blob: 6e7d34f5adaa3f97d9f01c97c51079563cc64c81 [file] [log] [blame]
//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass does misc. AMDGPU optimizations on IR before instruction
/// selection.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUTargetMachine.h"
#include "SIModeRegisterDefaults.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/UniformityAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/IntegerDivision.h"
#include "llvm/Transforms/Utils/Local.h"
#define DEBUG_TYPE "amdgpu-codegenprepare"
using namespace llvm;
using namespace llvm::PatternMatch;
namespace {
static cl::opt<bool> WidenLoads(
"amdgpu-codegenprepare-widen-constant-loads",
cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
static cl::opt<bool> Widen16BitOps(
"amdgpu-codegenprepare-widen-16-bit-ops",
cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(true));
static cl::opt<bool>
BreakLargePHIs("amdgpu-codegenprepare-break-large-phis",
cl::desc("Break large PHI nodes for DAGISel"),
cl::ReallyHidden, cl::init(true));
static cl::opt<bool>
ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis",
cl::desc("For testing purposes, always break large "
"PHIs even if it isn't profitable."),
cl::ReallyHidden, cl::init(false));
static cl::opt<unsigned> BreakLargePHIsThreshold(
"amdgpu-codegenprepare-break-large-phis-threshold",
cl::desc("Minimum type size in bits for breaking large PHI nodes"),
cl::ReallyHidden, cl::init(32));
static cl::opt<bool> UseMul24Intrin(
"amdgpu-codegenprepare-mul24",
cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(true));
// Legalize 64-bit division by using the generic IR expansion.
static cl::opt<bool> ExpandDiv64InIR(
"amdgpu-codegenprepare-expand-div64",
cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
// Leave all division operations as they are. This supersedes ExpandDiv64InIR
// and is used for testing the legalizer.
static cl::opt<bool> DisableIDivExpand(
"amdgpu-codegenprepare-disable-idiv-expansion",
cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
// Disable processing of fdiv so we can better test the backend implementations.
static cl::opt<bool> DisableFDivExpand(
"amdgpu-codegenprepare-disable-fdiv-expansion",
cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
class AMDGPUCodeGenPrepareImpl
: public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> {
public:
const GCNSubtarget *ST = nullptr;
const AMDGPUTargetMachine *TM = nullptr;
const TargetLibraryInfo *TLInfo = nullptr;
AssumptionCache *AC = nullptr;
DominatorTree *DT = nullptr;
UniformityInfo *UA = nullptr;
Module *Mod = nullptr;
const DataLayout *DL = nullptr;
bool HasUnsafeFPMath = false;
bool HasFP32DenormalFlush = false;
bool FlowChanged = false;
mutable Function *SqrtF32 = nullptr;
mutable Function *LdexpF32 = nullptr;
DenseMap<const PHINode *, bool> BreakPhiNodesCache;
Function *getSqrtF32() const {
if (SqrtF32)
return SqrtF32;
LLVMContext &Ctx = Mod->getContext();
SqrtF32 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_sqrt,
{Type::getFloatTy(Ctx)});
return SqrtF32;
}
Function *getLdexpF32() const {
if (LdexpF32)
return LdexpF32;
LLVMContext &Ctx = Mod->getContext();
LdexpF32 = Intrinsic::getDeclaration(
Mod, Intrinsic::ldexp, {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)});
return LdexpF32;
}
bool canBreakPHINode(const PHINode &I);
/// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
/// binary operation \p V.
///
/// \returns Binary operation \p V.
/// \returns \p T's base element bit width.
unsigned getBaseElementBitWidth(const Type *T) const;
/// \returns Equivalent 32 bit integer type for given type \p T. For example,
/// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
/// is returned.
Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
/// \returns True if binary operation \p I is a signed binary operation, false
/// otherwise.
bool isSigned(const BinaryOperator &I) const;
/// \returns True if the condition of 'select' operation \p I comes from a
/// signed 'icmp' operation, false otherwise.
bool isSigned(const SelectInst &I) const;
/// \returns True if type \p T needs to be promoted to 32 bit integer type,
/// false otherwise.
bool needsPromotionToI32(const Type *T) const;
/// Return true if \p T is a legal scalar floating point type.
bool isLegalFloatingTy(const Type *T) const;
/// Wrapper to pass all the arguments to computeKnownFPClass
KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested,
const Instruction *CtxI) const {
return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI,
DT);
}
bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const {
return HasFP32DenormalFlush ||
computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal();
}
/// Promotes uniform binary operation \p I to equivalent 32 bit binary
/// operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
/// truncating the result of 32 bit binary operation back to \p I's original
/// type. Division operation is not promoted.
///
/// \returns True if \p I is promoted to equivalent 32 bit binary operation,
/// false otherwise.
bool promoteUniformOpToI32(BinaryOperator &I) const;
/// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
///
/// \returns True.
bool promoteUniformOpToI32(ICmpInst &I) const;
/// Promotes uniform 'select' operation \p I to 32 bit 'select'
/// operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
/// result of 32 bit 'select' operation back to \p I's original type.
///
/// \returns True.
bool promoteUniformOpToI32(SelectInst &I) const;
/// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
/// intrinsic.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by zero extending the operand to 32
/// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
/// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
/// shift amount is 32 minus \p I's base element bit width), and truncating
/// the result of the shift operation back to \p I's original type.
///
/// \returns True.
bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
/// \returns The minimum number of bits needed to store the value of \Op as an
/// unsigned integer. Truncating to this size and then zero-extending to
/// the original will not change the value.
unsigned numBitsUnsigned(Value *Op) const;
/// \returns The minimum number of bits needed to store the value of \Op as a
/// signed integer. Truncating to this size and then sign-extending to
/// the original size will not change the value.
unsigned numBitsSigned(Value *Op) const;
/// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
/// SelectionDAG has an issue where an and asserting the bits are known
bool replaceMulWithMul24(BinaryOperator &I) const;
/// Perform same function as equivalently named function in DAGCombiner. Since
/// we expand some divisions here, we need to perform this before obscuring.
bool foldBinOpIntoSelect(BinaryOperator &I) const;
bool divHasSpecialOptimization(BinaryOperator &I,
Value *Num, Value *Den) const;
int getDivNumBits(BinaryOperator &I,
Value *Num, Value *Den,
unsigned AtLeast, bool Signed) const;
/// Expands 24 bit div or rem.
Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den,
bool IsDiv, bool IsSigned) const;
Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den, unsigned NumBits,
bool IsDiv, bool IsSigned) const;
/// Expands 32 bit div or rem.
Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den) const;
Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den) const;
void expandDivRem64(BinaryOperator &I) const;
/// Widen a scalar load.
///
/// \details \p Widen scalar load for uniform, small type loads from constant
// memory / to a full 32-bits and then truncate the input to allow a scalar
// load instead of a vector load.
