulOperand) {
auto Byte0 = calculateByteProvider(MulOperand, 0, 0);
if (!Byte0 || Byte0->isConstantZero()) {
return std::nullopt;
}
auto Byte1 = calculateByteProvider(MulOperand, 1, 0);
if (Byte1 && !Byte1->isConstantZero()) {
return std::nullopt;
}
return Byte0;
}
static unsigned addPermMasks(unsigned First, unsigned Second) {
unsigned FirstCs = First & 0x0c0c0c0c;
unsigned SecondCs = Second & 0x0c0c0c0c;
unsigned FirstNoCs = First & ~0x0c0c0c0c;
unsigned SecondNoCs = Second & ~0x0c0c0c0c;
assert((FirstCs & 0xFF) | (SecondCs & 0xFF));
assert((FirstCs & 0xFF00) | (SecondCs & 0xFF00));
assert((FirstCs & 0xFF0000) | (SecondCs & 0xFF0000));
assert((FirstCs & 0xFF000000) | (SecondCs & 0xFF000000));
return (FirstNoCs | SecondNoCs) | (FirstCs & SecondCs);
}
struct DotSrc {
SDValue SrcOp;
int64_t PermMask;
int64_t DWordOffset;
};
static void placeSources(ByteProvider<SDValue> &Src0,
ByteProvider<SDValue> &Src1,
SmallVectorImpl<DotSrc> &Src0s,
SmallVectorImpl<DotSrc> &Src1s, int Step) {
assert(Src0.Src.has_value() && Src1.Src.has_value());
// Src0s and Src1s are empty, just place arbitrarily.
if (Step == 0) {
Src0s.push_back({*Src0.Src, ((Src0.SrcOffset % 4) << 24) + 0x0c0c0c,
Src0.SrcOffset / 4});
Src1s.push_back({*Src1.Src, ((Src1.SrcOffset % 4) << 24) + 0x0c0c0c,
Src1.SrcOffset / 4});
return;
}
for (int BPI = 0; BPI < 2; BPI++) {
std::pair<ByteProvider<SDValue>, ByteProvider<SDValue>> BPP = {Src0, Src1};
if (BPI == 1) {
BPP = {Src1, Src0};
}
unsigned ZeroMask = 0x0c0c0c0c;
unsigned FMask = 0xFF << (8 * (3 - Step));
unsigned FirstMask =
(BPP.first.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask);
unsigned SecondMask =
(BPP.second.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask);
// Attempt to find Src vector which contains our SDValue, if so, add our
// perm mask to the existing one. If we are unable to find a match for the
// first SDValue, attempt to find match for the second.
int FirstGroup = -1;
for (int I = 0; I < 2; I++) {
SmallVectorImpl<DotSrc> &Srcs = I == 0 ? Src0s : Src1s;
auto MatchesFirst = [&BPP](DotSrc &IterElt) {
return IterElt.SrcOp == *BPP.first.Src &&
(IterElt.DWordOffset == (BPP.first.SrcOffset / 4));
};
auto Match = llvm::find_if(Srcs, MatchesFirst);
if (Match != Srcs.end()) {
Match->PermMask = addPermMasks(FirstMask, Match->PermMask);
FirstGroup = I;
break;
}
}
if (FirstGroup != -1) {
SmallVectorImpl<DotSrc> &Srcs = FirstGroup == 1 ? Src0s : Src1s;
auto MatchesSecond = [&BPP](DotSrc &IterElt) {
return IterElt.SrcOp == *BPP.second.Src &&
(IterElt.DWordOffset == (BPP.second.SrcOffset / 4));
};
auto Match = llvm::find_if(Srcs, MatchesSecond);
if (Match != Srcs.end()) {
Match->PermMask = addPermMasks(SecondMask, Match->PermMask);
} else
Srcs.push_back({*BPP.second.Src, SecondMask, BPP.second.SrcOffset / 4});
return;
}
}
// If we have made it here, then we could not find a match in Src0s or Src1s
// for either Src0 or Src1, so just place them arbitrarily.
unsigned ZeroMask = 0x0c0c0c0c;
unsigned FMask = 0xFF << (8 * (3 - Step));
Src0s.push_back(
{*Src0.Src,
((Src0.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)),
Src1.SrcOffset / 4});
Src1s.push_back(
{*Src1.Src,
((Src1.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)),
Src1.SrcOffset / 4});
return;
}
static SDValue resolveSources(SelectionDAG &DAG, SDLoc SL,
SmallVectorImpl<DotSrc> &Srcs, bool IsSigned,
bool IsAny) {
// If we just have one source, just permute it accordingly.
if (Srcs.size() == 1) {
auto Elt = Srcs.begin();
auto EltOp = getDWordFromOffset(DAG, SL, Elt->SrcOp, Elt->DWordOffset);
// v_perm will produce the original value
if (Elt->PermMask == 0x3020100)
return EltOp;
return DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltOp, EltOp,
DAG.getConstant(Elt->PermMask, SL, MVT::i32));
}
auto FirstElt = Srcs.begin();
auto SecondElt = std::next(FirstElt);
SmallVector<SDValue, 2> Perms;
// If we have multiple sources in the chain, combine them via perms (using
// calculated perm mask) and Ors.
while (true) {
auto FirstMask = FirstElt->PermMask;
auto SecondMask = SecondElt->PermMask;
unsigned FirstCs = FirstMask & 0x0c0c0c0c;
unsigned FirstPlusFour = FirstMask | 0x04040404;
// 0x0c + 0x04 = 0x10, so anding with 0x0F will produced 0x00 for any
// original 0x0C.
FirstMask = (FirstPlusFour & 0x0F0F0F0F) | FirstCs;
auto PermMask = addPermMasks(FirstMask, SecondMask);
auto FirstVal =
getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset);
auto SecondVal =
getDWordFromOffset(DAG, SL, SecondElt->SrcOp, SecondElt->DWordOffset);
Perms.push_back(DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, FirstVal,
SecondVal,
DAG.getConstant(PermMask, SL, MVT::i32)));
FirstElt = std::next(SecondElt);
if (FirstElt == Srcs.end())
break;
SecondElt = std::next(FirstElt);
// If we only have a FirstElt, then just combine that into the cumulative
// source node.
if (SecondElt == Srcs.end()) {
auto EltOp =
getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset);
Perms.push_back(
DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltOp, EltOp,
DAG.getConstant(FirstElt->PermMask, SL, MVT::i32)));
break;
}
}
assert(Perms.size() == 1 || Perms.size() == 2);
return Perms.size() == 2
? DAG.getNode(ISD::OR, SL, MVT::i32, Perms[0], Perms[1])
: Perms[0];
}
static void fixMasks(SmallVectorImpl<DotSrc> &Srcs, unsigned ChainLength) {
for (auto &[EntryVal, EntryMask, EntryOffset] : Srcs) {
EntryMask = EntryMask >> ((4 - ChainLength) * 8);
auto ZeroMask = ChainLength == 2 ? 0x0c0c0000 : 0x0c000000;
EntryMask += ZeroMask;
}
}
static bool isMul(const SDValue Op) {
auto Opcode = Op.getOpcode();
return (Opcode == ISD::MUL || Opcode == AMDGPUISD::MUL_U24 ||
Opcode == AMDGPUISD::MUL_I24);
}
static std::optional<bool>
checkDot4MulSignedness(const SDValue &N, ByteProvider<SDValue> &Src0,
ByteProvider<SDValue> &Src1, const SDValue &S0Op,
const SDValue &S1Op, const SelectionDAG &DAG) {
// If we both ops are i8s (pre legalize-dag), then the signedness semantics
// of the dot4 is irrelevant.
if (S0Op.getValueSizeInBits() == 8 && S1Op.getValueSizeInBits() == 8)
return false;
auto Known0 = DAG.computeKnownBits(S0Op, 0);
bool S0IsUnsigned = Known0.countMinLeadingZeros() > 0;
bool S0IsSigned = Known0.countMinLeadingOnes() > 0;
auto Known1 = DAG.computeKnownBits(S1Op, 0);
bool S1IsUnsigned = Known1.countMinLeadingZeros() > 0;
bool S1IsSigned = Known1.countMinLeadingOnes() > 0;
assert(!(S0IsUnsigned && S0IsSigned));
assert(!(S1IsUnsigned && S1IsSigned));
// There are 9 possible permutations of
// {S0IsUnsigned, S0IsSigned, S1IsUnsigned, S1IsSigned}
// In two permutations, the sign bits are known to be the same for both Ops,
// so simply return Signed / Unsigned corresponding to the MSB
if ((S0IsUnsigned && S1IsUnsigned) || (S0IsSigned && S1IsSigned))
return S0IsSigned;
// In another two permutations, the sign bits are known to be opposite. In
// this case return std::nullopt to indicate a bad match.
if ((S0IsUnsigned && S1IsSigned) || (S0IsSigned && S1IsUnsigned))
return std::nullopt;
// In the remaining five permutations, we don't know the value of the sign
// bit for at least one Op. Since we have a valid ByteProvider, we know that
// the upper bits must be extension bits. Thus, the only ways for the sign
// bit to be unknown is if it was sign extended from unknown value, or if it
// was any extended. In either case, it is correct to use the signed
// version of the signedness semantics of dot4
// In two of such permutations, we known the sign bit is set for
// one op, and the other is unknown. It is okay to used signed version of
// dot4.
if ((S0IsSigned && !(S1IsSigned || S1IsUnsigned)) ||
((S1IsSigned && !(S0IsSigned || S0IsUnsigned))))
return true;
// In one such permutation, we don't know either of the sign bits. It is okay
// to used the signed version of dot4.
if ((!(S1IsSigned || S1IsUnsigned) && !(S0IsSigned || S0IsUnsigned)))
return true;
// In two of such permutations, we known the sign bit is unset for
// one op, and the other is unknown. Return std::nullopt to indicate a
// bad match.
