blob: 0777acf6331870b987313d3735bdda7c280c20e1 [file] [log] [blame]
//===- PreISelIntrinsicLowering.cpp - Pre-ISel intrinsic lowering pass ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements IR lowering for the llvm.memcpy, llvm.memmove,
// llvm.memset, llvm.load.relative and llvm.objc.* intrinsics.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/PreISelIntrinsicLowering.h"
#include "llvm/Analysis/ObjCARCInstKind.h"
#include "llvm/Analysis/ObjCARCUtil.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
using namespace llvm;
/// Threshold to leave statically sized memory intrinsic calls. Calls of known
/// size larger than this will be expanded by the pass. Calls of unknown or
/// lower size will be left for expansion in codegen.
static cl::opt<int64_t> MemIntrinsicExpandSizeThresholdOpt(
"mem-intrinsic-expand-size",
cl::desc("Set minimum mem intrinsic size to expand in IR"), cl::init(-1),
cl::Hidden);
namespace {
struct PreISelIntrinsicLowering {
const TargetMachine &TM;
const function_ref<TargetTransformInfo &(Function &)> LookupTTI;
/// If this is true, assume it's preferably to leave memory intrinsic calls
/// for replacement with a library call later. Otherwise this depends on
/// TargetLoweringInfo availability of the corresponding function.
const bool UseMemIntrinsicLibFunc;
explicit PreISelIntrinsicLowering(
const TargetMachine &TM_,
function_ref<TargetTransformInfo &(Function &)> LookupTTI_,
bool UseMemIntrinsicLibFunc_ = true)
: TM(TM_), LookupTTI(LookupTTI_),
UseMemIntrinsicLibFunc(UseMemIntrinsicLibFunc_) {}
static bool shouldExpandMemIntrinsicWithSize(Value *Size,
const TargetTransformInfo &TTI);
bool expandMemIntrinsicUses(Function &F) const;
bool lowerIntrinsics(Module &M) const;
};
} // namespace
static bool lowerLoadRelative(Function &F) {
if (F.use_empty())
return false;
bool Changed = false;
Type *Int32Ty = Type::getInt32Ty(F.getContext());
for (Use &U : llvm::make_early_inc_range(F.uses())) {
auto CI = dyn_cast<CallInst>(U.getUser());
if (!CI || CI->getCalledOperand() != &F)
continue;
IRBuilder<> B(CI);
Value *OffsetPtr =
B.CreatePtrAdd(CI->getArgOperand(0), CI->getArgOperand(1));
Value *OffsetI32 = B.CreateAlignedLoad(Int32Ty, OffsetPtr, Align(4));
Value *ResultPtr = B.CreatePtrAdd(CI->getArgOperand(0), OffsetI32);
CI->replaceAllUsesWith(ResultPtr);
CI->eraseFromParent();
Changed = true;
}
return Changed;
}
// ObjCARC has knowledge about whether an obj-c runtime function needs to be
// always tail-called or never tail-called.
static CallInst::TailCallKind getOverridingTailCallKind(const Function &F) {
objcarc::ARCInstKind Kind = objcarc::GetFunctionClass(&F);
if (objcarc::IsAlwaysTail(Kind))
return CallInst::TCK_Tail;
else if (objcarc::IsNeverTail(Kind))
return CallInst::TCK_NoTail;
return CallInst::TCK_None;
}
static bool lowerObjCCall(Function &F, const char *NewFn,
bool setNonLazyBind = false) {
assert(IntrinsicInst::mayLowerToFunctionCall(F.getIntrinsicID()) &&
"Pre-ISel intrinsics do lower into regular function calls");
if (F.use_empty())
return false;
// If we haven't already looked up this function, check to see if the
// program already contains a function with this name.
Module *M = F.getParent();
FunctionCallee FCache = M->getOrInsertFunction(NewFn, F.getFunctionType());
if (Function *Fn = dyn_cast<Function>(FCache.getCallee())) {
Fn->setLinkage(F.getLinkage());
if (setNonLazyBind && !Fn->isWeakForLinker()) {
// If we have Native ARC, set nonlazybind attribute for these APIs for
// performance.
Fn->addFnAttr(Attribute::NonLazyBind);
}
}
CallInst::TailCallKind OverridingTCK = getOverridingTailCallKind(F);
for (Use &U : llvm::make_early_inc_range(F.uses())) {
auto *CB = cast<CallBase>(U.getUser());
if (CB->getCalledFunction() != &F) {
objcarc::ARCInstKind Kind = objcarc::getAttachedARCFunctionKind(CB);
(void)Kind;
assert((Kind == objcarc::ARCInstKind::RetainRV ||
Kind == objcarc::ARCInstKind::UnsafeClaimRV) &&
"use expected to be the argument of operand bundle "
"\"clang.arc.attachedcall\"");
U.set(FCache.getCallee());
continue;
}
auto *CI = cast<CallInst>(CB);
assert(CI->getCalledFunction() && "Cannot lower an indirect call!");
IRBuilder<> Builder(CI->getParent(), CI->getIterator());
SmallVector<Value *, 8> Args(CI->args());
SmallVector<llvm::OperandBundleDef, 1> BundleList;
CI->getOperandBundlesAsDefs(BundleList);
CallInst *NewCI = Builder.CreateCall(FCache, Args, BundleList);
NewCI->setName(CI->getName());
// Try to set the most appropriate TailCallKind based on both the current
// attributes and the ones that we could get from ObjCARC's special
// knowledge of the runtime functions.