//
/// \returns True.
bool canWidenScalarExtLoad(LoadInst &I) const;
Value *matchFractPat(IntrinsicInst &I);
Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg);
bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF,
FastMathFlags SqrtFMF) const;
Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den,
FastMathFlags DivFMF, FastMathFlags SqrtFMF,
const Instruction *CtxI) const;
Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den,
FastMathFlags FMF, const Instruction *CtxI) const;
Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den,
float ReqdAccuracy) const;
Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den,
FastMathFlags DivFMF, FastMathFlags SqrtFMF,
Value *RsqOp, const Instruction *FDiv,
float ReqdAccuracy) const;
std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder,
Value *Src) const;
Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src,
bool IsNegative) const;
Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS,
FastMathFlags FMF) const;
Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src,
FastMathFlags FMF) const;
public:
bool visitFDiv(BinaryOperator &I);
bool visitInstruction(Instruction &I) { return false; }
bool visitBinaryOperator(BinaryOperator &I);
bool visitLoadInst(LoadInst &I);
bool visitICmpInst(ICmpInst &I);
bool visitSelectInst(SelectInst &I);
bool visitPHINode(PHINode &I);
bool visitAddrSpaceCastInst(AddrSpaceCastInst &I);
bool visitIntrinsicInst(IntrinsicInst &I);
bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
bool visitMinNum(IntrinsicInst &I);
bool visitSqrt(IntrinsicInst &I);
bool run(Function &F);
};
class AMDGPUCodeGenPrepare : public FunctionPass {
private:
AMDGPUCodeGenPrepareImpl Impl;
public:
static char ID;
AMDGPUCodeGenPrepare() : FunctionPass(ID) {
initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<UniformityInfoWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
// FIXME: Division expansion needs to preserve the dominator tree.
if (!ExpandDiv64InIR)
AU.setPreservesAll();
}
bool runOnFunction(Function &F) override;
bool doInitialization(Module &M) override;
StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
};
} // end anonymous namespace
bool AMDGPUCodeGenPrepareImpl::run(Function &F) {
BreakPhiNodesCache.clear();
bool MadeChange = false;
Function::iterator NextBB;
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
BasicBlock *BB = &*FI;
NextBB = std::next(FI);
BasicBlock::iterator Next;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
I = Next) {
Next = std::next(I);
MadeChange |= visit(*I);
if (Next != E) { // Control flow changed
BasicBlock *NextInstBB = Next->getParent();
if (NextInstBB != BB) {
BB = NextInstBB;
E = BB->end();
FE = F.end();
}
}
}
}
return MadeChange;
}
unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const {
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
if (T->isIntegerTy())
return T->getIntegerBitWidth();
return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
}
Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const {
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
if (T->isIntegerTy())
return B.getInt32Ty();
return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
}
bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const {
return I.getOpcode() == Instruction::AShr ||
I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
}
bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const {
return isa<ICmpInst>(I.getOperand(0)) ?
cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
}
bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const {
if (!Widen16BitOps)
return false;
const IntegerType *IntTy = dyn_cast<IntegerType>(T);
if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
return true;
if (const VectorType *VT = dyn_cast<VectorType>(T)) {
// TODO: The set of packed operations is more limited, so may want to
// promote some anyway.
if (ST->hasVOP3PInsts())
return false;
return needsPromotionToI32(VT->getElementType());
}
return false;
}
bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const {
return Ty->isFloatTy() || Ty->isDoubleTy() ||
(Ty->isHalfTy() && ST->has16BitInsts());
}
// Return true if the op promoted to i32 should have nsw set.
static bool promotedOpIsNSW(const Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Shl:
case Instruction::Add:
case Instruction::Sub:
return true;
case Instruction::Mul:
return I.hasNoUnsignedWrap();
default:
return false;
}
}
// Return true if the op promoted to i32 should have nuw set.
static bool promotedOpIsNUW(const Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Shl:
case Instruction::Add:
case Instruction::Mul:
return true;
case Instruction::Sub:
return I.hasNoUnsignedWrap();
default:
return false;
}
}
bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const {
Type *Ty = I.getType();
const DataLayout &DL = Mod->getDataLayout();
int TySize = DL.getTypeSizeInBits(Ty);
Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I);
}
bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
if (I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::UDiv ||
I.getOpcode() == Instruction::SRem ||
I.getOpcode() == Instruction::URem)
return false;
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
if (promotedOpIsNSW(cast<Instruction>(I)))
Inst->setHasNoSignedWrap();
if (promotedOpIsNUW(cast<Instruction>(I)))
Inst->setHasNoUnsignedWrap();
if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
Inst->setIsExact(ExactOp->isExact());
}
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const {
assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *NewICmp = nullptr;
if (I.isSigned()) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
I.replaceAllUsesWith(NewICmp);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp1 = nullptr;
Value *ExtOp2 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
} else {
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
}
ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32(
IntrinsicInst &I) const {
assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
"I must be bitreverse intrinsic");
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Function *I32 =
Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
Value *LShrOp =
Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
Value *TruncRes =
Builder.CreateTrunc(LShrOp, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const {
return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits();
}
unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const {
return ComputeMaxSignificantBits(Op, *DL, 0, AC);
}
static void extractValues(IRBuilder<> &Builder,
SmallVectorImpl<Value *> &Values, Value *V) {
auto *VT = dyn_cast<FixedVectorType>(V->getType());
if (!VT) {
Values.push_back(V);
return;
}
for (int I = 0, E = VT->getNumElements(); I != E; ++I)
Values.push_back(Builder.CreateExtractElement(V, I));
}
static Value *insertValues(IRBuilder<> &Builder,
Type *Ty,
SmallVectorImpl<Value *> &Values) {
if (!Ty->isVectorTy()) {
assert(Values.size() == 1);
return Values[0];
}
Value *NewVal = PoisonValue::get(Ty);
for (int I = 0, E = Values.size(); I != E; ++I)
NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
return NewVal;
}
bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const {
if (I.getOpcode() != Instruction::Mul)
return false;
Type *Ty = I.getType();
unsigned Size = Ty->getScalarSizeInBits();
if (Size <= 16 && ST->has16BitInsts())
return false;
// Prefer scalar if this could be s_mul_i32
if (UA->isUniform(&I))
return false;
Value *LHS = I.getOperand(0);
Value *RHS = I.getOperand(1);
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
unsigned LHSBits = 0, RHSBits = 0;
bool IsSigned = false;
if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 &&
(RHSBits = numBitsUnsigned(RHS)) <= 24) {
IsSigned = false;
} else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 &&
(RHSBits = numBitsSigned(RHS)) <= 24) {
IsSigned = true;
} else
return false;
SmallVector<Value *, 4> LHSVals;
SmallVector<Value *, 4> RHSVals;
SmallVector<Value *, 4> ResultVals;
extractValues(Builder, LHSVals, LHS);
extractValues(Builder, RHSVals, RHS);
IntegerType *I32Ty = Builder.getInt32Ty();
IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty;
Type *DstTy = LHSVals[0]->getType();
for (int I = 0, E = LHSVals.size(); I != E; ++I) {
Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty)
: Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty)
: Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
Intrinsic::ID ID =
IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS});
Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy)
: Builder.CreateZExtOrTrunc(Result, DstTy);
ResultVals.push_back(Result);
}
Value *NewVal = insertValues(Builder, Ty, ResultVals);
NewVal->takeName(&I);
I.replaceAllUsesWith(NewVal);
I.eraseFromParent();
return true;
}
// Find a select instruction, which may have been casted. This is mostly to deal
// with cases where i16 selects were promoted here to i32.
static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
Cast = nullptr;
if (SelectInst *Sel = dyn_cast<SelectInst>(V))
return Sel;
if ((Cast = dyn_cast<CastInst>(V))) {
if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
return Sel;
}
return nullptr;
}
bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const {
// Don't do this unless the old select is going away. We want to eliminate the
// binary operator, not replace a binop with a select.
int SelOpNo = 0;
CastInst *CastOp;
// TODO: Should probably try to handle some cases with multiple
// users. Duplicating the select may be profitable for division.
SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
if (!Sel || !Sel->hasOneUse()) {
SelOpNo = 1;
Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
}
if (!Sel || !Sel->hasOneUse())
return false;
Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
if (!CBO || !CT || !CF)
return false;
if (CastOp) {
if (!CastOp->hasOneUse())
return false;
CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
}
// TODO: Handle special 0/-1 cases DAG combine does, although we only really
// need to handle divisions here.
Constant *FoldedT = SelOpNo ?
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
if (!FoldedT || isa<ConstantExpr>(FoldedT))
return false;
Constant *FoldedF = SelOpNo ?
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
if (!FoldedF || isa<ConstantExpr>(FoldedF))
return false;
IRBuilder<> Builder(&BO);
Builder.SetCurrentDebugLocation(BO.getDebugLoc());
if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
Builder.setFastMathFlags(FPOp->getFastMathFlags());
Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
FoldedT, FoldedF);
NewSelect->takeName(&BO);
BO.replaceAllUsesWith(NewSelect);
BO.eraseFromParent();
if (CastOp)
CastOp->eraseFromParent();
Sel->eraseFromParent();
return true;
}
std::pair<Value *, Value *>
AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder,
Value *Src) const {
Type *Ty = Src->getType();
Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp,
{Ty, Builder.getInt32Ty()}, Src);
Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0});
// Bypass the bug workaround for the exponent result since it doesn't matter.
// TODO: Does the bug workaround even really need to consider the exponent
// result? It's unspecified by the spec.
Value *FrexpExp =
ST->hasFractBug()
? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp,
{Builder.getInt32Ty(), Ty}, Src)
: Builder.CreateExtractValue(Frexp, {1});
return {FrexpMant, FrexpExp};
}
/// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals.
Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder,
Value *Src,
bool IsNegative) const {
// Same as for 1.0, but expand the sign out of the constant.
// -1.0 / x -> rcp (fneg x)
if (IsNegative)
Src = Builder.CreateFNeg(Src);
// The rcp instruction doesn't support denormals, so scale the input
// out of the denormal range and convert at the end.
//
// Expand as 2^-n * (1.0 / (x * 2^n))
// TODO: Skip scaling if input is known never denormal and the input
// range won't underflow to denormal. The hard part is knowing the
// result. We need a range check, the result could be denormal for
// 0x1p+126 < den <= 0x1p+127.
auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src);
Value *ScaleFactor = Builder.CreateNeg(FrexpExp);
Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant);
return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor});
}
/// Emit a 2ulp expansion for fdiv by using frexp for input scaling.
Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS,
Value *RHS,
FastMathFlags FMF) const {
// If we have have to work around the fract/frexp bug, we're worse off than
// using the fdiv.fast expansion. The full safe expansion is faster if we have
// fast FMA.
if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() &&
(!FMF.noNaNs() || !FMF.noInfs()))
return nullptr;
// We're scaling the LHS to avoid a denormal input, and scale the denominator
// to avoid large values underflowing the result.
auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS);
Value *Rcp =
Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS);
auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS);
Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp);
// We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the
// result.
Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS);
return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff});
}
/// Emit a sqrt that handles denormals and is accurate to 2ulp.
Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder,
Value *Src,
FastMathFlags FMF) const {
Type *Ty = Src->getType();
APFloat SmallestNormal =
APFloat::getSmallestNormalized(Ty->getFltSemantics());
Value *NeedScale =
Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal));
ConstantInt *Zero = Builder.getInt32(0);
Value *InputScaleFactor =
Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero);
Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor});
Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled);
Value *OutputScaleFactor =
Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero);
return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor});
}
/// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals.
static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src,
bool IsNegative) {
// bool need_scale = x < 0x1p-126f;
// float input_scale = need_scale ? 0x1.0p+24f : 1.0f;
// float output_scale = need_scale ? 0x1.0p+12f : 1.0f;
// rsq(x * input_scale) * output_scale;
Type *Ty = Src->getType();
APFloat SmallestNormal =
APFloat::getSmallestNormalized(Ty->getFltSemantics());
Value *NeedScale =
Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal));
Constant *One = ConstantFP::get(Ty, 1.0);
Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24);
Constant *OutputScale =
ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12);
Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One);
Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor);
Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput);
Value *OutputScaleFactor = Builder.CreateSelect(
NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One);
return Builder.CreateFMul(Rsq, OutputScaleFactor);
}
bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp,
FastMathFlags DivFMF,
FastMathFlags SqrtFMF) const {
// The rsqrt contraction increases accuracy from ~2ulp to ~1ulp.
if (!DivFMF.allowContract() || !SqrtFMF.allowContract())
return false;
// v_rsq_f32 gives 1ulp
return SqrtFMF.approxFunc() || HasUnsafeFPMath ||
SqrtOp->getFPAccuracy() >= 1.0f;
}
Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq(
IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF,
const FastMathFlags SqrtFMF, const Instruction *CtxI) const {
// The rsqrt contraction increases accuracy from ~2ulp to ~1ulp.
assert(DivFMF.allowContract() && SqrtFMF.allowContract());
// rsq_f16 is accurate to 0.51 ulp.
// rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
// rsq_f64 is never accurate.
const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num);
if (!CLHS)
return nullptr;
assert(Den->getType()->isFloatTy());
bool IsNegative = false;
// TODO: Handle other numerator values with arcp.
if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) {
// Add in the sqrt flags.
IRBuilder<>::FastMathFlagGuard Guard(Builder);
Builder.setFastMathFlags(DivFMF | SqrtFMF);
if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath ||
canIgnoreDenormalInput(Den, CtxI)) {
Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den);
// -1.0 / sqrt(x) -> fneg(rsq(x))
return IsNegative ? Builder.CreateFNeg(Result) : Result;
}
return emitRsqIEEE1ULP(Builder, Den, IsNegative);
}
return nullptr;
}
// Optimize fdiv with rcp:
//
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
// allowed with unsafe-fp-math or afn.
//
// a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0
Value *
AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num,
Value *Den, FastMathFlags FMF,
const Instruction *CtxI) const {
// rcp_f16 is accurate to 0.51 ulp.
// rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
// rcp_f64 is never accurate.
assert(Den->getType()->isFloatTy());
if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
bool IsNegative = false;
if (CLHS->isExactlyValue(1.0) ||
(IsNegative = CLHS->isExactlyValue(-1.0))) {
Value *Src = Den;
if (HasFP32DenormalFlush || FMF.approxFunc()) {
// -1.0 / x -> 1.0 / fneg(x)
if (IsNegative)
Src = Builder.CreateFNeg(Src);
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
// the CI documentation has a worst case error of 1 ulp.
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK
// to use it as long as we aren't trying to use denormals.
//
// v_rcp_f16 and v_rsq_f16 DO support denormals.
// NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
// insert rsq intrinsic here.
