blob: 3b1a6203a1f8fcb5cba71c3652e9062b147d6c18 [file] [log] [blame]
//===- DXContainer.cpp - DXContainer object file implementation -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/DXContainer.h"
#include "llvm/BinaryFormat/DXContainer.h"
#include "llvm/Object/Error.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/FormatVariadic.h"
using namespace llvm;
using namespace llvm::object;
static Error parseFailed(const Twine &Msg) {
return make_error<GenericBinaryError>(Msg.str(), object_error::parse_failed);
}
template <typename T>
static Error readStruct(StringRef Buffer, const char *Src, T &Struct) {
// Don't read before the beginning or past the end of the file
if (Src < Buffer.begin() || Src + sizeof(T) > Buffer.end())
return parseFailed("Reading structure out of file bounds");
memcpy(&Struct, Src, sizeof(T));
// DXContainer is always little endian
if (sys::IsBigEndianHost)
Struct.swapBytes();
return Error::success();
}
template <typename T>
static Error readInteger(StringRef Buffer, const char *Src, T &Val,
Twine Str = "structure") {
static_assert(std::is_integral_v<T>,
"Cannot call readInteger on non-integral type.");
// Don't read before the beginning or past the end of the file
if (Src < Buffer.begin() || Src + sizeof(T) > Buffer.end())
return parseFailed(Twine("Reading ") + Str + " out of file bounds");
// The DXContainer offset table is comprised of uint32_t values but not padded
// to a 64-bit boundary. So Parts may start unaligned if there is an odd
// number of parts and part data itself is not required to be padded.
if (reinterpret_cast<uintptr_t>(Src) % alignof(T) != 0)
memcpy(reinterpret_cast<char *>(&Val), Src, sizeof(T));
else
Val = *reinterpret_cast<const T *>(Src);
// DXContainer is always little endian
if (sys::IsBigEndianHost)
sys::swapByteOrder(Val);
return Error::success();
}
DXContainer::DXContainer(MemoryBufferRef O) : Data(O) {}
Error DXContainer::parseHeader() {
return readStruct(Data.getBuffer(), Data.getBuffer().data(), Header);
}
Error DXContainer::parseDXILHeader(StringRef Part) {
if (DXIL)
return parseFailed("More than one DXIL part is present in the file");
const char *Current = Part.begin();
dxbc::ProgramHeader Header;
if (Error Err = readStruct(Part, Current, Header))
return Err;
Current += offsetof(dxbc::ProgramHeader, Bitcode) + Header.Bitcode.Offset;
DXIL.emplace(std::make_pair(Header, Current));
return Error::success();
}
Error DXContainer::parseShaderFeatureFlags(StringRef Part) {
if (ShaderFeatureFlags)
return parseFailed("More than one SFI0 part is present in the file");
uint64_t FlagValue = 0;
if (Error Err = readInteger(Part, Part.begin(), FlagValue))
return Err;
ShaderFeatureFlags = FlagValue;
return Error::success();
}
Error DXContainer::parseHash(StringRef Part) {
if (Hash)
return parseFailed("More than one HASH part is present in the file");
dxbc::ShaderHash ReadHash;
if (Error Err = readStruct(Part, Part.begin(), ReadHash))
return Err;
Hash = ReadHash;
return Error::success();
}
Error DXContainer::parsePSVInfo(StringRef Part) {
if (PSVInfo)
return parseFailed("More than one PSV0 part is present in the file");
PSVInfo = DirectX::PSVRuntimeInfo(Part);
// Parsing the PSVRuntime info occurs late because we need to read data from
// other parts first.