//
// std::max respects both requirements of notail and tail here:
// * notail on either the call or from ObjCARC becomes notail
// * tail on either side is stronger than none, but not notail
CallInst::TailCallKind TCK = CI->getTailCallKind();
NewCI->setTailCallKind(std::max(TCK, OverridingTCK));
// Transfer the 'returned' attribute from the intrinsic to the call site.
// By applying this only to intrinsic call sites, we avoid applying it to
// non-ARC explicit calls to things like objc_retain which have not been
// auto-upgraded to use the intrinsics.
unsigned Index;
if (F.getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
Index)
NewCI->addParamAttr(Index - AttributeList::FirstArgIndex,
Attribute::Returned);
if (!CI->use_empty())
CI->replaceAllUsesWith(NewCI);
CI->eraseFromParent();
}
return true;
}
// TODO: Should refine based on estimated number of accesses (e.g. does it
// require splitting based on alignment)
bool PreISelIntrinsicLowering::shouldExpandMemIntrinsicWithSize(
Value *Size, const TargetTransformInfo &TTI) {
ConstantInt *CI = dyn_cast<ConstantInt>(Size);
if (!CI)
return true;
uint64_t Threshold = MemIntrinsicExpandSizeThresholdOpt.getNumOccurrences()
? MemIntrinsicExpandSizeThresholdOpt
: TTI.getMaxMemIntrinsicInlineSizeThreshold();
uint64_t SizeVal = CI->getZExtValue();
// Treat a threshold of 0 as a special case to force expansion of all
// intrinsics, including size 0.
return SizeVal > Threshold || Threshold == 0;
}
static bool canEmitLibcall(const TargetMachine &TM, Function *F,
RTLIB::Libcall LC) {
// TODO: Should this consider the address space of the memcpy?
const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering();
return TLI->getLibcallName(LC) != nullptr;
}
// TODO: Handle atomic memcpy and memcpy.inline
// TODO: Pass ScalarEvolution
bool PreISelIntrinsicLowering::expandMemIntrinsicUses(Function &F) const {
Intrinsic::ID ID = F.getIntrinsicID();
bool Changed = false;
for (User *U : llvm::make_early_inc_range(F.users())) {
Instruction *Inst = cast<Instruction>(U);
switch (ID) {
case Intrinsic::memcpy: {
auto *Memcpy = cast<MemCpyInst>(Inst);
Function *ParentFunc = Memcpy->getFunction();
const TargetTransformInfo &TTI = LookupTTI(*ParentFunc);
if (shouldExpandMemIntrinsicWithSize(Memcpy->getLength(), TTI)) {
if (UseMemIntrinsicLibFunc &&
canEmitLibcall(TM, ParentFunc, RTLIB::MEMCPY))
break;
// TODO: For optsize, emit the loop into a separate function
expandMemCpyAsLoop(Memcpy, TTI);
Changed = true;
Memcpy->eraseFromParent();
}
break;
}
case Intrinsic::memmove: {
auto *Memmove = cast<MemMoveInst>(Inst);
Function *ParentFunc = Memmove->getFunction();
const TargetTransformInfo &TTI = LookupTTI(*ParentFunc);
if (shouldExpandMemIntrinsicWithSize(Memmove->getLength(), TTI)) {
if (UseMemIntrinsicLibFunc &&
canEmitLibcall(TM, ParentFunc, RTLIB::MEMMOVE))
break;
if (expandMemMoveAsLoop(Memmove, TTI)) {
Changed = true;
Memmove->eraseFromParent();
}
}
break;
}
case Intrinsic::memset: {
auto *Memset = cast<MemSetInst>(Inst);
Function *ParentFunc = Memset->getFunction();
const TargetTransformInfo &TTI = LookupTTI(*ParentFunc);
if (shouldExpandMemIntrinsicWithSize(Memset->getLength(), TTI)) {
if (UseMemIntrinsicLibFunc &&
canEmitLibcall(TM, ParentFunc, RTLIB::MEMSET))
break;
expandMemSetAsLoop(Memset);
Changed = true;
Memset->eraseFromParent();
}
break;
}
default:
llvm_unreachable("unhandled intrinsic");
}
}
return Changed;
}
bool PreISelIntrinsicLowering::lowerIntrinsics(Module &M) const {
bool Changed = false;
for (Function &F : M) {
switch (F.getIntrinsicID()) {
default:
break;
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
Changed |= expandMemIntrinsicUses(F);
break;
case Intrinsic::load_relative:
Changed |= lowerLoadRelative(F);
break;
case Intrinsic::objc_autorelease:
Changed |= lowerObjCCall(F, "objc_autorelease");