// 1.0 / x -> rcp(x)
return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src);
}
// TODO: If the input isn't denormal, and we know the input exponent isn't
// big enough to introduce a denormal we can avoid the scaling.
return emitRcpIEEE1ULP(Builder, Src, IsNegative);
}
}
if (FMF.allowReciprocal()) {
// x / y -> x * (1.0 / y)
// TODO: Could avoid denormal scaling and use raw rcp if we knew the output
// will never underflow.
if (HasFP32DenormalFlush || FMF.approxFunc()) {
Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den);
return Builder.CreateFMul(Num, Recip);
}
Value *Recip = emitRcpIEEE1ULP(Builder, Den, false);
return Builder.CreateFMul(Num, Recip);
}
return nullptr;
}
// optimize with fdiv.fast:
//
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
//
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
//
// NOTE: optimizeWithRcp should be tried first because rcp is the preference.
Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast(
IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const {
// fdiv.fast can achieve 2.5 ULP accuracy.
if (ReqdAccuracy < 2.5f)
return nullptr;
// Only have fdiv.fast for f32.
assert(Den->getType()->isFloatTy());
bool NumIsOne = false;
if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
NumIsOne = true;
}
// fdiv does not support denormals. But 1.0/x is always fine to use it.
//
// TODO: This works for any value with a specific known exponent range, don't
// just limit to constant 1.
if (!HasFP32DenormalFlush && !NumIsOne)
return nullptr;
return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den});
}
Value *AMDGPUCodeGenPrepareImpl::visitFDivElement(
IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF,
FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst,
float ReqdDivAccuracy) const {
if (RsqOp) {
Value *Rsq =
optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst);
if (Rsq)
return Rsq;
}
Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst);
if (Rcp)
return Rcp;
// In the basic case fdiv_fast has the same instruction count as the frexp div
// expansion. Slightly prefer fdiv_fast since it ends in an fmul that can
// potentially be fused into a user. Also, materialization of the constants
// can be reused for multiple instances.
Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy);
if (FDivFast)
return FDivFast;
return emitFrexpDiv(Builder, Num, Den, DivFMF);
}
// Optimizations is performed based on fpmath, fast math flags as well as
// denormals to optimize fdiv with either rcp or fdiv.fast.
//
// With rcp:
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
// allowed with unsafe-fp-math or afn.
//
// a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
//
// With fdiv.fast:
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
//
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
//
// NOTE: rcp is the preference in cases that both are legal.
bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) {
if (DisableFDivExpand)
return false;
Type *Ty = FDiv.getType()->getScalarType();
if (!Ty->isFloatTy())
return false;
// The f64 rcp/rsq approximations are pretty inaccurate. We can do an
// expansion around them in codegen. f16 is good enough to always use.
const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
const FastMathFlags DivFMF = FPOp->getFastMathFlags();
const float ReqdAccuracy = FPOp->getFPAccuracy();
FastMathFlags SqrtFMF;
Value *Num = FDiv.getOperand(0);
Value *Den = FDiv.getOperand(1);
Value *RsqOp = nullptr;
auto *DenII = dyn_cast<IntrinsicInst>(Den);
if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt &&
DenII->hasOneUse()) {
const auto *SqrtOp = cast<FPMathOperator>(DenII);
SqrtFMF = SqrtOp->getFastMathFlags();
if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF))
RsqOp = SqrtOp->getOperand(0);
}
// Inaccurate rcp is allowed with unsafe-fp-math or afn.
//
// Defer to codegen to handle this.
//
// TODO: Decide on an interpretation for interactions between afn + arcp +
// !fpmath, and make it consistent between here and codegen. For now, defer
// expansion of afn to codegen. The current interpretation is so aggressive we
// don't need any pre-consideration here when we have better information. A
// more conservative interpretation could use handling here.
const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc();
if (!RsqOp && AllowInaccurateRcp)
return false;
// Defer the correct implementations to codegen.
if (ReqdAccuracy < 1.0f)
return false;
IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
Builder.setFastMathFlags(DivFMF);
Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
SmallVector<Value *, 4> NumVals;
SmallVector<Value *, 4> DenVals;
SmallVector<Value *, 4> RsqDenVals;
extractValues(Builder, NumVals, Num);
extractValues(Builder, DenVals, Den);
if (RsqOp)
extractValues(Builder, RsqDenVals, RsqOp);
SmallVector<Value *, 4> ResultVals(NumVals.size());
for (int I = 0, E = NumVals.size(); I != E; ++I) {
Value *NumElt = NumVals[I];
Value *DenElt = DenVals[I];
Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr;
Value *NewElt =
visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt,
cast<Instruction>(FPOp), ReqdAccuracy);
if (!NewElt) {
// Keep the original, but scalarized.
// This has the unfortunate side effect of sometimes scalarizing when
// we're not going to do anything.
NewElt = Builder.CreateFDiv(NumElt, DenElt);
if (auto *NewEltInst = dyn_cast<Instruction>(NewElt))
NewEltInst->copyMetadata(FDiv);
}
ResultVals[I] = NewElt;
}
Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals);
if (NewVal) {
FDiv.replaceAllUsesWith(NewVal);
NewVal->takeName(&FDiv);
RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo);
}
return true;
}
static bool hasUnsafeFPMath(const Function &F) {
Attribute Attr = F.getFnAttribute("unsafe-fp-math");
return Attr.getValueAsBool();
}
static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
Value *LHS, Value *RHS) {
Type *I32Ty = Builder.getInt32Ty();
Type *I64Ty = Builder.getInt64Ty();
Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
Hi = Builder.CreateTrunc(Hi, I32Ty);
return std::pair(Lo, Hi);
}
static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
return getMul64(Builder, LHS, RHS).second;
}
/// Figure out how many bits are really needed for this division. \p AtLeast is
/// an optimization hint to bypass the second ComputeNumSignBits call if we the
/// first one is insufficient. Returns -1 on failure.
int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num,
Value *Den, unsigned AtLeast,
bool IsSigned) const {
const DataLayout &DL = Mod->getDataLayout();
unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
if (LHSSignBits < AtLeast)
return -1;
unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
if (RHSSignBits < AtLeast)
return -1;
unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
if (IsSigned)
++DivBits;
return DivBits;
}
// The fractional part of a float is enough to accurately represent up to
// a 24-bit signed integer.
Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder,
BinaryOperator &I, Value *Num,
Value *Den, bool IsDiv,
bool IsSigned) const {
unsigned SSBits = Num->getType()->getScalarSizeInBits();
// If Num bits <= 24, assume 0 signbits.