return Error::success();
}
Error DirectX::Signature::initialize(StringRef Part) {
dxbc::ProgramSignatureHeader SigHeader;
if (Error Err = readStruct(Part, Part.begin(), SigHeader))
return Err;
size_t Size = sizeof(dxbc::ProgramSignatureElement) * SigHeader.ParamCount;
if (Part.size() < Size + SigHeader.FirstParamOffset)
return parseFailed("Signature parameters extend beyond the part boundary");
Parameters.Data = Part.substr(SigHeader.FirstParamOffset, Size);
StringTableOffset = SigHeader.FirstParamOffset + static_cast<uint32_t>(Size);
StringTable = Part.substr(SigHeader.FirstParamOffset + Size);
for (const auto &Param : Parameters) {
if (Param.NameOffset < StringTableOffset)
return parseFailed("Invalid parameter name offset: name starts before "
"the first name offset");
if (Param.NameOffset - StringTableOffset > StringTable.size())
return parseFailed("Invalid parameter name offset: name starts after the "
"end of the part data");
}
return Error::success();
}
Error DXContainer::parsePartOffsets() {
uint32_t LastOffset =
sizeof(dxbc::Header) + (Header.PartCount * sizeof(uint32_t));
const char *Current = Data.getBuffer().data() + sizeof(dxbc::Header);
for (uint32_t Part = 0; Part < Header.PartCount; ++Part) {
uint32_t PartOffset;
if (Error Err = readInteger(Data.getBuffer(), Current, PartOffset))
return Err;
if (PartOffset < LastOffset)
return parseFailed(
formatv(
"Part offset for part {0} begins before the previous part ends",
Part)
.str());
Current += sizeof(uint32_t);
if (PartOffset >= Data.getBufferSize())
return parseFailed("Part offset points beyond boundary of the file");
// To prevent overflow when reading the part name, we subtract the part name
// size from the buffer size, rather than adding to the offset. Since the
// file header is larger than the part header we can't reach this code
// unless the buffer is at least as large as a part header, so this
// subtraction can't underflow.
if (PartOffset >= Data.getBufferSize() - sizeof(dxbc::PartHeader::Name))
return parseFailed("File not large enough to read part name");
PartOffsets.push_back(PartOffset);
dxbc::PartType PT =
dxbc::parsePartType(Data.getBuffer().substr(PartOffset, 4));
uint32_t PartDataStart = PartOffset + sizeof(dxbc::PartHeader);
uint32_t PartSize;
if (Error Err = readInteger(Data.getBuffer(),
Data.getBufferStart() + PartOffset + 4,
PartSize, "part size"))
return Err;
StringRef PartData = Data.getBuffer().substr(PartDataStart, PartSize);
LastOffset = PartOffset + PartSize;
switch (PT) {
case dxbc::PartType::DXIL:
if (Error Err = parseDXILHeader(PartData))
return Err;
break;
case dxbc::PartType::SFI0:
if (Error Err = parseShaderFeatureFlags(PartData))
return Err;
break;
case dxbc::PartType::HASH:
if (Error Err = parseHash(PartData))
return Err;
break;
case dxbc::PartType::PSV0:
if (Error Err = parsePSVInfo(PartData))
return Err;
break;
case dxbc::PartType::ISG1:
if (Error Err = InputSignature.initialize(PartData))
return Err;
break;
case dxbc::PartType::OSG1:
if (Error Err = OutputSignature.initialize(PartData))
return Err;
break;
case dxbc::PartType::PSG1:
if (Error Err = PatchConstantSignature.initialize(PartData))
return Err;
break;
case dxbc::PartType::Unknown:
break;
}
}
// Fully parsing the PSVInfo requires knowing the shader kind which we read
// out of the program header in the DXIL part.
if (PSVInfo) {
if (!DXIL)
return parseFailed("Cannot fully parse pipeline state validation "
"information without DXIL part.");
if (Error Err = PSVInfo->parse(DXIL->first.ShaderKind))
return Err;
}
return Error::success();
}
Expected<DXContainer> DXContainer::create(MemoryBufferRef Object) {
DXContainer Container(Object);
if (Error Err = Container.parseHeader())
return std::move(Err);
if (Error Err = Container.parsePartOffsets())
return std::move(Err);
return Container;
}
void DXContainer::PartIterator::updateIteratorImpl(const uint32_t Offset) {
StringRef Buffer = Container.Data.getBuffer();
const char *Current = Buffer.data() + Offset;
// Offsets are validated during parsing, so all offsets in the container are
// valid and contain enough readable data to read a header.
cantFail(readStruct(Buffer, Current, IteratorState.Part));
IteratorState.Data =
StringRef(Current + sizeof(dxbc::PartHeader), IteratorState.Part.Size);
IteratorState.Offset = Offset;
}
Error DirectX::PSVRuntimeInfo::parse(uint16_t ShaderKind) {
Triple::EnvironmentType ShaderStage = dxbc::getShaderStage(ShaderKind);
const char *Current = Data.begin();
if (Error Err = readInteger(Data, Current, Size))
return Err;
Current += sizeof(uint32_t);
StringRef PSVInfoData = Data.substr(sizeof(uint32_t), Size);
if (PSVInfoData.size() < Size)
return parseFailed(
"Pipeline state data extends beyond the bounds of the part");
using namespace dxbc::PSV;
const uint32_t PSVVersion = getVersion();
// Detect the PSVVersion by looking at the size field.