if ((S0IsUnsigned && !(S1IsSigned || S1IsUnsigned)) ||
((S1IsUnsigned && !(S0IsSigned || S0IsUnsigned))))
return std::nullopt;
llvm_unreachable("Fully covered condition");
}
SDValue SITargetLowering::performAddCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) {
if (Subtarget->hasMad64_32()) {
if (SDValue Folded = tryFoldToMad64_32(N, DCI))
return Folded;
}
}
if (SDValue V = reassociateScalarOps(N, DAG)) {
return V;
}
if ((isMul(LHS) || isMul(RHS)) && Subtarget->hasDot7Insts() &&
(Subtarget->hasDot1Insts() || Subtarget->hasDot8Insts())) {
SDValue TempNode(N, 0);
std::optional<bool> IsSigned;
SmallVector<DotSrc, 4> Src0s;
SmallVector<DotSrc, 4> Src1s;
SmallVector<SDValue, 4> Src2s;
// Match the v_dot4 tree, while collecting src nodes.
int ChainLength = 0;
for (int I = 0; I < 4; I++) {
auto MulIdx = isMul(LHS) ? 0 : isMul(RHS) ? 1 : -1;
if (MulIdx == -1)
break;
auto Src0 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(0));
if (!Src0)
break;
auto Src1 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(1));
if (!Src1)
break;
auto IterIsSigned = checkDot4MulSignedness(
TempNode->getOperand(MulIdx), *Src0, *Src1,
TempNode->getOperand(MulIdx)->getOperand(0),
TempNode->getOperand(MulIdx)->getOperand(1), DAG);
if (!IterIsSigned)
break;
if (!IsSigned)
IsSigned = *IterIsSigned;
if (*IterIsSigned != *IsSigned)
break;
placeSources(*Src0, *Src1, Src0s, Src1s, I);
auto AddIdx = 1 - MulIdx;
// Allow the special case where add (add (mul24, 0), mul24) became ->
// add (mul24, mul24).
if (I == 2 && isMul(TempNode->getOperand(AddIdx))) {
Src2s.push_back(TempNode->getOperand(AddIdx));
auto Src0 =
handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(0));
if (!Src0)
break;
auto Src1 =
handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(1));
if (!Src1)
break;
auto IterIsSigned = checkDot4MulSignedness(
TempNode->getOperand(AddIdx), *Src0, *Src1,
TempNode->getOperand(AddIdx)->getOperand(0),
TempNode->getOperand(AddIdx)->getOperand(1), DAG);
if (!IterIsSigned)
break;
assert(IsSigned);
if (*IterIsSigned != *IsSigned)
break;
placeSources(*Src0, *Src1, Src0s, Src1s, I + 1);
Src2s.push_back(DAG.getConstant(0, SL, MVT::i32));
ChainLength = I + 2;
break;
}
TempNode = TempNode->getOperand(AddIdx);
Src2s.push_back(TempNode);
ChainLength = I + 1;
if (TempNode->getNumOperands() < 2)
break;
LHS = TempNode->getOperand(0);
RHS = TempNode->getOperand(1);
}
if (ChainLength < 2)
return SDValue();
// Masks were constructed with assumption that we would find a chain of
// length 4. If not, then we need to 0 out the MSB bits (via perm mask of
// 0x0c) so they do not affect dot calculation.
if (ChainLength < 4) {
fixMasks(Src0s, ChainLength);
fixMasks(Src1s, ChainLength);
}
SDValue Src0, Src1;
// If we are just using a single source for both, and have permuted the
// bytes consistently, we can just use the sources without permuting
// (commutation).
bool UseOriginalSrc = false;
if (ChainLength == 4 && Src0s.size() == 1 && Src1s.size() == 1 &&
Src0s.begin()->PermMask == Src1s.begin()->PermMask &&
Src0s.begin()->SrcOp.getValueSizeInBits() >= 32 &&
Src1s.begin()->SrcOp.getValueSizeInBits() >= 32) {
SmallVector<unsigned, 4> SrcBytes;
auto Src0Mask = Src0s.begin()->PermMask;
SrcBytes.push_back(Src0Mask & 0xFF000000);
bool UniqueEntries = true;
for (auto I = 1; I < 4; I++) {
auto NextByte = Src0Mask & (0xFF << ((3 - I) * 8));
if (is_contained(SrcBytes, NextByte)) {
UniqueEntries = false;
break;
}
SrcBytes.push_back(NextByte);
}
if (UniqueEntries) {
UseOriginalSrc = true;
auto FirstElt = Src0s.begin();
auto FirstEltOp =
getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset);
auto SecondElt = Src1s.begin();
auto SecondEltOp = getDWordFromOffset(DAG, SL, SecondElt->SrcOp,
SecondElt->DWordOffset);
Src0 = DAG.getBitcastedAnyExtOrTrunc(FirstEltOp, SL,
MVT::getIntegerVT(32));
Src1 = DAG.getBitcastedAnyExtOrTrunc(SecondEltOp, SL,
MVT::getIntegerVT(32));
}
}
if (!UseOriginalSrc) {
Src0 = resolveSources(DAG, SL, Src0s, false, true);
Src1 = resolveSources(DAG, SL, Src1s, false, true);
}
assert(IsSigned);
SDValue Src2 =
DAG.getExtOrTrunc(*IsSigned, Src2s[ChainLength - 1], SL, MVT::i32);
SDValue IID = DAG.getTargetConstant(*IsSigned ? Intrinsic::amdgcn_sdot4
: Intrinsic::amdgcn_udot4,
SL, MVT::i64);
assert(!VT.isVector());
auto Dot = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, IID, Src0,
Src1, Src2, DAG.getTargetConstant(0, SL, MVT::i1));
return DAG.getExtOrTrunc(*IsSigned, Dot, SL, VT);
}
if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
return SDValue();
// add x, zext (setcc) => uaddo_carry x, 0, setcc
// add x, sext (setcc) => usubo_carry x, 0, setcc
unsigned Opc = LHS.getOpcode();
if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
Opc == ISD::ANY_EXTEND || Opc == ISD::UADDO_CARRY)
std::swap(RHS, LHS);
Opc = RHS.getOpcode();
switch (Opc) {
default: break;
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ANY_EXTEND: {
auto Cond = RHS.getOperand(0);
// If this won't be a real VOPC output, we would still need to insert an
// extra instruction anyway.
if (!isBoolSGPR(Cond))
break;
SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::USUBO_CARRY : ISD::UADDO_CARRY;
return DAG.getNode(Opc, SL, VTList, Args);
}
case ISD::UADDO_CARRY: {
// add x, (uaddo_carry y, 0, cc) => uaddo_carry x, y, cc
if (!isNullConstant(RHS.getOperand(1)))
break;
SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), RHS->getVTList(), Args);
}
}
return SDValue();
}
SDValue SITargetLowering::performSubCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
if (VT != MVT::i32)
return SDValue();
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// sub x, zext (setcc) => usubo_carry x, 0, setcc
// sub x, sext (setcc) => uaddo_carry x, 0, setcc
unsigned Opc = RHS.getOpcode();
switch (Opc) {
default: break;
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ANY_EXTEND: {
auto Cond = RHS.getOperand(0);
// If this won't be a real VOPC output, we would still need to insert an
// extra instruction anyway.
if (!isBoolSGPR(Cond))
break;
SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
return DAG.getNode(Opc, SL, VTList, Args);
}
}
if (LHS.getOpcode() == ISD::USUBO_CARRY) {
// sub (usubo_carry x, 0, cc), y => usubo_carry x, y, cc
if (!isNullConstant(LHS.getOperand(1)))
return SDValue();
SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
return DAG.getNode(ISD::USUBO_CARRY, SDLoc(N), LHS->getVTList(), Args);
}
return SDValue();
}
SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (N->getValueType(0) != MVT::i32)
return SDValue();
if (!isNullConstant(N->getOperand(1)))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDValue LHS = N->getOperand(0);
// uaddo_carry (add x, y), 0, cc => uaddo_carry x, y, cc
// usubo_carry (sub x, y), 0, cc => usubo_carry x, y, cc
unsigned LHSOpc = LHS.getOpcode();
unsigned Opc = N->getOpcode();
if ((LHSOpc == ISD::ADD && Opc == ISD::UADDO_CARRY) ||
(LHSOpc == ISD::SUB && Opc == ISD::USUBO_CARRY)) {
SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
}
return SDValue();
}
SDValue SITargetLowering::performFAddCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// These should really be instruction patterns, but writing patterns with
// source modifiers is a pain.
// fadd (fadd (a, a), b) -> mad 2.0, a, b
if (LHS.getOpcode() == ISD::FADD) {
SDValue A = LHS.getOperand(0);
if (A == LHS.getOperand(1)) {
unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
if (FusedOp != 0) {
const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
}
}
}
// fadd (b, fadd (a, a)) -> mad 2.0, a, b
if (RHS.getOpcode() == ISD::FADD) {
SDValue A = RHS.getOperand(0);
if (A == RHS.getOperand(1)) {
unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
if (FusedOp != 0) {
const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
}
}
}
return SDValue();
}
SDValue SITargetLowering::performFSubCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
EVT VT = N->getValueType(0);
assert(!VT.isVector());
// Try to get the fneg to fold into the source modifier. This undoes generic
// DAG combines and folds them into the mad.
//
// Only do this if we are not trying to support denormals. v_mad_f32 does
// not support denormals ever.