unsigned AtLeast = (SSBits <= 24) ? 0 : (SSBits - 24 + IsSigned);
int DivBits = getDivNumBits(I, Num, Den, AtLeast, IsSigned);
if (DivBits == -1)
return nullptr;
return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
}
Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl(
IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den,
unsigned DivBits, bool IsDiv, bool IsSigned) const {
Type *I32Ty = Builder.getInt32Ty();
Num = Builder.CreateTrunc(Num, I32Ty);
Den = Builder.CreateTrunc(Den, I32Ty);
Type *F32Ty = Builder.getFloatTy();
ConstantInt *One = Builder.getInt32(1);
Value *JQ = One;
if (IsSigned) {
// char|short jq = ia ^ ib;
JQ = Builder.CreateXor(Num, Den);
// jq = jq >> (bitsize - 2)
JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
// jq = jq | 0x1
JQ = Builder.CreateOr(JQ, One);
}
// int ia = (int)LHS;
Value *IA = Num;
// int ib, (int)RHS;
Value *IB = Den;
// float fa = (float)ia;
Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
: Builder.CreateUIToFP(IA, F32Ty);
// float fb = (float)ib;
Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
: Builder.CreateUIToFP(IB,F32Ty);
Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
Builder.getFloatTy());
Value *RCP = Builder.CreateCall(RcpDecl, { FB });
Value *FQM = Builder.CreateFMul(FA, RCP);
// fq = trunc(fqm);
CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
FQ->copyFastMathFlags(Builder.getFastMathFlags());
// float fqneg = -fq;
Value *FQNeg = Builder.CreateFNeg(FQ);
// float fr = mad(fqneg, fb, fa);
auto FMAD = !ST->hasMadMacF32Insts()
? Intrinsic::fma
: (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
Value *FR = Builder.CreateIntrinsic(FMAD,
{FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
// int iq = (int)fq;
Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
: Builder.CreateFPToUI(FQ, I32Ty);
// fr = fabs(fr);
FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
// fb = fabs(fb);
FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
// int cv = fr >= fb;
Value *CV = Builder.CreateFCmpOGE(FR, FB);
// jq = (cv ? jq : 0);
JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
// dst = iq + jq;
Value *Div = Builder.CreateAdd(IQ, JQ);
Value *Res = Div;
if (!IsDiv) {
// Rem needs compensation, it's easier to recompute it
Value *Rem = Builder.CreateMul(Div, Den);
Res = Builder.CreateSub(Num, Rem);
}
if (DivBits != 0 && DivBits < 32) {
// Extend in register from the number of bits this divide really is.
if (IsSigned) {
int InRegBits = 32 - DivBits;
Res = Builder.CreateShl(Res, InRegBits);
Res = Builder.CreateAShr(Res, InRegBits);
} else {
ConstantInt *TruncMask
= Builder.getInt32((UINT64_C(1) << DivBits) - 1);
Res = Builder.CreateAnd(Res, TruncMask);
}
}
return Res;
}
// Try to recognize special cases the DAG will emit special, better expansions
// than the general expansion we do here.
// TODO: It would be better to just directly handle those optimizations here.
bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I,
Value *Num,
Value *Den) const {
if (Constant *C = dyn_cast<Constant>(Den)) {
// Arbitrary constants get a better expansion as long as a wider mulhi is
// legal.
if (C->getType()->getScalarSizeInBits() <= 32)
return true;
// TODO: Sdiv check for not exact for some reason.
// If there's no wider mulhi, there's only a better expansion for powers of
// two.
// TODO: Should really know for each vector element.
if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
return true;
return false;
}
if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
if (BinOpDen->getOpcode() == Instruction::Shl &&
isa<Constant>(BinOpDen->getOperand(0)) &&
isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
0, AC, &I, DT)) {
return true;
}
}
return false;
}
static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
// Check whether the sign can be determined statically.
KnownBits Known = computeKnownBits(V, *DL);
if (Known.isNegative())
return Constant::getAllOnesValue(V->getType());
if (Known.isNonNegative())
return Constant::getNullValue(V->getType());
return Builder.CreateAShr(V, Builder.getInt32(31));
}
Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder,
BinaryOperator &I, Value *X,
Value *Y) const {
Instruction::BinaryOps Opc = I.getOpcode();
assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv);
FastMathFlags FMF;
FMF.setFast();
Builder.setFastMathFlags(FMF);
if (divHasSpecialOptimization(I, X, Y))
return nullptr; // Keep it for later optimization.
bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
Type *Ty = X->getType();
Type *I32Ty = Builder.getInt32Ty();
Type *F32Ty = Builder.getFloatTy();
if (Ty->getScalarSizeInBits() != 32) {
if (IsSigned) {
X = Builder.CreateSExtOrTrunc(X, I32Ty);
Y = Builder.CreateSExtOrTrunc(Y, I32Ty);
} else {
X = Builder.CreateZExtOrTrunc(X, I32Ty);
Y = Builder.CreateZExtOrTrunc(Y, I32Ty);
}
}
if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
Builder.CreateZExtOrTrunc(Res, Ty);
}
ConstantInt *Zero = Builder.getInt32(0);
ConstantInt *One = Builder.getInt32(1);
Value *Sign = nullptr;
if (IsSigned) {
Value *SignX = getSign32(X, Builder, DL);
Value *SignY = getSign32(Y, Builder, DL);
// Remainder sign is the same as LHS
Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
X = Builder.CreateAdd(X, SignX);
Y = Builder.CreateAdd(Y, SignY);
X = Builder.CreateXor(X, SignX);
Y = Builder.CreateXor(Y, SignY);
}
// The algorithm here is based on ideas from "Software Integer Division", Tom
// Rodeheffer, August 2008.
//
// unsigned udiv(unsigned x, unsigned y) {
// // Initial estimate of inv(y). The constant is less than 2^32 to ensure
// // that this is a lower bound on inv(y), even if some of the calculations
// // round up.
// unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
//
// // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
// // Empirically this is guaranteed to give a "two-y" lower bound on
// // inv(y).
// z += umulh(z, -y * z);
//
// // Quotient/remainder estimate.
// unsigned q = umulh(x, z);
// unsigned r = x - q * y;
//
// // Two rounds of quotient/remainder refinement.
// if (r >= y) {
// ++q;
// r -= y;
// }
// if (r >= y) {
// ++q;
// r -= y;
// }
//
// return q;
// }
// Initial estimate of inv(y).
Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE));
Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
// One round of UNR.
Value *NegY = Builder.CreateSub(Zero, Y);
Value *NegYZ = Builder.CreateMul(NegY, Z);
Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
// Quotient/remainder estimate.
Value *Q = getMulHu(Builder, X, Z);
Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
// First quotient/remainder refinement.
Value *Cond = Builder.CreateICmpUGE(R, Y);
if (IsDiv)
Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
// Second quotient/remainder refinement.
Cond = Builder.CreateICmpUGE(R, Y);
Value *Res;
if (IsDiv)
Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
else
Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
if (IsSigned) {
Res = Builder.CreateXor(Res, Sign);
Res = Builder.CreateSub(Res, Sign);
Res = Builder.CreateSExtOrTrunc(Res, Ty);
} else {
Res = Builder.CreateZExtOrTrunc(Res, Ty);
}
return Res;
}
Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder,
BinaryOperator &I, Value *Num,
Value *Den) const {
if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
return nullptr; // Keep it for later optimization.
Instruction::BinaryOps Opc = I.getOpcode();
bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
if (NumDivBits == -1)
return nullptr;
Value *Narrowed = nullptr;
if (NumDivBits <= 24) {
Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
IsDiv, IsSigned);
} else if (NumDivBits <= 32) {
Narrowed = expandDivRem32(Builder, I, Num, Den);
}
if (Narrowed) {
return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
Builder.CreateZExt(Narrowed, Num->getType());
}
return nullptr;
}
void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const {
Instruction::BinaryOps Opc = I.getOpcode();
// Do the general expansion.
if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
expandDivisionUpTo64Bits(&I);
return;
}
if (Opc == Instruction::URem || Opc == Instruction::SRem) {
expandRemainderUpTo64Bits(&I);
return;
}
llvm_unreachable("not a division");
}
bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) {
if (foldBinOpIntoSelect(I))
return true;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
UA->isUniform(&I) && promoteUniformOpToI32(I))
return true;
if (UseMul24Intrin && replaceMulWithMul24(I))
return true;
bool Changed = false;
Instruction::BinaryOps Opc = I.getOpcode();
Type *Ty = I.getType();
Value *NewDiv = nullptr;
unsigned ScalarSize = Ty->getScalarSizeInBits();
SmallVector<BinaryOperator *, 8> Div64ToExpand;
if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
ScalarSize <= 64 &&
!DisableIDivExpand) {
Value *Num = I.getOperand(0);
Value *Den = I.getOperand(1);
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
NewDiv = PoisonValue::get(VT);
for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
Value *NumEltN = Builder.CreateExtractElement(Num, N);
Value *DenEltN = Builder.CreateExtractElement(Den, N);
Value *NewElt;
if (ScalarSize <= 32) {
NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
if (!NewElt)
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
} else {
// See if this 64-bit division can be shrunk to 32/24-bits before
// producing the general expansion.
NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
if (!NewElt) {
// The general 64-bit expansion introduces control flow and doesn't
// return the new value. Just insert a scalar copy and defer
// expanding it.
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
}
}
if (auto *NewEltI = dyn_cast<Instruction>(NewElt))
NewEltI->copyIRFlags(&I);
NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
}
} else {
if (ScalarSize <= 32)
NewDiv = expandDivRem32(Builder, I, Num, Den);
else {
NewDiv = shrinkDivRem64(Builder, I, Num, Den);
if (!NewDiv)
Div64ToExpand.push_back(&I);
}
}
if (NewDiv) {
I.replaceAllUsesWith(NewDiv);
I.eraseFromParent();
Changed = true;
}
}
if (ExpandDiv64InIR) {
// TODO: We get much worse code in specially handled constant cases.
for (BinaryOperator *Div : Div64ToExpand) {
expandDivRem64(*Div);
FlowChanged = true;
Changed = true;
}
}
return Changed;
}
bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) {
if (!WidenLoads)
return false;
if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
canWidenScalarExtLoad(I)) {
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = Builder.getInt32Ty();
LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand());
WidenLoad->copyMetadata(I);
// If we have range metadata, we need to convert the type, and not make
// assumptions about the high bits.
if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Range->getOperand(0));
if (Lower->isNullValue()) {
WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
} else {
Metadata *LowAndHigh[] = {
ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
// Don't make assumptions about the high bits.
ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
};
WidenLoad->setMetadata(LLVMContext::MD_range,
MDNode::get(Mod->getContext(), LowAndHigh));
}
}
int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
Type *IntNTy = Builder.getIntNTy(TySize);
Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
I.replaceAllUsesWith(ValOrig);
I.eraseFromParent();
return true;
}
return false;
}
bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
UA->isUniform(&I))
Changed |= promoteUniformOpToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) {
Value *Cond = I.getCondition();
Value *TrueVal = I.getTrueValue();
Value *FalseVal = I.getFalseValue();
Value *CmpVal;
FCmpInst::Predicate Pred;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) {
if (UA->isUniform(&I))
return promoteUniformOpToI32(I);
return false;
}
// Match fract pattern with nan check.
if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN())))
return false;
FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I);
if (!FPOp)
return false;
IRBuilder<> Builder(&I);
Builder.setFastMathFlags(FPOp->getFastMathFlags());
auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal);
auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal);
Value *Fract = nullptr;
if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse &&
CmpVal == matchFractPat(*IIFalse)) {
// isnan(x) ? x : fract(x)
Fract = applyFractPat(Builder, CmpVal);
} else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue &&
CmpVal == matchFractPat(*IITrue)) {
// !isnan(x) ? fract(x) : x
Fract = applyFractPat(Builder, CmpVal);
} else
return false;
Fract->takeName(&I);
I.replaceAllUsesWith(Fract);
RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo);
return true;
}
static bool areInSameBB(const Value *A, const Value *B) {
const auto *IA = dyn_cast<Instruction>(A);
const auto *IB = dyn_cast<Instruction>(B);
return IA && IB && IA->getParent() == IB->getParent();
}
// Helper for breaking large PHIs that returns true when an extractelement on V
// is likely to be folded away by the DAG combiner.
static bool isInterestingPHIIncomingValue(const Value *V) {
const auto *FVT = dyn_cast<FixedVectorType>(V->getType());
if (!FVT)
return false;
const Value *CurVal = V;
// Check for insertelements, keeping track of the elements covered.
BitVector EltsCovered(FVT->getNumElements());
while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) {
const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2));
// Non constant index/out of bounds index -> folding is unlikely.
// The latter is more of a sanity check because canonical IR should just
// have replaced those with poison.
if (!Idx || Idx->getZExtValue() >= FVT->getNumElements())
return false;
const auto *VecSrc = IE->getOperand(0);
// If the vector source is another instruction, it must be in the same basic
// block. Otherwise, the DAGCombiner won't see the whole thing and is
// unlikely to be able to do anything interesting here.
if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE))
return false;
CurVal = VecSrc;
EltsCovered.set(Idx->getZExtValue());
// All elements covered.
if (EltsCovered.all())
return true;
}
// We either didn't find a single insertelement, or the insertelement chain
// ended before all elements were covered. Check for other interesting values.
// Constants are always interesting because we can just constant fold the
// extractelements.
if (isa<Constant>(CurVal))
return true;
// shufflevector is likely to be profitable if either operand is a constant,
// or if either source is in the same block.
// This is because shufflevector is most often lowered as a series of
// insert/extract elements anyway.
if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) {
return isa<Constant>(SV->getOperand(1)) ||
areInSameBB(SV, SV->getOperand(0)) ||
areInSameBB(SV, SV->getOperand(1));
}
return false;
}
static void collectPHINodes(const PHINode &I,
SmallPtrSet<const PHINode *, 8> &SeenPHIs) {
const auto [It, Inserted] = SeenPHIs.insert(&I);
if (!Inserted)
return;
for (const Value *Inc : I.incoming_values()) {
if (const auto *PhiInc = dyn_cast<PHINode>(Inc))
collectPHINodes(*PhiInc, SeenPHIs);
}
for (const User *U : I.users()) {
if (const auto *PhiU = dyn_cast<PHINode>(U))
collectPHINodes(*PhiU, SeenPHIs);
}
}
bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) {
// Check in the cache first.
if (const auto It = BreakPhiNodesCache.find(&I);
It != BreakPhiNodesCache.end())
return It->second;
// We consider PHI nodes as part of "chains", so given a PHI node I, we
// recursively consider all its users and incoming values that are also PHI
// nodes. We then make a decision about all of those PHIs at once. Either they
// all get broken up, or none of them do. That way, we avoid cases where a
// single PHI is/is not broken and we end up reforming/exploding a vector
// multiple times, or even worse, doing it in a loop.
SmallPtrSet<const PHINode *, 8> WorkList;
collectPHINodes(I, WorkList);
#ifndef NDEBUG
// Check that none of the PHI nodes in the worklist are in the map. If some of
// them are, it means we're not good enough at collecting related PHIs.
for (const PHINode *WLP : WorkList) {
assert(BreakPhiNodesCache.count(WLP) == 0);
}
#endif
// To consider a PHI profitable to break, we need to see some interesting
// incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist
// must have one to consider all PHIs breakable.
//
// This threshold has been determined through performance testing.
//
// Note that the computation below is equivalent to
//
// (unsigned)ceil((K / 3.0) * 2)
//
// It's simply written this way to avoid mixing integral/FP arithmetic.
const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3);
unsigned NumBreakablePHIs = 0;
bool CanBreak = false;
for (const PHINode *Cur : WorkList) {
// Don't break PHIs that have no interesting incoming values. That is, where
// there is no clear opportunity to fold the "extractelement" instructions
// we would add.