if (PSVVersion == 3) {
v3::RuntimeInfo Info;
if (Error Err = readStruct(PSVInfoData, Current, Info))
return Err;
if (sys::IsBigEndianHost)
Info.swapBytes(ShaderStage);
BasicInfo = Info;
} else if (PSVVersion == 2) {
v2::RuntimeInfo Info;
if (Error Err = readStruct(PSVInfoData, Current, Info))
return Err;
if (sys::IsBigEndianHost)
Info.swapBytes(ShaderStage);
BasicInfo = Info;
} else if (PSVVersion == 1) {
v1::RuntimeInfo Info;
if (Error Err = readStruct(PSVInfoData, Current, Info))
return Err;
if (sys::IsBigEndianHost)
Info.swapBytes(ShaderStage);
BasicInfo = Info;
} else if (PSVVersion == 0) {
v0::RuntimeInfo Info;
if (Error Err = readStruct(PSVInfoData, Current, Info))
return Err;
if (sys::IsBigEndianHost)
Info.swapBytes(ShaderStage);
BasicInfo = Info;
} else
return parseFailed(
"Cannot read PSV Runtime Info, unsupported PSV version.");
Current += Size;
uint32_t ResourceCount = 0;
if (Error Err = readInteger(Data, Current, ResourceCount))
return Err;
Current += sizeof(uint32_t);
if (ResourceCount > 0) {
if (Error Err = readInteger(Data, Current, Resources.Stride))
return Err;
Current += sizeof(uint32_t);
size_t BindingDataSize = Resources.Stride * ResourceCount;
Resources.Data = Data.substr(Current - Data.begin(), BindingDataSize);
if (Resources.Data.size() < BindingDataSize)
return parseFailed(
"Resource binding data extends beyond the bounds of the part");
Current += BindingDataSize;
} else
Resources.Stride = sizeof(v2::ResourceBindInfo);
// PSV version 0 ends after the resource bindings.
if (PSVVersion == 0)
return Error::success();
// String table starts at a 4-byte offset.
Current = reinterpret_cast<const char *>(
alignTo<4>(reinterpret_cast<uintptr_t>(Current)));
uint32_t StringTableSize = 0;
if (Error Err = readInteger(Data, Current, StringTableSize))
return Err;
if (StringTableSize % 4 != 0)
return parseFailed("String table misaligned");
Current += sizeof(uint32_t);
StringTable = StringRef(Current, StringTableSize);
Current += StringTableSize;
uint32_t SemanticIndexTableSize = 0;
if (Error Err = readInteger(Data, Current, SemanticIndexTableSize))
return Err;
Current += sizeof(uint32_t);
SemanticIndexTable.reserve(SemanticIndexTableSize);
for (uint32_t I = 0; I < SemanticIndexTableSize; ++I) {
uint32_t Index = 0;
if (Error Err = readInteger(Data, Current, Index))
return Err;
Current += sizeof(uint32_t);
SemanticIndexTable.push_back(Index);
}
uint8_t InputCount = getSigInputCount();
uint8_t OutputCount = getSigOutputCount();
uint8_t PatchOrPrimCount = getSigPatchOrPrimCount();
uint32_t ElementCount = InputCount + OutputCount + PatchOrPrimCount;
if (ElementCount > 0) {
if (Error Err = readInteger(Data, Current, SigInputElements.Stride))
return Err;
Current += sizeof(uint32_t);
// Assign the stride to all the arrays.
SigOutputElements.Stride = SigPatchOrPrimElements.Stride =
SigInputElements.Stride;
if (Data.end() - Current <
(ptrdiff_t)(ElementCount * SigInputElements.Stride))
return parseFailed(
"Signature elements extend beyond the size of the part");
size_t InputSize = SigInputElements.Stride * InputCount;
SigInputElements.Data = Data.substr(Current - Data.begin(), InputSize);
Current += InputSize;
size_t OutputSize = SigOutputElements.Stride * OutputCount;
SigOutputElements.Data = Data.substr(Current - Data.begin(), OutputSize);
Current += OutputSize;
size_t PSize = SigPatchOrPrimElements.Stride * PatchOrPrimCount;
SigPatchOrPrimElements.Data = Data.substr(Current - Data.begin(), PSize);
Current += PSize;
}
ArrayRef<uint8_t> OutputVectorCounts = getOutputVectorCounts();
uint8_t PatchConstOrPrimVectorCount = getPatchConstOrPrimVectorCount();
uint8_t InputVectorCount = getInputVectorCount();
auto maskDwordSize = [](uint8_t Vector) {
return (static_cast<uint32_t>(Vector) + 7) >> 3;
};
auto mapTableSize = [maskDwordSize](uint8_t X, uint8_t Y) {
return maskDwordSize(Y) * X * 4;
};
if (usesViewID()) {
for (uint32_t I = 0; I < OutputVectorCounts.size(); ++I) {
// The vector mask is one bit per component and 4 components per vector.