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() == ISD::FADD) {
// (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
SDValue A = LHS.getOperand(0);
if (A == LHS.getOperand(1)) {
unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
if (FusedOp != 0){
const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
}
}
}
if (RHS.getOpcode() == ISD::FADD) {
// (fsub c, (fadd a, a)) -> mad -2.0, a, c
SDValue A = RHS.getOperand(0);
if (A == RHS.getOperand(1)) {
unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
if (FusedOp != 0){
const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
}
}
}
return SDValue();
}
SDValue SITargetLowering::performFDivCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
EVT VT = N->getValueType(0);
if (VT != MVT::f16 || !Subtarget->has16BitInsts())
return SDValue();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDNodeFlags Flags = N->getFlags();
SDNodeFlags RHSFlags = RHS->getFlags();
if (!Flags.hasAllowContract() || !RHSFlags.hasAllowContract() ||
!RHS->hasOneUse())
return SDValue();
if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
bool IsNegative = false;
if (CLHS->isExactlyValue(1.0) ||
(IsNegative = CLHS->isExactlyValue(-1.0))) {
// fdiv contract 1.0, (sqrt contract x) -> rsq for f16
// fdiv contract -1.0, (sqrt contract x) -> fneg(rsq) for f16
if (RHS.getOpcode() == ISD::FSQRT) {
// TODO: Or in RHS flags, somehow missing from SDNodeFlags
SDValue Rsq =
DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0), Flags);
return IsNegative ? DAG.getNode(ISD::FNEG, SL, VT, Rsq, Flags) : Rsq;
}
}
}
return SDValue();
}
SDValue SITargetLowering::performFMACombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
SDLoc SL(N);
if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
return SDValue();
// FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
// FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
SDValue Op1 = N->getOperand(0);
SDValue Op2 = N->getOperand(1);
SDValue FMA = N->getOperand(2);
if (FMA.getOpcode() != ISD::FMA ||
Op1.getOpcode() != ISD::FP_EXTEND ||
Op2.getOpcode() != ISD::FP_EXTEND)
return SDValue();
// fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
// regardless of the denorm mode setting. Therefore,
// unsafe-fp-math/fp-contract is sufficient to allow generating fdot2.
const TargetOptions &Options = DAG.getTarget().Options;
if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
(N->getFlags().hasAllowContract() &&
FMA->getFlags().hasAllowContract())) {
Op1 = Op1.getOperand(0);
Op2 = Op2.getOperand(0);
if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
SDValue Vec1 = Op1.getOperand(0);
SDValue Idx1 = Op1.getOperand(1);
SDValue Vec2 = Op2.getOperand(0);
SDValue FMAOp1 = FMA.getOperand(0);
SDValue FMAOp2 = FMA.getOperand(1);
SDValue FMAAcc = FMA.getOperand(2);
if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
FMAOp2.getOpcode() != ISD::FP_EXTEND)
return SDValue();
FMAOp1 = FMAOp1.getOperand(0);
FMAOp2 = FMAOp2.getOperand(0);
if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
SDValue Vec3 = FMAOp1.getOperand(0);
SDValue Vec4 = FMAOp2.getOperand(0);
SDValue Idx2 = FMAOp1.getOperand(1);
if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
// Idx1 and Idx2 cannot be the same.
Idx1 == Idx2)
return SDValue();
if (Vec1 == Vec2 || Vec3 == Vec4)
return SDValue();
if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
return SDValue();
if ((Vec1 == Vec3 && Vec2 == Vec4) ||
(Vec1 == Vec4 && Vec2 == Vec3)) {
return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
DAG.getTargetConstant(0, SL, MVT::i1));
}
}
return SDValue();
}
SDValue SITargetLowering::performSetCCCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = LHS.getValueType();
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
auto CRHS = dyn_cast<ConstantSDNode>(RHS);
if (!CRHS) {
CRHS = dyn_cast<ConstantSDNode>(LHS);
if (CRHS) {
std::swap(LHS, RHS);
CC = getSetCCSwappedOperands(CC);
}
}
if (CRHS) {
if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
isBoolSGPR(LHS.getOperand(0))) {
// setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
// setcc (sext from i1 cc), -1, eq|sle|uge) => cc
// setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
// setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
if ((CRHS->isAllOnes() &&
(CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
(CRHS->isZero() &&
(CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
DAG.getConstant(-1, SL, MVT::i1));
if ((CRHS->isAllOnes() &&
(CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
(CRHS->isZero() &&
(CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
return LHS.getOperand(0);
}
const APInt &CRHSVal = CRHS->getAPIntValue();
if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
LHS.getOpcode() == ISD::SELECT &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
isa<ConstantSDNode>(LHS.getOperand(2)) &&
LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
isBoolSGPR(LHS.getOperand(0))) {
// Given CT != FT:
// setcc (select cc, CT, CF), CF, eq => xor cc, -1
// setcc (select cc, CT, CF), CF, ne => cc
// setcc (select cc, CT, CF), CT, ne => xor cc, -1
// setcc (select cc, CT, CF), CT, eq => cc
const APInt &CT = LHS.getConstantOperandAPInt(1);
const APInt &CF = LHS.getConstantOperandAPInt(2);
if ((CF == CRHSVal && CC == ISD::SETEQ) ||
(CT == CRHSVal && CC == ISD::SETNE))
return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
DAG.getConstant(-1, SL, MVT::i1));
if ((CF == CRHSVal && CC == ISD::SETNE) ||
(CT == CRHSVal && CC == ISD::SETEQ))
return LHS.getOperand(0);
}
}
if (VT != MVT::f32 && VT != MVT::f64 &&
(!Subtarget->has16BitInsts() || VT != MVT::f16))
return SDValue();
// Match isinf/isfinite pattern
// (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
// (fcmp one (fabs x), inf) -> (fp_class x,
// (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
if (!CRHS)
return SDValue();
const APFloat &APF = CRHS->getValueAPF();
if (APF.isInfinity() && !APF.isNegative()) {
const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
SIInstrFlags::N_INFINITY;
const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
SIInstrFlags::P_ZERO |
SIInstrFlags::N_NORMAL |
SIInstrFlags::P_NORMAL |
SIInstrFlags::N_SUBNORMAL |
SIInstrFlags::P_SUBNORMAL;
unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
DAG.getConstant(Mask, SL, MVT::i32));
}
}
return SDValue();
}
SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
SDValue Src = N->getOperand(0);
SDValue Shift = N->getOperand(0);
// TODO: Extend type shouldn't matter (assuming legal types).
if (Shift.getOpcode() == ISD::ZERO_EXTEND)
Shift = Shift.getOperand(0);
if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
// cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x
// cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
// cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
// cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
// cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0),
SDLoc(Shift.getOperand(0)), MVT::i32);
unsigned ShiftOffset = 8 * Offset;
if (Shift.getOpcode() == ISD::SHL)
ShiftOffset -= C->getZExtValue();
else
ShiftOffset += C->getZExtValue();
if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
MVT::f32, Shifted);
}
}
}
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
// We simplified Src. If this node is not dead, visit it again so it is
// folded properly.
if (N->getOpcode() != ISD::DELETED_NODE)
DCI.AddToWorklist(N);
return SDValue(N, 0);
}
// Handle (or x, (srl y, 8)) pattern when known bits are zero.
if (SDValue DemandedSrc =
TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
return SDValue();
}
SDValue SITargetLowering::performClampCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
if (!CSrc)
return SDValue();
const MachineFunction &MF = DCI.DAG.getMachineFunction();
const APFloat &F = CSrc->getValueAPF();
APFloat Zero = APFloat::getZero(F.getSemantics());
if (F < Zero ||
(F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
}
APFloat One(F.getSemantics(), "1.0");
if (F > One)
return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
return SDValue(CSrc, 0);
}
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None)
return SDValue();
switch (N->getOpcode()) {
case ISD::ADD:
return performAddCombine(N, DCI);
case ISD::SUB:
return performSubCombine(N, DCI);
case ISD::UADDO_CARRY:
case ISD::USUBO_CARRY:
return performAddCarrySubCarryCombine(N, DCI);
case ISD::FADD:
return performFAddCombine(N, DCI);
case ISD::FSUB:
return performFSubCombine(N, DCI);
case ISD::FDIV:
return performFDivCombine(N, DCI);
case ISD::SETCC:
return performSetCCCombine(N, DCI);
case ISD::FMAXNUM:
case ISD::FMINNUM:
case ISD::FMAXNUM_IEEE:
case ISD::FMINNUM_IEEE:
case ISD::FMAXIMUM:
case ISD::FMINIMUM:
case ISD::SMAX:
case ISD::SMIN:
case ISD::UMAX:
case ISD::UMIN:
case AMDGPUISD::FMIN_LEGACY:
case AMDGPUISD::FMAX_LEGACY:
return performMinMaxCombine(N, DCI);
case ISD::FMA:
return performFMACombine(N, DCI);
case ISD::AND:
return performAndCombine(N, DCI);
case ISD::OR:
return performOrCombine(N, DCI);
case ISD::FSHR: {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
if (N->getValueType(0) == MVT::i32 && N->isDivergent() &&
TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
return matchPERM(N, DCI);
}
break;
}
case ISD::XOR:
return performXorCombine(N, DCI);
case ISD::ZERO_EXTEND:
return performZeroExtendCombine(N, DCI);
case ISD::SIGN_EXTEND_INREG:
return performSignExtendInRegCombine(N , DCI);
case AMDGPUISD::FP_CLASS:
return performClassCombine(N, DCI);
case ISD::FCANONICALIZE:
return performFCanonicalizeCombine(N, DCI);
case AMDGPUISD::RCP:
return performRcpCombine(N, DCI);
case ISD::FLDEXP:
case AMDGPUISD::FRACT:
case AMDGPUISD::RSQ:
case AMDGPUISD::RCP_LEGACY:
case AMDGPUISD::RCP_IFLAG:
case AMDGPUISD::RSQ_CLAMP: {
// FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
SDValue Src = N->getOperand(0);
if (Src.isUndef())
return Src;
break;
}
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
return performUCharToFloatCombine(N, DCI);
case ISD::FCOPYSIGN:
return performFCopySignCombine(N, DCI);
case AMDGPUISD::CVT_F32_UBYTE0:
case AMDGPUISD::CVT_F32_UBYTE1:
case AMDGPUISD::CVT_F32_UBYTE2:
case AMDGPUISD::CVT_F32_UBYTE3:
return performCvtF32UByteNCombine(N, DCI);
case AMDGPUISD::FMED3:
return performFMed3Combine(N, DCI);
case AMDGPUISD::CVT_PKRTZ_F16_F32:
return performCvtPkRTZCombine(N, DCI);
case AMDGPUISD::CLAMP:
return performClampCombine(N, DCI);
case ISD::SCALAR_TO_VECTOR: {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
// v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
if (VT == MVT::v2i16 || VT == MVT::v2f16 || VT == MVT::v2bf16) {
SDLoc SL(N);
SDValue Src = N->getOperand(0);
EVT EltVT = Src.getValueType();
if (EltVT != MVT::i16)
Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
}
break;
}
case ISD::EXTRACT_VECTOR_ELT:
return performExtractVectorEltCombine(N, DCI);
case ISD::INSERT_VECTOR_ELT:
return performInsertVectorEltCombine(N, DCI);
case ISD::FP_ROUND:
return performFPRoundCombine(N, DCI);
case ISD::LOAD: {
if (SDValue Widened = widenLoad(cast<LoadSDNode>(N), DCI))
return Widened;
[[fallthrough]];
}
default: {
if (!DCI.isBeforeLegalize()) {
if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
return performMemSDNodeCombine(MemNode, DCI);
}
break;
}
}
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
}
/// Helper function for adjustWritemask
static unsigned SubIdx2Lane(unsigned Idx) {
switch (Idx) {
default: return ~0u;
case AMDGPU::sub0: return 0;
case AMDGPU::sub1: return 1;
case AMDGPU::sub2: return 2;
case AMDGPU::sub3: return 3;
case AMDGPU::sub4: return 4; // Possible with TFE/LWE
}
}
/// Adjust the writemask of MIMG, VIMAGE or VSAMPLE instructions
SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
SelectionDAG &DAG) const {
unsigned Opcode = Node->getMachineOpcode();
// Subtract 1 because the vdata output is not a MachineSDNode operand.