//
// Note: IC does not run after this pass, so we're only interested in the
// foldings that the DAG combiner can do.
if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) {
if (++NumBreakablePHIs >= Threshold) {
CanBreak = true;
break;
}
}
}
for (const PHINode *Cur : WorkList)
BreakPhiNodesCache[Cur] = CanBreak;
return CanBreak;
}
/// Helper class for "break large PHIs" (visitPHINode).
///
/// This represents a slice of a PHI's incoming value, which is made up of:
/// - The type of the slice (Ty)
/// - The index in the incoming value's vector where the slice starts (Idx)
/// - The number of elements in the slice (NumElts).
/// It also keeps track of the NewPHI node inserted for this particular slice.
///
/// Slice examples:
/// <4 x i64> -> Split into four i64 slices.
/// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1]
/// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail.
/// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1]
class VectorSlice {
public:
VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts)
: Ty(Ty), Idx(Idx), NumElts(NumElts) {}
Type *Ty = nullptr;
unsigned Idx = 0;
unsigned NumElts = 0;
PHINode *NewPHI = nullptr;
/// Slice \p Inc according to the information contained within this slice.
/// This is cached, so if called multiple times for the same \p BB & \p Inc
/// pair, it returns the same Sliced value as well.
///
/// Note this *intentionally* does not return the same value for, say,
/// [%bb.0, %0] & [%bb.1, %0] as:
/// - It could cause issues with dominance (e.g. if bb.1 is seen first, then
/// the value in bb.1 may not be reachable from bb.0 if it's its
/// predecessor.)
/// - We also want to make our extract instructions as local as possible so
/// the DAG has better chances of folding them out. Duplicating them like
/// that is beneficial in that regard.
///
/// This is both a minor optimization to avoid creating duplicate
/// instructions, but also a requirement for correctness. It is not forbidden
/// for a PHI node to have the same [BB, Val] pair multiple times. If we
/// returned a new value each time, those previously identical pairs would all
/// have different incoming values (from the same block) and it'd cause a "PHI
/// node has multiple entries for the same basic block with different incoming
/// values!" verifier error.
Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) {
Value *&Res = SlicedVals[{BB, Inc}];
if (Res)
return Res;
IRBuilder<> B(BB->getTerminator());
if (Instruction *IncInst = dyn_cast<Instruction>(Inc))
B.SetCurrentDebugLocation(IncInst->getDebugLoc());
if (NumElts > 1) {
SmallVector<int, 4> Mask;
for (unsigned K = Idx; K < (Idx + NumElts); ++K)
Mask.push_back(K);
Res = B.CreateShuffleVector(Inc, Mask, NewValName);
} else
Res = B.CreateExtractElement(Inc, Idx, NewValName);
return Res;
}
private:
SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals;
};
bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) {
// Break-up fixed-vector PHIs into smaller pieces.
// Default threshold is 32, so it breaks up any vector that's >32 bits into
// its elements, or into 32-bit pieces (for 8/16 bit elts).
//
// This is only helpful for DAGISel because it doesn't handle large PHIs as
// well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg.
// With large, odd-sized PHIs we may end up needing many `build_vector`
// operations with most elements being "undef". This inhibits a lot of
// optimization opportunities and can result in unreasonably high register
// pressure and the inevitable stack spilling.
if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption)
return false;
FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType());
if (!FVT || FVT->getNumElements() == 1 ||
DL->getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold)
return false;
if (!ForceBreakLargePHIs && !canBreakPHINode(I))
return false;
std::vector<VectorSlice> Slices;
Type *EltTy = FVT->getElementType();
{
unsigned Idx = 0;
// For 8/16 bits type, don't scalarize fully but break it up into as many
// 32-bit slices as we can, and scalarize the tail.
const unsigned EltSize = DL->getTypeSizeInBits(EltTy);
const unsigned NumElts = FVT->getNumElements();
if (EltSize == 8 || EltSize == 16) {
const unsigned SubVecSize = (32 / EltSize);
Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize);
for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End;
Idx += SubVecSize)
Slices.emplace_back(SubVecTy, Idx, SubVecSize);
}
// Scalarize all remaining elements.
for (; Idx < NumElts; ++Idx)
Slices.emplace_back(EltTy, Idx, 1);
}
assert(Slices.size() > 1);
// Create one PHI per vector piece. The "VectorSlice" class takes care of
// creating the necessary instruction to extract the relevant slices of each
// incoming value.
IRBuilder<> B(I.getParent());
B.SetCurrentDebugLocation(I.getDebugLoc());
unsigned IncNameSuffix = 0;
for (VectorSlice &S : Slices) {
// We need to reset the build on each iteration, because getSlicedVal may
// have inserted something into I's BB.
B.SetInsertPoint(I.getParent()->getFirstNonPHIIt());
S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues());
for (const auto &[Idx, BB] : enumerate(I.blocks())) {
S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx),
"largephi.extractslice" +
std::to_string(IncNameSuffix++)),
BB);
}
}
// And replace this PHI with a vector of all the previous PHI values.
Value *Vec = PoisonValue::get(FVT);
unsigned NameSuffix = 0;
for (VectorSlice &S : Slices) {
const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++);
if (S.NumElts > 1)
Vec =
B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName);
else
Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName);
}
I.replaceAllUsesWith(Vec);
I.eraseFromParent();
return true;
}
/// \param V Value to check
/// \param DL DataLayout
/// \param TM TargetMachine (TODO: remove once DL contains nullptr values)
/// \param AS Target Address Space
/// \return true if \p V cannot be the null value of \p AS, false otherwise.
static bool isPtrKnownNeverNull(const Value *V, const DataLayout &DL,
const AMDGPUTargetMachine &TM, unsigned AS) {
// Pointer cannot be null if it's a block address, GV or alloca.
// NOTE: We don't support extern_weak, but if we did, we'd need to check for
// it as the symbol could be null in such cases.
if (isa<BlockAddress>(V) || isa<GlobalValue>(V) || isa<AllocaInst>(V))
return true;
// Check nonnull arguments.
if (const auto *Arg = dyn_cast<Argument>(V); Arg && Arg->hasNonNullAttr())
return true;
// TODO: Calls that return nonnull?
// For all other things, use KnownBits.
// We either use 0 or all bits set to indicate null, so check whether the
// value can be zero or all ones.
//
// TODO: Use ValueTracking's isKnownNeverNull if it becomes aware that some
// address spaces have non-zero null values.
auto SrcPtrKB = computeKnownBits(V, DL).trunc(DL.getPointerSizeInBits(AS));
const auto NullVal = TM.getNullPointerValue(AS);
assert((NullVal == 0 || NullVal == -1) &&
"don't know how to check for this null value!");
return NullVal ? !SrcPtrKB.getMaxValue().isAllOnes() : SrcPtrKB.isNonZero();
}
bool AMDGPUCodeGenPrepareImpl::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
// Intrinsic doesn't support vectors, also it seems that it's often difficult
// to prove that a vector cannot have any nulls in it so it's unclear if it's
// worth supporting.
if (I.getType()->isVectorTy())
return false;
// Check if this can be lowered to a amdgcn.addrspacecast.nonnull.