// We can compute the number of dwords required by rounding up to the next
// multiple of 8.
uint32_t NumDwords =
maskDwordSize(static_cast<uint32_t>(OutputVectorCounts[I]));
size_t NumBytes = NumDwords * sizeof(uint32_t);
OutputVectorMasks[I].Data = Data.substr(Current - Data.begin(), NumBytes);
Current += NumBytes;
}
if (ShaderStage == Triple::Hull && PatchConstOrPrimVectorCount > 0) {
uint32_t NumDwords = maskDwordSize(PatchConstOrPrimVectorCount);
size_t NumBytes = NumDwords * sizeof(uint32_t);
PatchOrPrimMasks.Data = Data.substr(Current - Data.begin(), NumBytes);
Current += NumBytes;
}
}
// Input/Output mapping table
for (uint32_t I = 0; I < OutputVectorCounts.size(); ++I) {
if (InputVectorCount == 0 || OutputVectorCounts[I] == 0)
continue;
uint32_t NumDwords = mapTableSize(InputVectorCount, OutputVectorCounts[I]);
size_t NumBytes = NumDwords * sizeof(uint32_t);
InputOutputMap[I].Data = Data.substr(Current - Data.begin(), NumBytes);
Current += NumBytes;
}
// Hull shader: Input/Patch mapping table
if (ShaderStage == Triple::Hull && PatchConstOrPrimVectorCount > 0 &&
InputVectorCount > 0) {
uint32_t NumDwords =
mapTableSize(InputVectorCount, PatchConstOrPrimVectorCount);
size_t NumBytes = NumDwords * sizeof(uint32_t);
InputPatchMap.Data = Data.substr(Current - Data.begin(), NumBytes);
Current += NumBytes;
}
// Domain Shader: Patch/Output mapping table
if (ShaderStage == Triple::Domain && PatchConstOrPrimVectorCount > 0 &&
OutputVectorCounts[0] > 0) {
uint32_t NumDwords =
mapTableSize(PatchConstOrPrimVectorCount, OutputVectorCounts[0]);
size_t NumBytes = NumDwords * sizeof(uint32_t);
PatchOutputMap.Data = Data.substr(Current - Data.begin(), NumBytes);
Current += NumBytes;
}
return Error::success();
}
uint8_t DirectX::PSVRuntimeInfo::getSigInputCount() const {
if (const auto *P = std::get_if<dxbc::PSV::v3::RuntimeInfo>(&BasicInfo))
return P->SigInputElements;
if (const auto *P = std::get_if<dxbc::PSV::v2::RuntimeInfo>(&BasicInfo))
return P->SigInputElements;
if (const auto *P = std::get_if<dxbc::PSV::v1::RuntimeInfo>(&BasicInfo))
return P->SigInputElements;
return 0;
}
uint8_t DirectX::PSVRuntimeInfo::getSigOutputCount() const {
if (const auto *P = std::get_if<dxbc::PSV::v3::RuntimeInfo>(&BasicInfo))
return P->SigOutputElements;
if (const auto *P = std::get_if<dxbc::PSV::v2::RuntimeInfo>(&BasicInfo))
return P->SigOutputElements;
if (const auto *P = std::get_if<dxbc::PSV::v1::RuntimeInfo>(&BasicInfo))
return P->SigOutputElements;
return 0;
}
uint8_t DirectX::PSVRuntimeInfo::getSigPatchOrPrimCount() const {
if (const auto *P = std::get_if<dxbc::PSV::v3::RuntimeInfo>(&BasicInfo))
return P->SigPatchOrPrimElements;
if (const auto *P = std::get_if<dxbc::PSV::v2::RuntimeInfo>(&BasicInfo))
return P->SigPatchOrPrimElements;
if (const auto *P = std::get_if<dxbc::PSV::v1::RuntimeInfo>(&BasicInfo))
return P->SigPatchOrPrimElements;
return 0;
}