int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
return Node; // not implemented for D16
SDNode *Users[5] = { nullptr };
unsigned Lane = 0;
unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
unsigned NewDmask = 0;
unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
(int(LWEIdx) >= 0 && Node->getConstantOperandVal(LWEIdx)))
? true
: false;
unsigned TFCLane = 0;
bool HasChain = Node->getNumValues() > 1;
if (OldDmask == 0) {
// These are folded out, but on the chance it happens don't assert.
return Node;
}
unsigned OldBitsSet = llvm::popcount(OldDmask);
// Work out which is the TFE/LWE lane if that is enabled.
if (UsesTFC) {
TFCLane = OldBitsSet;
}
// Try to figure out the used register components
for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
I != E; ++I) {
// Don't look at users of the chain.
if (I.getUse().getResNo() != 0)
continue;
// Abort if we can't understand the usage
if (!I->isMachineOpcode() ||
I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
return Node;
// Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
// Note that subregs are packed, i.e. Lane==0 is the first bit set
// in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
// set, etc.
Lane = SubIdx2Lane(I->getConstantOperandVal(1));
if (Lane == ~0u)
return Node;
// Check if the use is for the TFE/LWE generated result at VGPRn+1.
if (UsesTFC && Lane == TFCLane) {
Users[Lane] = *I;
} else {
// Set which texture component corresponds to the lane.
unsigned Comp;
for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
Comp = llvm::countr_zero(Dmask);
Dmask &= ~(1 << Comp);
}
// Abort if we have more than one user per component.
if (Users[Lane])
return Node;
Users[Lane] = *I;
NewDmask |= 1 << Comp;
}
}
// Don't allow 0 dmask, as hardware assumes one channel enabled.
bool NoChannels = !NewDmask;
if (NoChannels) {
if (!UsesTFC) {
// No uses of the result and not using TFC. Then do nothing.
return Node;
}
// If the original dmask has one channel - then nothing to do
if (OldBitsSet == 1)
return Node;
// Use an arbitrary dmask - required for the instruction to work
NewDmask = 1;
}
// Abort if there's no change
if (NewDmask == OldDmask)
return Node;
unsigned BitsSet = llvm::popcount(NewDmask);
// Check for TFE or LWE - increase the number of channels by one to account
// for the extra return value
// This will need adjustment for D16 if this is also included in
// adjustWriteMask (this function) but at present D16 are excluded.
unsigned NewChannels = BitsSet + UsesTFC;
int NewOpcode =
AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
assert(NewOpcode != -1 &&
NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
"failed to find equivalent MIMG op");
// Adjust the writemask in the node
SmallVector<SDValue, 12> Ops;
Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
MVT ResultVT = NewChannels == 1 ?
SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
NewChannels == 5 ? 8 : NewChannels);
SDVTList NewVTList = HasChain ?
DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
NewVTList, Ops);
if (HasChain) {
// Update chain.
DAG.setNodeMemRefs(NewNode, Node->memoperands());
DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
}
if (NewChannels == 1) {
assert(Node->hasNUsesOfValue(1, 0));
SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
SDLoc(Node), Users[Lane]->getValueType(0),
SDValue(NewNode, 0));
DAG.ReplaceAllUsesWith(Users[Lane], Copy);
return nullptr;
}
// Update the users of the node with the new indices
for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
SDNode *User = Users[i];
if (!User) {
// Handle the special case of NoChannels. We set NewDmask to 1 above, but
// Users[0] is still nullptr because channel 0 doesn't really have a use.
if (i || !NoChannels)
continue;
} else {
SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
SDNode *NewUser = DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
if (NewUser != User) {
DAG.ReplaceAllUsesWith(SDValue(User, 0), SDValue(NewUser, 0));
DAG.RemoveDeadNode(User);
}
}
switch (Idx) {
default: break;
case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
}
}
DAG.RemoveDeadNode(Node);
return nullptr;
}
static bool isFrameIndexOp(SDValue Op) {
if (Op.getOpcode() == ISD::AssertZext)
Op = Op.getOperand(0);
return isa<FrameIndexSDNode>(Op);
}
/// Legalize target independent instructions (e.g. INSERT_SUBREG)
/// with frame index operands.
/// LLVM assumes that inputs are to these instructions are registers.
SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
SelectionDAG &DAG) const {
if (Node->getOpcode() == ISD::CopyToReg) {
RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
SDValue SrcVal = Node->getOperand(2);
// Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
// to try understanding copies to physical registers.
if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
SDLoc SL(Node);
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
SDValue VReg = DAG.getRegister(
MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
SDNode *Glued = Node->getGluedNode();
SDValue ToVReg
= DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
SDValue ToResultReg
= DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
VReg, ToVReg.getValue(1));
DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
DAG.RemoveDeadNode(Node);
return ToResultReg.getNode();
}
}
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
if (!isFrameIndexOp(Node->getOperand(i))) {
Ops.push_back(Node->getOperand(i));
continue;
}
SDLoc DL(Node);
Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
Node->getOperand(i).getValueType(),
Node->getOperand(i)), 0));
}
return DAG.UpdateNodeOperands(Node, Ops);
}
/// Fold the instructions after selecting them.
/// Returns null if users were already updated.
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
SelectionDAG &DAG) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
unsigned Opcode = Node->getMachineOpcode();
if (TII->isImage(Opcode) && !TII->get(Opcode).mayStore() &&
!TII->isGather4(Opcode) &&
AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) {
return adjustWritemask(Node, DAG);
}
if (Opcode == AMDGPU::INSERT_SUBREG ||
Opcode == AMDGPU::REG_SEQUENCE) {
legalizeTargetIndependentNode(Node, DAG);
return Node;
}
switch (Opcode) {
case AMDGPU::V_DIV_SCALE_F32_e64:
case AMDGPU::V_DIV_SCALE_F64_e64: {
// Satisfy the operand register constraint when one of the inputs is
// undefined. Ordinarily each undef value will have its own implicit_def of
// a vreg, so force these to use a single register.
SDValue Src0 = Node->getOperand(1);
SDValue Src1 = Node->getOperand(3);
SDValue Src2 = Node->getOperand(5);
if ((Src0.isMachineOpcode() &&
Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
(Src0 == Src1 || Src0 == Src2))
break;
MVT VT = Src0.getValueType().getSimpleVT();
const TargetRegisterClass *RC =
getRegClassFor(VT, Src0.getNode()->isDivergent());
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
UndefReg, Src0, SDValue());
// src0 must be the same register as src1 or src2, even if the value is
// undefined, so make sure we don't violate this constraint.
if (Src0.isMachineOpcode() &&
Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
if (Src1.isMachineOpcode() &&
Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
Src0 = Src1;
else if (Src2.isMachineOpcode() &&
Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
Src0 = Src2;
else {
assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
Src0 = UndefReg;
Src1 = UndefReg;
}
} else
break;
SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
Ops[1] = Src0;
Ops[3] = Src1;
Ops[5] = Src2;
Ops.push_back(ImpDef.getValue(1));
return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
}
default:
break;
}
return Node;
}
// Any MIMG instructions that use tfe or lwe require an initialization of the
// result register that will be written in the case of a memory access failure.
// The required code is also added to tie this init code to the result of the
// img instruction.
void SITargetLowering::AddMemOpInit(MachineInstr &MI) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
const SIRegisterInfo &TRI = TII->getRegisterInfo();
MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
MachineBasicBlock &MBB = *MI.getParent();
int DstIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
unsigned InitIdx = 0;
if (TII->isImage(MI)) {
MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
if (!TFE && !LWE) // intersect_ray
return;
unsigned TFEVal = TFE ? TFE->getImm() : 0;
unsigned LWEVal = LWE ? LWE->getImm() : 0;
unsigned D16Val = D16 ? D16->getImm() : 0;
if (!TFEVal && !LWEVal)
return;
// At least one of TFE or LWE are non-zero
// We have to insert a suitable initialization of the result value and
// tie this to the dest of the image instruction.
// Calculate which dword we have to initialize to 0.
MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
// check that dmask operand is found.
assert(MO_Dmask && "Expected dmask operand in instruction");
unsigned dmask = MO_Dmask->getImm();
// Determine the number of active lanes taking into account the
// Gather4 special case
unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask);
bool Packed = !Subtarget->hasUnpackedD16VMem();
InitIdx = D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
// Abandon attempt if the dst size isn't large enough
// - this is in fact an error but this is picked up elsewhere and
// reported correctly.
uint32_t DstSize =
TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
if (DstSize < InitIdx)
return;
} else if (TII->isMUBUF(MI) && AMDGPU::getMUBUFTfe(MI.getOpcode())) {
InitIdx = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
} else {
return;
}
const DebugLoc &DL = MI.getDebugLoc();
// Create a register for the initialization value.
Register PrevDst = MRI.cloneVirtualRegister(MI.getOperand(DstIdx).getReg());
unsigned NewDst = 0; // Final initialized value will be in here
// If PRTStrictNull feature is enabled (the default) then initialize
// all the result registers to 0, otherwise just the error indication
// register (VGPRn+1)
unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
for (; SizeLeft; SizeLeft--, CurrIdx++) {
NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
// Initialize dword
Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
.addImm(0);
// Insert into the super-reg
BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
.addReg(PrevDst)
.addReg(SubReg)
.addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
PrevDst = NewDst;
}
// Add as an implicit operand
MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
// Tie the just added implicit operand to the dst
MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
}
/// Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
MachineFunction *MF = MI.getParent()->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
if (TII->isVOP3(MI.getOpcode())) {
// Make sure constant bus requirements are respected.