break;
case Intrinsic::objc_autoreleasePoolPop:
Changed |= lowerObjCCall(F, "objc_autoreleasePoolPop");
break;
case Intrinsic::objc_autoreleasePoolPush:
Changed |= lowerObjCCall(F, "objc_autoreleasePoolPush");
break;
case Intrinsic::objc_autoreleaseReturnValue:
Changed |= lowerObjCCall(F, "objc_autoreleaseReturnValue");
break;
case Intrinsic::objc_copyWeak:
Changed |= lowerObjCCall(F, "objc_copyWeak");
break;
case Intrinsic::objc_destroyWeak:
Changed |= lowerObjCCall(F, "objc_destroyWeak");
break;
case Intrinsic::objc_initWeak:
Changed |= lowerObjCCall(F, "objc_initWeak");
break;
case Intrinsic::objc_loadWeak:
Changed |= lowerObjCCall(F, "objc_loadWeak");
break;
case Intrinsic::objc_loadWeakRetained:
Changed |= lowerObjCCall(F, "objc_loadWeakRetained");
break;
case Intrinsic::objc_moveWeak:
Changed |= lowerObjCCall(F, "objc_moveWeak");
break;
case Intrinsic::objc_release:
Changed |= lowerObjCCall(F, "objc_release", true);
break;
case Intrinsic::objc_retain:
Changed |= lowerObjCCall(F, "objc_retain", true);
break;
case Intrinsic::objc_retainAutorelease:
Changed |= lowerObjCCall(F, "objc_retainAutorelease");
break;
case Intrinsic::objc_retainAutoreleaseReturnValue:
Changed |= lowerObjCCall(F, "objc_retainAutoreleaseReturnValue");
break;
case Intrinsic::objc_retainAutoreleasedReturnValue:
Changed |= lowerObjCCall(F, "objc_retainAutoreleasedReturnValue");
break;
case Intrinsic::objc_retainBlock:
Changed |= lowerObjCCall(F, "objc_retainBlock");
break;
case Intrinsic::objc_storeStrong:
Changed |= lowerObjCCall(F, "objc_storeStrong");
break;
case Intrinsic::objc_storeWeak:
Changed |= lowerObjCCall(F, "objc_storeWeak");
break;
case Intrinsic::objc_unsafeClaimAutoreleasedReturnValue:
Changed |= lowerObjCCall(F, "objc_unsafeClaimAutoreleasedReturnValue");
break;
case Intrinsic::objc_retainedObject:
Changed |= lowerObjCCall(F, "objc_retainedObject");
break;
case Intrinsic::objc_unretainedObject:
Changed |= lowerObjCCall(F, "objc_unretainedObject");
break;
case Intrinsic::objc_unretainedPointer:
Changed |= lowerObjCCall(F, "objc_unretainedPointer");
break;
case Intrinsic::objc_retain_autorelease:
Changed |= lowerObjCCall(F, "objc_retain_autorelease");
break;
case Intrinsic::objc_sync_enter:
Changed |= lowerObjCCall(F, "objc_sync_enter");
break;
case Intrinsic::objc_sync_exit:
Changed |= lowerObjCCall(F, "objc_sync_exit");
break;
}
}
return Changed;
}
namespace {
class PreISelIntrinsicLoweringLegacyPass : public ModulePass {
public:
static char ID;
PreISelIntrinsicLoweringLegacyPass() : ModulePass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<TargetPassConfig>();
}
bool runOnModule(Module &M) override {
auto LookupTTI = [this](Function &F) -> TargetTransformInfo & {
return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
};
const auto &TM = getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
PreISelIntrinsicLowering Lowering(TM, LookupTTI);
return Lowering.lowerIntrinsics(M);
}
};
} // end anonymous namespace
char PreISelIntrinsicLoweringLegacyPass::ID;
INITIALIZE_PASS_BEGIN(PreISelIntrinsicLoweringLegacyPass,
"pre-isel-intrinsic-lowering",
"Pre-ISel Intrinsic Lowering", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(PreISelIntrinsicLoweringLegacyPass,
"pre-isel-intrinsic-lowering",
"Pre-ISel Intrinsic Lowering", false, false)
ModulePass *llvm::createPreISelIntrinsicLoweringPass() {
return new PreISelIntrinsicLoweringLegacyPass();
}
PreservedAnalyses PreISelIntrinsicLoweringPass::run(Module &M,
ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto LookupTTI = [&FAM](Function &F) -> TargetTransformInfo & {
return FAM.getResult<TargetIRAnalysis>(F);
};
PreISelIntrinsicLowering Lowering(TM, LookupTTI);
if (!Lowering.lowerIntrinsics(M))
return PreservedAnalyses::all();
else
return PreservedAnalyses::none();
}