// This is only worthwhile for casts from/to priv/local to flat.
const unsigned SrcAS = I.getSrcAddressSpace();
const unsigned DstAS = I.getDestAddressSpace();
bool CanLower = false;
if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
CanLower = (DstAS == AMDGPUAS::LOCAL_ADDRESS ||
DstAS == AMDGPUAS::PRIVATE_ADDRESS);
else if (DstAS == AMDGPUAS::FLAT_ADDRESS)
CanLower = (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
SrcAS == AMDGPUAS::PRIVATE_ADDRESS);
if (!CanLower)
return false;
SmallVector<const Value *, 4> WorkList;
getUnderlyingObjects(I.getOperand(0), WorkList);
if (!all_of(WorkList, [&](const Value *V) {
return isPtrKnownNeverNull(V, *DL, *TM, SrcAS);
}))
return false;
IRBuilder<> B(&I);
auto *Intrin = B.CreateIntrinsic(
I.getType(), Intrinsic::amdgcn_addrspacecast_nonnull, {I.getOperand(0)});
I.replaceAllUsesWith(Intrin);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) {
switch (I.getIntrinsicID()) {
case Intrinsic::bitreverse:
return visitBitreverseIntrinsicInst(I);
case Intrinsic::minnum:
return visitMinNum(I);
case Intrinsic::sqrt:
return visitSqrt(I);
default:
return false;
}
}
bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
UA->isUniform(&I))
Changed |= promoteUniformBitreverseToI32(I);
return Changed;
}
/// Match non-nan fract pattern.
/// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0)
///
/// If fract is a useful instruction for the subtarget. Does not account for the
/// nan handling; the instruction has a nan check on the input value.
Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) {
if (ST->hasFractBug())
return nullptr;
if (I.getIntrinsicID() != Intrinsic::minnum)
return nullptr;
Type *Ty = I.getType();
if (!isLegalFloatingTy(Ty->getScalarType()))
return nullptr;
Value *Arg0 = I.getArgOperand(0);
Value *Arg1 = I.getArgOperand(1);
const APFloat *C;
if (!match(Arg1, m_APFloat(C)))
return nullptr;
APFloat One(1.0);
bool LosesInfo;
One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo);
// Match nextafter(1.0, -1)
One.next(true);
if (One != *C)
return nullptr;
Value *FloorSrc;
if (match(Arg0, m_FSub(m_Value(FloorSrc),
m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc)))))
return FloorSrc;
return nullptr;
}
Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder,
Value *FractArg) {
SmallVector<Value *, 4> FractVals;
extractValues(Builder, FractVals, FractArg);
SmallVector<Value *, 4> ResultVals(FractVals.size());
Type *Ty = FractArg->getType()->getScalarType();
for (unsigned I = 0, E = FractVals.size(); I != E; ++I) {
ResultVals[I] =
Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]});
}
return insertValues(Builder, FractArg->getType(), ResultVals);
}
bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) {
Value *FractArg = matchFractPat(I);
if (!FractArg)
return false;
// Match pattern for fract intrinsic in contexts where the nan check has been
// optimized out (and hope the knowledge the source can't be nan wasn't lost).
if (!I.hasNoNaNs() &&
!isKnownNeverNaN(FractArg, /*Depth=*/0, SimplifyQuery(*DL, TLInfo)))
return false;
IRBuilder<> Builder(&I);
FastMathFlags FMF = I.getFastMathFlags();
FMF.setNoNaNs();
Builder.setFastMathFlags(FMF);
Value *Fract = applyFractPat(Builder, FractArg);
Fract->takeName(&I);
I.replaceAllUsesWith(Fract);
RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo);
return true;
}
static bool isOneOrNegOne(const Value *Val) {
const APFloat *C;
return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0;
}
// Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way.
bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) {
Type *Ty = Sqrt.getType()->getScalarType();
if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST->has16BitInsts()))
return false;
const FPMathOperator *FPOp = cast<const FPMathOperator>(&Sqrt);
FastMathFlags SqrtFMF = FPOp->getFastMathFlags();
// We're trying to handle the fast-but-not-that-fast case only. The lowering
// of fast llvm.sqrt will give the raw instruction anyway.
if (SqrtFMF.approxFunc() || HasUnsafeFPMath)
return false;
const float ReqdAccuracy = FPOp->getFPAccuracy();
// Defer correctly rounded expansion to codegen.
if (ReqdAccuracy < 1.0f)
return false;
// FIXME: This is an ugly hack for this pass using forward iteration instead
// of reverse. If it worked like a normal combiner, the rsq would form before
// we saw a sqrt call.
auto *FDiv =
dyn_cast_or_null<FPMathOperator>(Sqrt.getUniqueUndroppableUser());
if (FDiv && FDiv->getOpcode() == Instruction::FDiv &&
FDiv->getFPAccuracy() >= 1.0f &&
canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) &&
// TODO: We should also handle the arcp case for the fdiv with non-1 value
isOneOrNegOne(FDiv->getOperand(0)))
return false;
Value *SrcVal = Sqrt.getOperand(0);
bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt);
// The raw instruction is 1 ulp, but the correction for denormal handling
// brings it to 2.
if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f)
return false;
IRBuilder<> Builder(&Sqrt);
SmallVector<Value *, 4> SrcVals;
extractValues(Builder, SrcVals, SrcVal);
SmallVector<Value *, 4> ResultVals(SrcVals.size());
for (int I = 0, E = SrcVals.size(); I != E; ++I) {
if (CanTreatAsDAZ)
ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]);
else
ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF);
}
Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals);
NewSqrt->takeName(&Sqrt);
Sqrt.replaceAllUsesWith(NewSqrt);
Sqrt.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
Impl.Mod = &M;
Impl.DL = &Impl.Mod->getDataLayout();
Impl.SqrtF32 = nullptr;
Impl.LdexpF32 = nullptr;
return false;
}
bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC)
return false;
const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
Impl.TM = &TM;
Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
Impl.ST = &TM.getSubtarget<GCNSubtarget>(F);
Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr;
Impl.HasUnsafeFPMath = hasUnsafeFPMath(F);
SIModeRegisterDefaults Mode(F, *Impl.ST);
Impl.HasFP32DenormalFlush =
Mode.FP32Denormals == DenormalMode::getPreserveSign();
return Impl.run(F);
}
PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F,
FunctionAnalysisManager &FAM) {
AMDGPUCodeGenPrepareImpl Impl;
Impl.Mod = F.getParent();
Impl.DL = &Impl.Mod->getDataLayout();
Impl.TM = static_cast<const AMDGPUTargetMachine *>(&TM);
Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F);
Impl.ST = &TM.getSubtarget<GCNSubtarget>(F);
Impl.AC = &FAM.getResult<AssumptionAnalysis>(F);
Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F);
Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
Impl.HasUnsafeFPMath = hasUnsafeFPMath(F);
SIModeRegisterDefaults Mode(F, *Impl.ST);
Impl.HasFP32DenormalFlush =
Mode.FP32Denormals == DenormalMode::getPreserveSign();
PreservedAnalyses PA = PreservedAnalyses::none();
if (!Impl.FlowChanged)
PA.preserveSet<CFGAnalyses>();
return Impl.run(F) ? PA : PreservedAnalyses::all();
}
INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
"AMDGPU IR optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
false, false)
char AMDGPUCodeGenPrepare::ID = 0;
FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
return new AMDGPUCodeGenPrepare();
}