TII->legalizeOperandsVOP3(MRI, MI);
// Prefer VGPRs over AGPRs in mAI instructions where possible.
// This saves a chain-copy of registers and better balance register
// use between vgpr and agpr as agpr tuples tend to be big.
if (!MI.getDesc().operands().empty()) {
unsigned Opc = MI.getOpcode();
bool HasAGPRs = Info->mayNeedAGPRs();
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
int16_t Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
for (auto I :
{AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), Src2Idx}) {
if (I == -1)
break;
if ((I == Src2Idx) && (HasAGPRs))
break;
MachineOperand &Op = MI.getOperand(I);
if (!Op.isReg() || !Op.getReg().isVirtual())
continue;
auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
if (!TRI->hasAGPRs(RC))
continue;
auto *Src = MRI.getUniqueVRegDef(Op.getReg());
if (!Src || !Src->isCopy() ||
!TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
continue;
auto *NewRC = TRI->getEquivalentVGPRClass(RC);
// All uses of agpr64 and agpr32 can also accept vgpr except for
// v_accvgpr_read, but we do not produce agpr reads during selection,
// so no use checks are needed.
MRI.setRegClass(Op.getReg(), NewRC);
}
if (!HasAGPRs)
return;
// Resolve the rest of AV operands to AGPRs.
if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) {
if (Src2->isReg() && Src2->getReg().isVirtual()) {
auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg());
if (TRI->isVectorSuperClass(RC)) {
auto *NewRC = TRI->getEquivalentAGPRClass(RC);
MRI.setRegClass(Src2->getReg(), NewRC);
if (Src2->isTied())
MRI.setRegClass(MI.getOperand(0).getReg(), NewRC);
}
}
}
}
return;
}
if (TII->isImage(MI))
TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr);
}
static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
uint64_t Val) {
SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
}
MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
const SDLoc &DL,
SDValue Ptr) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
// Build the half of the subregister with the constants before building the
// full 128-bit register. If we are building multiple resource descriptors,
// this will allow CSEing of the 2-component register.
const SDValue Ops0[] = {
DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
buildSMovImm32(DAG, DL, 0),
DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
};
SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
MVT::v2i32, Ops0), 0);
// Combine the constants and the pointer.
const SDValue Ops1[] = {
DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
Ptr,
DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
SubRegHi,
DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
}
/// Return a resource descriptor with the 'Add TID' bit enabled
/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
/// of the resource descriptor) to create an offset, which is added to
/// the resource pointer.
MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
SDValue Ptr, uint32_t RsrcDword1,
uint64_t RsrcDword2And3) const {
SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
if (RsrcDword1) {
PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
DAG.getConstant(RsrcDword1, DL, MVT::i32)),
0);
}
SDValue DataLo = buildSMovImm32(DAG, DL,
RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
const SDValue Ops[] = {
DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
PtrLo,
DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
PtrHi,
DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
DataLo,
DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
DataHi,
DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
}
//===----------------------------------------------------------------------===//
// SI Inline Assembly Support
//===----------------------------------------------------------------------===//
std::pair<unsigned, const TargetRegisterClass *>
SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
StringRef Constraint,
MVT VT) const {
const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
const TargetRegisterClass *RC = nullptr;
if (Constraint.size() == 1) {
const unsigned BitWidth = VT.getSizeInBits();
switch (Constraint[0]) {
default:
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
case 's':
case 'r':
switch (BitWidth) {
case 16:
RC = &AMDGPU::SReg_32RegClass;
break;
case 64:
RC = &AMDGPU::SGPR_64RegClass;
break;
default:
RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
if (!RC)
return std::pair(0U, nullptr);
break;
}
break;
case 'v':
switch (BitWidth) {
case 16:
RC = &AMDGPU::VGPR_32RegClass;
break;
default:
RC = TRI->getVGPRClassForBitWidth(BitWidth);
if (!RC)
return std::pair(0U, nullptr);
break;
}
break;
case 'a':
if (!Subtarget->hasMAIInsts())
break;
switch (BitWidth) {
case 16:
RC = &AMDGPU::AGPR_32RegClass;
break;
default:
RC = TRI->getAGPRClassForBitWidth(BitWidth);
if (!RC)
return std::pair(0U, nullptr);
break;
}
break;
}
// We actually support i128, i16 and f16 as inline parameters
// even if they are not reported as legal
if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
return std::pair(0U, RC);
}
if (Constraint.starts_with("{") && Constraint.ends_with("}")) {
StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
if (RegName.consume_front("v")) {
RC = &AMDGPU::VGPR_32RegClass;
} else if (RegName.consume_front("s")) {
RC = &AMDGPU::SGPR_32RegClass;
} else if (RegName.consume_front("a")) {
RC = &AMDGPU::AGPR_32RegClass;
}
if (RC) {
uint32_t Idx;
if (RegName.consume_front("[")) {
uint32_t End;
bool Failed = RegName.consumeInteger(10, Idx);
Failed |= !RegName.consume_front(":");
Failed |= RegName.consumeInteger(10, End);
Failed |= !RegName.consume_back("]");
if (!Failed) {
uint32_t Width = (End - Idx + 1) * 32;
MCRegister Reg = RC->getRegister(Idx);
if (SIRegisterInfo::isVGPRClass(RC))
RC = TRI->getVGPRClassForBitWidth(Width);
else if (SIRegisterInfo::isSGPRClass(RC))
RC = TRI->getSGPRClassForBitWidth(Width);
else if (SIRegisterInfo::isAGPRClass(RC))
RC = TRI->getAGPRClassForBitWidth(Width);
if (RC) {
Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
return std::pair(Reg, RC);
}
}
} else {
bool Failed = RegName.getAsInteger(10, Idx);
if (!Failed && Idx < RC->getNumRegs())
return std::pair(RC->getRegister(Idx), RC);
}
}
}
auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
if (Ret.first)
Ret.second = TRI->getPhysRegBaseClass(Ret.first);
return Ret;
}
static bool isImmConstraint(StringRef Constraint) {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 'I':
case 'J':
case 'A':
case 'B':
case 'C':
return true;
}
} else if (Constraint == "DA" ||
Constraint == "DB") {
return true;
}
return false;
}
SITargetLowering::ConstraintType
SITargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 's':
case 'v':
case 'a':
return C_RegisterClass;
}
}
if (isImmConstraint(Constraint)) {
return C_Other;
}
return TargetLowering::getConstraintType(Constraint);
}
static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
if (!AMDGPU::isInlinableIntLiteral(Val)) {
Val = Val & maskTrailingOnes<uint64_t>(Size);
}
return Val;
}
void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
StringRef Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
if (isImmConstraint(Constraint)) {
uint64_t Val;
if (getAsmOperandConstVal(Op, Val) &&
checkAsmConstraintVal(Op, Constraint, Val)) {
Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
}
} else {
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
}
bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
unsigned Size = Op.getScalarValueSizeInBits();
if (Size > 64)
return false;
if (Size == 16 && !Subtarget->has16BitInsts())
return false;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Val = C->getSExtValue();
return true;
}
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
return true;
}
if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
if (Size != 16 || Op.getNumOperands() != 2)
return false;
if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
return false;
if (ConstantSDNode *C = V->getConstantSplatNode()) {
Val = C->getSExtValue();
return true;
}
if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
return true;
}
}
return false;
}
bool SITargetLowering::checkAsmConstraintVal(SDValue Op, StringRef Constraint,
uint64_t Val) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'I':
return AMDGPU::isInlinableIntLiteral(Val);
case 'J':
return isInt<16>(Val);
case 'A':
return checkAsmConstraintValA(Op, Val);
case 'B':
return isInt<32>(Val);
case 'C':
return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
AMDGPU::isInlinableIntLiteral(Val);
default:
break;
}
} else if (Constraint.size() == 2) {
if (Constraint == "DA") {
int64_t HiBits = static_cast<int32_t>(Val >> 32);
int64_t LoBits = static_cast<int32_t>(Val);
return checkAsmConstraintValA(Op, HiBits, 32) &&
checkAsmConstraintValA(Op, LoBits, 32);
}
if (Constraint == "DB") {
return true;
}
}
llvm_unreachable("Invalid asm constraint");
}
bool SITargetLowering::checkAsmConstraintValA(SDValue Op, uint64_t Val,
unsigned MaxSize) const {
unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
if (Size == 16) {
MVT VT = Op.getSimpleValueType();
switch (VT.SimpleTy) {
default:
return false;
case MVT::i16:
return AMDGPU::isInlinableLiteralI16(Val, HasInv2Pi);
case MVT::f16:
return AMDGPU::isInlinableLiteralFP16(Val, HasInv2Pi);
case MVT::bf16:
return AMDGPU::isInlinableLiteralBF16(Val, HasInv2Pi);
case MVT::v2i16:
return AMDGPU::getInlineEncodingV2I16(Val).has_value();
case MVT::v2f16:
return AMDGPU::getInlineEncodingV2F16(Val).has_value();
case MVT::v2bf16:
return AMDGPU::getInlineEncodingV2BF16(Val).has_value();
}
}
if ((Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
(Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi)))
return true;
return false;
}
static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
switch (UnalignedClassID) {
case AMDGPU::VReg_64RegClassID:
return AMDGPU::VReg_64_Align2RegClassID;
case AMDGPU::VReg_96RegClassID:
return AMDGPU::VReg_96_Align2RegClassID;
case AMDGPU::VReg_128RegClassID:
return AMDGPU::VReg_128_Align2RegClassID;
case AMDGPU::VReg_160RegClassID:
return AMDGPU::VReg_160_Align2RegClassID;
case AMDGPU::VReg_192RegClassID:
return AMDGPU::VReg_192_Align2RegClassID;
case AMDGPU::VReg_224RegClassID:
return AMDGPU::VReg_224_Align2RegClassID;
case AMDGPU::VReg_256RegClassID:
return AMDGPU::VReg_256_Align2RegClassID;
case AMDGPU::VReg_288RegClassID:
return AMDGPU::VReg_288_Align2RegClassID;
case AMDGPU::VReg_320RegClassID:
return AMDGPU::VReg_320_Align2RegClassID;
case AMDGPU::VReg_352RegClassID:
return AMDGPU::VReg_352_Align2RegClassID;
case AMDGPU::VReg_384RegClassID:
return AMDGPU::VReg_384_Align2RegClassID;
case AMDGPU::VReg_512RegClassID:
return AMDGPU::VReg_512_Align2RegClassID;
case AMDGPU::VReg_1024RegClassID:
return AMDGPU::VReg_1024_Align2RegClassID;
case AMDGPU::AReg_64RegClassID:
return AMDGPU::AReg_64_Align2RegClassID;
case AMDGPU::AReg_96RegClassID:
return AMDGPU::AReg_96_Align2RegClassID;
case AMDGPU::AReg_128RegClassID:
return AMDGPU::AReg_128_Align2RegClassID;
case AMDGPU::AReg_160RegClassID:
return AMDGPU::AReg_160_Align2RegClassID;
case AMDGPU::AReg_192RegClassID:
return AMDGPU::AReg_192_Align2RegClassID;
case AMDGPU::AReg_256RegClassID:
return AMDGPU::AReg_256_Align2RegClassID;
case AMDGPU::AReg_512RegClassID:
return AMDGPU::AReg_512_Align2RegClassID;
case AMDGPU::AReg_1024RegClassID:
return AMDGPU::AReg_1024_Align2RegClassID;
default:
return -1;
}
}
// Figure out which registers should be reserved for stack access. Only after
// the function is legalized do we know all of the non-spill stack objects or if
// calls are present.
