blob: 9b07bd8040492afe86cf53ec449c987d29a89e6e [file] [log] [blame]
//===- ReplaceConstant.cpp - Replace LLVM constant expression--------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a utility function for replacing LLVM constant
// expressions by instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
namespace llvm {
static bool isExpandableUser(User *U) {
return isa<ConstantExpr>(U) || isa<ConstantAggregate>(U);
}
static SmallVector<Instruction *, 4> expandUser(BasicBlock::iterator InsertPt,
Constant *C) {
SmallVector<Instruction *, 4> NewInsts;
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
Instruction *ConstInst = CE->getAsInstruction();
ConstInst->insertBefore(*InsertPt->getParent(), InsertPt);
NewInsts.push_back(ConstInst);
} else if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
Value *V = PoisonValue::get(C->getType());
for (auto [Idx, Op] : enumerate(C->operands())) {
V = InsertValueInst::Create(V, Op, Idx, "", InsertPt);
NewInsts.push_back(cast<Instruction>(V));
}
} else if (isa<ConstantVector>(C)) {
Type *IdxTy = Type::getInt32Ty(C->getContext());
Value *V = PoisonValue::get(C->getType());
for (auto [Idx, Op] : enumerate(C->operands())) {
V = InsertElementInst::Create(V, Op, ConstantInt::get(IdxTy, Idx), "",
InsertPt);
NewInsts.push_back(cast<Instruction>(V));
}
} else {
llvm_unreachable("Not an expandable user");
}
return NewInsts;
}
bool convertUsersOfConstantsToInstructions(ArrayRef<Constant *> Consts) {
// Find all expandable direct users of Consts.
SmallVector<Constant *> Stack;
for (Constant *C : Consts)
for (User *U : C->users())
if (isExpandableUser(U))
Stack.push_back(cast<Constant>(U));
// Include transitive users.
SetVector<Constant *> ExpandableUsers;
while (!Stack.empty()) {
Constant *C = Stack.pop_back_val();
if (!ExpandableUsers.insert(C))
continue;
for (auto *Nested : C->users())
if (isExpandableUser(Nested))
Stack.push_back(cast<Constant>(Nested));
}
// Find all instructions that use any of the expandable users
SetVector<Instruction *> InstructionWorklist;
for (Constant *C : ExpandableUsers)
for (User *U : C->users())
if (auto *I = dyn_cast<Instruction>(U))
InstructionWorklist.insert(I);
// Replace those expandable operands with instructions
bool Changed = false;
while (!InstructionWorklist.empty()) {
Instruction *I = InstructionWorklist.pop_back_val();
DebugLoc Loc = I->getDebugLoc();
for (Use &U : I->operands()) {
BasicBlock::iterator BI = I->getIterator();
if (auto *Phi = dyn_cast<PHINode>(I)) {
BasicBlock *BB = Phi->getIncomingBlock(U);
BI = BB->getFirstInsertionPt();
assert(BI != BB->end() && "Unexpected empty basic block");
}
if (auto *C = dyn_cast<Constant>(U.get())) {
if (ExpandableUsers.contains(C)) {
Changed = true;
auto NewInsts = expandUser(BI, C);
for (auto *NI : NewInsts)
NI->setDebugLoc(Loc);
InstructionWorklist.insert(NewInsts.begin(), NewInsts.end());
U.set(NewInsts.back());
}
}
}
}
for (Constant *C : Consts)
C->removeDeadConstantUsers();
return Changed;
}
} // namespace llvm