void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
const SIInstrInfo *TII = ST.getInstrInfo();
if (Info->isEntryFunction()) {
// Callable functions have fixed registers used for stack access.
reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
}
// TODO: Move this logic to getReservedRegs()
// Reserve the SGPR(s) to save/restore EXEC for WWM spill/copy handling.
unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
Register SReg = ST.isWave32()
? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1)
: TRI->getAlignedHighSGPRForRC(MF, /*Align=*/2,
&AMDGPU::SGPR_64RegClass);
Info->setSGPRForEXECCopy(SReg);
assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
Info->getStackPtrOffsetReg()));
if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
// We need to worry about replacing the default register with itself in case
// of MIR testcases missing the MFI.
if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
Info->limitOccupancy(MF);
if (ST.isWave32() && !MF.empty()) {
for (auto &MBB : MF) {
for (auto &MI : MBB) {
TII->fixImplicitOperands(MI);
}
}
}
// FIXME: This is a hack to fixup AGPR classes to use the properly aligned
// classes if required. Ideally the register class constraints would differ
// per-subtarget, but there's no easy way to achieve that right now. This is
// not a problem for VGPRs because the correctly aligned VGPR class is implied
// from using them as the register class for legal types.
if (ST.needsAlignedVGPRs()) {
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
const Register Reg = Register::index2VirtReg(I);
const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
if (!RC)
continue;
int NewClassID = getAlignedAGPRClassID(RC->getID());
if (NewClassID != -1)
MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
}
}
TargetLoweringBase::finalizeLowering(MF);
}
void SITargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
Known.resetAll();
unsigned Opc = Op.getOpcode();
switch (Opc) {
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IID = Op.getConstantOperandVal(0);
switch (IID) {
case Intrinsic::amdgcn_mbcnt_lo:
case Intrinsic::amdgcn_mbcnt_hi: {
const GCNSubtarget &ST =
DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
// These return at most the (wavefront size - 1) + src1
// As long as src1 is an immediate we can calc known bits
KnownBits Src1Known = DAG.computeKnownBits(Op.getOperand(2), Depth + 1);
unsigned Src1ValBits = Src1Known.countMaxActiveBits();
unsigned MaxActiveBits = std::max(Src1ValBits, ST.getWavefrontSizeLog2());
// Cater for potential carry
MaxActiveBits += Src1ValBits ? 1 : 0;
unsigned Size = Op.getValueType().getSizeInBits();
if (MaxActiveBits < Size)
Known.Zero.setHighBits(Size - MaxActiveBits);
return;
}
}
break;
}
}
return AMDGPUTargetLowering::computeKnownBitsForTargetNode(
Op, Known, DemandedElts, DAG, Depth);
}
void SITargetLowering::computeKnownBitsForFrameIndex(
const int FI, KnownBits &Known, const MachineFunction &MF) const {
TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
// Set the high bits to zero based on the maximum allowed scratch size per
// wave. We can't use vaddr in MUBUF instructions if we don't know the address
// calculation won't overflow, so assume the sign bit is never set.
Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
}
static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
KnownBits &Known, unsigned Dim) {
unsigned MaxValue =
ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
Known.Zero.setHighBits(llvm::countl_zero(MaxValue));
}
void SITargetLowering::computeKnownBitsForTargetInstr(
GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
const MachineRegisterInfo &MRI, unsigned Depth) const {
const MachineInstr *MI = MRI.getVRegDef(R);
switch (MI->getOpcode()) {
case AMDGPU::G_INTRINSIC:
case AMDGPU::G_INTRINSIC_CONVERGENT: {
switch (cast<GIntrinsic>(MI)->getIntrinsicID()) {
case Intrinsic::amdgcn_workitem_id_x:
knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
break;
case Intrinsic::amdgcn_workitem_id_y:
knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
break;
case Intrinsic::amdgcn_workitem_id_z:
knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
break;
case Intrinsic::amdgcn_mbcnt_lo:
case Intrinsic::amdgcn_mbcnt_hi: {
// These return at most the wavefront size - 1.
unsigned Size = MRI.getType(R).getSizeInBits();
Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
break;
}
case Intrinsic::amdgcn_groupstaticsize: {
// We can report everything over the maximum size as 0. We can't report
// based on the actual size because we don't know if it's accurate or not
// at any given point.
Known.Zero.setHighBits(
llvm::countl_zero(getSubtarget()->getAddressableLocalMemorySize()));
break;
}
}
break;
}
case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
Known.Zero.setHighBits(24);
break;
case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
Known.Zero.setHighBits(16);
break;
case AMDGPU::G_AMDGPU_SMED3:
case AMDGPU::G_AMDGPU_UMED3: {
auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs();
KnownBits Known2;
KB.computeKnownBitsImpl(Src2, Known2, DemandedElts, Depth + 1);
if (Known2.isUnknown())
break;
KnownBits Known1;
KB.computeKnownBitsImpl(Src1, Known1, DemandedElts, Depth + 1);
if (Known1.isUnknown())
break;
KnownBits Known0;
KB.computeKnownBitsImpl(Src0, Known0, DemandedElts, Depth + 1);
if (Known0.isUnknown())
break;
// TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling.
Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero;
Known.One = Known0.One & Known1.One & Known2.One;
break;
}
}
}
Align SITargetLowering::computeKnownAlignForTargetInstr(
GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
unsigned Depth) const {
const MachineInstr *MI = MRI.getVRegDef(R);
if (auto *GI = dyn_cast<GIntrinsic>(MI)) {
// FIXME: Can this move to generic code? What about the case where the call
// site specifies a lower alignment?
Intrinsic::ID IID = GI->getIntrinsicID();
LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
if (MaybeAlign RetAlign = Attrs.getRetAlignment())
return *RetAlign;
}
return Align(1);
}
Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
const Align CacheLineAlign = Align(64);
// Pre-GFX10 target did not benefit from loop alignment
if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() ||
getSubtarget()->hasInstFwdPrefetchBug())
return PrefAlign;
// On GFX10 I$ is 4 x 64 bytes cache lines.
// By default prefetcher keeps one cache line behind and reads two ahead.
// We can modify it with S_INST_PREFETCH for larger loops to have two lines
// behind and one ahead.
// Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
// If loop fits 64 bytes it always spans no more than two cache lines and
// does not need an alignment.
// Else if loop is less or equal 128 bytes we do not need to modify prefetch,
// Else if loop is less or equal 192 bytes we need two lines behind.
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
const MachineBasicBlock *Header = ML->getHeader();
if (Header->getAlignment() != PrefAlign)
return Header->getAlignment(); // Already processed.
unsigned LoopSize = 0;
for (const MachineBasicBlock *MBB : ML->blocks()) {
// If inner loop block is aligned assume in average half of the alignment
// size to be added as nops.
if (MBB != Header)
LoopSize += MBB->getAlignment().value() / 2;
for (const MachineInstr &MI : *MBB) {
LoopSize += TII->getInstSizeInBytes(MI);
if (LoopSize > 192)
return PrefAlign;
}
}
if (LoopSize <= 64)
return PrefAlign;
if (LoopSize <= 128)
return CacheLineAlign;
// If any of parent loops is surrounded by prefetch instructions do not
// insert new for inner loop, which would reset parent's settings.
for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
if (MachineBasicBlock *Exit = P->getExitBlock()) {
auto I = Exit->getFirstNonDebugInstr();
if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
return CacheLineAlign;
}
}
MachineBasicBlock *Pre = ML->getLoopPreheader();
MachineBasicBlock *Exit = ML->getExitBlock();
if (Pre && Exit) {
auto PreTerm = Pre->getFirstTerminator();
if (PreTerm == Pre->begin() ||
std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH)
BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
.addImm(1); // prefetch 2 lines behind PC
auto ExitHead = Exit->getFirstNonDebugInstr();
if (ExitHead == Exit->end() ||
ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH)
BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
.addImm(2); // prefetch 1 line behind PC
}
return CacheLineAlign;
}
LLVM_ATTRIBUTE_UNUSED
static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
assert(N->getOpcode() == ISD::CopyFromReg);
do {
// Follow the chain until we find an INLINEASM node.
N = N->getOperand(0).getNode();
if (N->getOpcode() == ISD::INLINEASM ||
N->getOpcode() == ISD::INLINEASM_BR)
return true;
} while (N->getOpcode() == ISD::CopyFromReg);
return false;
}
bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode *N,
FunctionLoweringInfo *FLI,
UniformityInfo *UA) const {
switch (N->getOpcode()) {
case ISD::CopyFromReg: {
const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
Register Reg = R->getReg();
// FIXME: Why does this need to consider isLiveIn?
if (Reg.isPhysical() || MRI.isLiveIn(Reg))
return !TRI->isSGPRReg(MRI, Reg);
if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
return UA->isDivergent(V);
assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
return !TRI->isSGPRReg(MRI, Reg);
}
case ISD::LOAD: {
const LoadSDNode *L = cast<LoadSDNode>(N);
unsigned AS = L->getAddressSpace();
// A flat load may access private memory.
return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
}
case ISD::CALLSEQ_END:
return true;
case ISD::INTRINSIC_WO_CHAIN:
return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(0));
case ISD::INTRINSIC_W_CHAIN:
return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(1));
case AMDGPUISD::ATOMIC_CMP_SWAP:
case AMDGPUISD::ATOMIC_LOAD_FMIN:
case AMDGPUISD::ATOMIC_LOAD_FMAX:
case AMDGPUISD::BUFFER_ATOMIC_SWAP:
case AMDGPUISD::BUFFER_ATOMIC_ADD:
case AMDGPUISD::BUFFER_ATOMIC_SUB:
case AMDGPUISD::BUFFER_ATOMIC_SMIN:
case AMDGPUISD::BUFFER_ATOMIC_UMIN:
case AMDGPUISD::BUFFER_ATOMIC_SMAX:
case AMDGPUISD::BUFFER_ATOMIC_UMAX:
case AMDGPUISD::BUFFER_ATOMIC_AND:
case AMDGPUISD::BUFFER_ATOMIC_OR:
case AMDGPUISD::BUFFER_ATOMIC_XOR:
case AMDGPUISD::BUFFER_ATOMIC_INC:
case AMDGPUISD::BUFFER_ATOMIC_DEC:
case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
case AMDGPUISD::BUFFER_ATOMIC_CSUB:
case AMDGPUISD::BUFFER_ATOMIC_FADD:
case AMDGPUISD::BUFFER_ATOMIC_FADD_BF16:
case AMDGPUISD::BUFFER_ATOMIC_FMIN:
case AMDGPUISD::BUFFER_ATOMIC_FMAX:
// Target-specific read-modify-write atomics are sources of divergence.
return true;
default:
if (auto *A = dyn_cast<AtomicSDNode>(N)) {
// Generic read-modify-write atomics are sources of divergence.
return A->readMem() && A->writeMem();
}
return false;
}
}
bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
EVT VT) const {
switch (VT.getScalarType().getSimpleVT().SimpleTy) {
case MVT::f32:
return !denormalModeIsFlushAllF32(DAG.getMachineFunction());
case MVT::f64:
case MVT::f16:
return !denormalModeIsFlushAllF64F16(DAG.getMachineFunction());
default:
return false;
}
}
bool SITargetLowering::denormalsEnabledForType(
LLT Ty, const MachineFunction &MF) const {
switch (Ty.getScalarSizeInBits()) {
case 32:
return !denormalModeIsFlushAllF32(MF);
case 64:
case 16:
return !denormalModeIsFlushAllF64F16(MF);
default:
return false;
}
}
bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
const SelectionDAG &DAG,
bool SNaN,
unsigned Depth) const {
if (Op.getOpcode() == AMDGPUISD::CLAMP) {
const MachineFunction &MF = DAG.getMachineFunction();
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
if (Info->getMode().DX10Clamp)
return true; // Clamped to 0.
return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
}
return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
SNaN, Depth);
}
// Global FP atomic instructions have a hardcoded FP mode and do not support
// FP32 denormals, and only support v2f16 denormals.
static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
if (&Flt == &APFloat::IEEEsingle())
return DenormMode == DenormalMode::getPreserveSign();
return DenormMode == DenormalMode::getIEEE();
}
// The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
// floating point atomic instructions. May generate more efficient code,
// but may not respect rounding and denormal modes, and may give incorrect
// results for certain memory destinations.
bool unsafeFPAtomicsDisabled(Function *F) {
return F->getFnAttribute("amdgpu-unsafe-fp-atomics").getValueAsString() !=
"true";
}
TargetLowering::AtomicExpansionKind
SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
unsigned AS = RMW->getPointerAddressSpace();
if (AS == AMDGPUAS::PRIVATE_ADDRESS)
return AtomicExpansionKind::NotAtomic;
auto SSID = RMW->getSyncScopeID();
auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) {
OptimizationRemarkEmitter ORE(RMW->getFunction());
LLVMContext &Ctx = RMW->getFunction()->getContext();
SmallVector<StringRef> SSNs;
Ctx.getSyncScopeNames(SSNs);
auto MemScope = SSNs[RMW->getSyncScopeID()].empty()
? "system"
: SSNs[RMW->getSyncScopeID()];
ORE.emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
<< "Hardware instruction generated for atomic "
<< RMW->getOperationName(RMW->getOperation())
<< " operation at memory scope " << MemScope
<< " due to an unsafe request.";
});
return Kind;
};
bool HasSystemScope =
SSID == SyncScope::System ||
SSID == RMW->getContext().getOrInsertSyncScopeID("one-as");
switch (RMW->getOperation()) {
case AtomicRMWInst::Sub:
case AtomicRMWInst::Or:
case AtomicRMWInst::Xor: {
// Atomic sub/or/xor do not work over PCI express, but atomic add
// does. InstCombine transforms these with 0 to or, so undo that.
if (HasSystemScope && AMDGPU::isFlatGlobalAddrSpace(AS)) {
if (Constant *ConstVal = dyn_cast<Constant>(RMW->getValOperand());
ConstVal && ConstVal->isNullValue())
return AtomicExpansionKind::Expand;
}
break;
}
case AtomicRMWInst::FAdd: {
Type *Ty = RMW->getType();
if (Ty->isHalfTy())
return AtomicExpansionKind::CmpXChg;
if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
return AtomicExpansionKind::CmpXChg;
if ((AMDGPU::isFlatGlobalAddrSpace(AS) ||
AS == AMDGPUAS::BUFFER_FAT_POINTER) &&
Subtarget->hasAtomicFaddNoRtnInsts()) {
if (Subtarget->hasGFX940Insts())
return AtomicExpansionKind::None;
if (unsafeFPAtomicsDisabled(RMW->getFunction()))
return AtomicExpansionKind::CmpXChg;
// Always expand system scope fp atomics.
if (HasSystemScope)
return AtomicExpansionKind::CmpXChg;
if ((AMDGPU::isExtendedGlobalAddrSpace(AS) ||
AS == AMDGPUAS::BUFFER_FAT_POINTER) &&
Ty->isFloatTy()) {
// global/buffer atomic fadd f32 no-rtn: gfx908, gfx90a, gfx940, gfx11+.
if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
return ReportUnsafeHWInst(AtomicExpansionKind::None);
// global/buffer atomic fadd f32 rtn: gfx90a, gfx940, gfx11+.
if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts())
return ReportUnsafeHWInst(AtomicExpansionKind::None);
}
// flat atomic fadd f32: gfx940, gfx11+.
if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() &&
Subtarget->hasFlatAtomicFaddF32Inst())
return ReportUnsafeHWInst(AtomicExpansionKind::None);
// global and flat atomic fadd f64: gfx90a, gfx940.
if (Ty->isDoubleTy() && Subtarget->hasGFX90AInsts())
return ReportUnsafeHWInst(AtomicExpansionKind::None);
// If it is in flat address space, and the type is float, we will try to
// expand it, if the target supports global and lds atomic fadd. The
// reason we need that is, in the expansion, we emit the check of address
// space. If it is in global address space, we emit the global atomic
// fadd; if it is in shared address space, we emit the LDS atomic fadd.
if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() &&
Subtarget->hasLDSFPAtomicAdd()) {
if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
return AtomicExpansionKind::Expand;
if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts())
return AtomicExpansionKind::Expand;
}
return AtomicExpansionKind::CmpXChg;
}
// DS FP atomics do respect the denormal mode, but the rounding mode is
// fixed to round-to-nearest-even.
// The only exception is DS_ADD_F64 which never flushes regardless of mode.
if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) {
if (!Ty->isDoubleTy())
return AtomicExpansionKind::None;
if (fpModeMatchesGlobalFPAtomicMode(RMW))
return AtomicExpansionKind::None;
return RMW->getFunction()
->getFnAttribute("amdgpu-unsafe-fp-atomics")
.getValueAsString() == "true"
? ReportUnsafeHWInst(AtomicExpansionKind::None)
: AtomicExpansionKind::CmpXChg;
}
return AtomicExpansionKind::CmpXChg;
}
case AtomicRMWInst::FMin:
case AtomicRMWInst::FMax:
case AtomicRMWInst::Min:
case AtomicRMWInst::Max:
case AtomicRMWInst::UMin:
case AtomicRMWInst::UMax: {
if (AMDGPU::isFlatGlobalAddrSpace(AS) ||
AS == AMDGPUAS::BUFFER_FAT_POINTER) {
if (RMW->getType()->isFloatTy() &&
unsafeFPAtomicsDisabled(RMW->getFunction()))
return AtomicExpansionKind::CmpXChg;
// Always expand system scope min/max atomics.
if (HasSystemScope)
return AtomicExpansionKind::CmpXChg;
}
break;
}
default:
break;
}
return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
}
TargetLowering::AtomicExpansionKind
SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
? AtomicExpansionKind::NotAtomic
: AtomicExpansionKind::None;
}
TargetLowering::AtomicExpansionKind
SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
? AtomicExpansionKind::NotAtomic
: AtomicExpansionKind::None;
}
TargetLowering::AtomicExpansionKind
SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const {
return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
? AtomicExpansionKind::NotAtomic
: AtomicExpansionKind::None;
}
const TargetRegisterClass *
SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
: &AMDGPU::SReg_32RegClass;
if (!TRI->isSGPRClass(RC) && !isDivergent)
return TRI->getEquivalentSGPRClass(RC);
else if (TRI->isSGPRClass(RC) && isDivergent)
return TRI->getEquivalentVGPRClass(RC);
return RC;
}
// FIXME: This is a workaround for DivergenceAnalysis not understanding always
// uniform values (as produced by the mask results of control flow intrinsics)
// used outside of divergent blocks. The phi users need to also be treated as
// always uniform.
//
// FIXME: DA is no longer in-use. Does this still apply to UniformityAnalysis?
static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
unsigned WaveSize) {
// FIXME: We assume we never cast the mask results of a control flow
// intrinsic.
// Early exit if the type won't be consistent as a compile time hack.
IntegerType *IT = dyn_cast<IntegerType>(V->getType());
if (!IT || IT->getBitWidth() != WaveSize)
return false;
if (!isa<Instruction>(V))
return false;
if (!Visited.insert(V).second)
return false;
bool Result = false;
for (const auto *U : V->users()) {
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
if (V == U->getOperand(1)) {
switch (Intrinsic->getIntrinsicID()) {
default:
Result = false;
break;
case Intrinsic::amdgcn_if_break:
case Intrinsic::amdgcn_if:
case Intrinsic::amdgcn_else:
Result = true;
break;
}
}
if (V == U->getOperand(0)) {
switch (Intrinsic->getIntrinsicID()) {
default:
Result = false;
break;
case Intrinsic::amdgcn_end_cf:
case Intrinsic::amdgcn_loop:
Result = true;
break;
}
}
} else {
Result = hasCFUser(U, Visited, WaveSize);
}
if (Result)
break;
}
return Result;
}
bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
const Value *V) const {
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
if (CI->isInlineAsm()) {
// FIXME: This cannot give a correct answer. This should only trigger in
// the case where inline asm returns mixed SGPR and VGPR results, used
// outside the defining block. We don't have a specific result to
// consider, so this assumes if any value is SGPR, the overall register
// also needs to be SGPR.
const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
for (auto &TC : TargetConstraints) {
if (TC.Type == InlineAsm::isOutput) {
ComputeConstraintToUse(TC, SDValue());
const TargetRegisterClass *RC = getRegForInlineAsmConstraint(
SIRI, TC.ConstraintCode, TC.ConstraintVT).second;
if (RC && SIRI->isSGPRClass(RC))
return true;
}
}
}
}
SmallPtrSet<const Value *, 16> Visited;
return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
}
bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const {
SDNode::use_iterator I = N->use_begin(), E = N->use_end();
for (; I != E; ++I) {
if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) {
if (getBasePtrIndex(M) == I.getOperandNo())
return true;
}
}
return false;
}
bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0,
SDValue N1) const {
if (!N0.hasOneUse())
return false;
// Take care of the opportunity to keep N0 uniform
if (N0->isDivergent() || !N1->isDivergent())
return true;
// Check if we have a good chance to form the memory access pattern with the
// base and offset
return (DAG.isBaseWithConstantOffset(N0) &&
hasMemSDNodeUser(*N0->use_begin()));
}
bool SITargetLowering::isReassocProfitable(MachineRegisterInfo &MRI,
Register N0, Register N1) const {
return MRI.hasOneNonDBGUse(N0); // FIXME: handle regbanks
}
MachineMemOperand::Flags
SITargetLowering::getTargetMMOFlags(const Instruction &I) const {
// Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load.
MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
if (I.getMetadata("amdgpu.noclobber"))
Flags |= MONoClobber;
if (I.getMetadata("amdgpu.last.use"))
Flags |= MOLastUse;
return Flags;
}
bool SITargetLowering::checkForPhysRegDependency(
SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI,
const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const {
if (User->getOpcode() != ISD::CopyToReg)
return false;
if (!Def->isMachineOpcode())
return false;
MachineSDNode *MDef = dyn_cast<MachineSDNode>(Def);
if (!MDef)
return false;
unsigned ResNo = User->getOperand(Op).getResNo();
if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1)
return false;
const MCInstrDesc &II = TII->get(MDef->getMachineOpcode());
if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) {
PhysReg = AMDGPU::SCC;
const TargetRegisterClass *RC =
TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo));
Cost = RC->getCopyCost();
return true;
}
return false;
}
void SITargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const {
AtomicRMWInst::BinOp Op = AI->getOperation();
if (Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Or ||
Op == AtomicRMWInst::Xor) {
// atomicrmw or %ptr, 0 -> atomicrmw add %ptr, 0
assert(cast<Constant>(AI->getValOperand())->isNullValue() &&
"this cannot be replaced with add");
AI->setOperation(AtomicRMWInst::Add);
return;
}
assert(Subtarget->hasAtomicFaddInsts() &&
"target should have atomic fadd instructions");
assert(AI->getType()->isFloatTy() &&
AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS &&
"generic atomicrmw expansion only supports FP32 operand in flat "
"address space");
assert(Op == AtomicRMWInst::FAdd && "only fadd is supported for now");
// Given: atomicrmw fadd ptr %addr, float %val ordering
//
// With this expansion we produce the following code:
// [...]
// br label %atomicrmw.check.shared
//
// atomicrmw.check.shared:
// %is.shared = call i1 @llvm.amdgcn.is.shared(ptr %addr)
// br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private
//
// atomicrmw.shared:
// %cast.shared = addrspacecast ptr %addr to ptr addrspace(3)
// %loaded.shared = atomicrmw fadd ptr addrspace(3) %cast.shared,
// float %val ordering
// br label %atomicrmw.phi
//
// atomicrmw.check.private:
// %is.private = call i1 @llvm.amdgcn.is.private(ptr %int8ptr)
// br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global
//
// atomicrmw.private:
// %cast.private = addrspacecast ptr %addr to ptr addrspace(5)
// %loaded.private = load float, ptr addrspace(5) %cast.private
// %val.new = fadd float %loaded.private, %val
// store float %val.new, ptr addrspace(5) %cast.private
// br label %atomicrmw.phi
//
// atomicrmw.global:
// %cast.global = addrspacecast ptr %addr to ptr addrspace(1)
// %loaded.global = atomicrmw fadd ptr addrspace(1) %cast.global,
// float %val ordering
// br label %atomicrmw.phi
//
// atomicrmw.phi:
// %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ],
// [ %loaded.private, %atomicrmw.private ],
// [ %loaded.global, %atomicrmw.global ]
// br label %atomicrmw.end
//
// atomicrmw.end:
// [...]
IRBuilder<> Builder(AI);
LLVMContext &Ctx = Builder.getContext();
BasicBlock *BB = Builder.GetInsertBlock();
Function *F = BB->getParent();
BasicBlock *ExitBB =
BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
BasicBlock *CheckSharedBB =
BasicBlock::Create(Ctx, "atomicrmw.check.shared", F, ExitBB);
BasicBlock *SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB);
BasicBlock *CheckPrivateBB =
BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB);
BasicBlock *PrivateBB =
BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB);
BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB);
BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB);
Value *Val = AI->getValOperand();
Type *ValTy = Val->getType();
Value *Addr = AI->getPointerOperand();
auto CreateNewAtomicRMW = [AI](IRBuilder<> &Builder, Value *Addr,
Value *Val) -> Value * {
AtomicRMWInst *OldVal =
Builder.CreateAtomicRMW(AI->getOperation(), Addr, Val, AI->getAlign(),
AI->getOrdering(), AI->getSyncScopeID());
SmallVector<std::pair<unsigned, MDNode *>> MDs;
AI->getAllMetadata(MDs);
for (auto &P : MDs)
OldVal->setMetadata(P.first, P.second);
return OldVal;
};
std::prev(BB->end())->eraseFromParent();
Builder.SetInsertPoint(BB);
Builder.CreateBr(CheckSharedBB);
Builder.SetInsertPoint(CheckSharedBB);
CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared, {},
{Addr}, nullptr, "is.shared");
Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB);
Builder.SetInsertPoint(SharedBB);
Value *CastToLocal = Builder.CreateAddrSpaceCast(
Addr, PointerType::get(Ctx, AMDGPUAS::LOCAL_ADDRESS));
Value *LoadedShared = CreateNewAtomicRMW(Builder, CastToLocal, Val);
Builder.CreateBr(PhiBB);
Builder.SetInsertPoint(CheckPrivateBB);
CallInst *IsPrivate = Builder.CreateIntrinsic(
Intrinsic::amdgcn_is_private, {}, {Addr}, nullptr, "is.private");
Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB);
Builder.SetInsertPoint(PrivateBB);
Value *CastToPrivate = Builder.CreateAddrSpaceCast(
Addr, PointerType::get(Ctx, AMDGPUAS::PRIVATE_ADDRESS));
Value *LoadedPrivate =
Builder.CreateLoad(ValTy, CastToPrivate, "loaded.private");
Value *NewVal = Builder.CreateFAdd(LoadedPrivate, Val, "val.new");
Builder.CreateStore(NewVal, CastToPrivate);
Builder.CreateBr(PhiBB);
Builder.SetInsertPoint(GlobalBB);
Value *CastToGlobal = Builder.CreateAddrSpaceCast(
Addr, PointerType::get(Ctx, AMDGPUAS::GLOBAL_ADDRESS));
Value *LoadedGlobal = CreateNewAtomicRMW(Builder, CastToGlobal, Val);
Builder.CreateBr(PhiBB);
Builder.SetInsertPoint(PhiBB);
PHINode *Loaded = Builder.CreatePHI(ValTy, 3, "loaded.phi");
Loaded->addIncoming(LoadedShared, SharedBB);
Loaded->addIncoming(LoadedPrivate, PrivateBB);
Loaded->addIncoming(LoadedGlobal, GlobalBB);
Builder.CreateBr(ExitBB);
AI->replaceAllUsesWith(Loaded);
AI->eraseFromParent();
}
LoadInst *
SITargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
IRBuilder<> Builder(AI);
auto Order = AI->getOrdering();
// The optimization removes store aspect of the atomicrmw. Therefore, cache
// must be flushed if the atomic ordering had a release semantics. This is
// not necessary a fence, a release fence just coincides to do that flush.
// Avoid replacing of an atomicrmw with a release semantics.
if (isReleaseOrStronger(Order))
return nullptr;
LoadInst *LI = Builder.CreateAlignedLoad(
AI->getType(), AI->getPointerOperand(), AI->getAlign());
LI->setAtomic(Order, AI->getSyncScopeID());
LI->copyMetadata(*AI);
LI->takeName(AI);
AI->replaceAllUsesWith(LI);
AI->eraseFromParent();
return LI;
}