blob: e27db66710a1bfbcccf103c5a27ce9bfb02c2e19 [file] [log] [blame]
//===- FunctionPropertiesAnalysis.cpp - Function Properties Analysis ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the FunctionPropertiesInfo and FunctionPropertiesAnalysis
// classes used to extract function properties.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/FunctionPropertiesAnalysis.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include <deque>
using namespace llvm;
namespace llvm {
cl::opt<bool> EnableDetailedFunctionProperties(
"enable-detailed-function-properties", cl::Hidden, cl::init(false),
cl::desc("Whether or not to compute detailed function properties."));
cl::opt<unsigned> BigBasicBlockInstructionThreshold(
"big-basic-block-instruction-threshold", cl::Hidden, cl::init(500),
cl::desc("The minimum number of instructions a basic block should contain "
"before being considered big."));
cl::opt<unsigned> MediumBasicBlockInstructionThreshold(
"medium-basic-block-instruction-threshold", cl::Hidden, cl::init(15),
cl::desc("The minimum number of instructions a basic block should contain "
"before being considered medium-sized."));
}
static cl::opt<unsigned> CallWithManyArgumentsThreshold(
"call-with-many-arguments-threshold", cl::Hidden, cl::init(4),
cl::desc("The minimum number of arguments a function call must have before "
"it is considered having many arguments."));
namespace {
int64_t getNrBlocksFromCond(const BasicBlock &BB) {
int64_t Ret = 0;
if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
if (BI->isConditional())
Ret += BI->getNumSuccessors();
} else if (const auto *SI = dyn_cast<SwitchInst>(BB.getTerminator())) {
Ret += (SI->getNumCases() + (nullptr != SI->getDefaultDest()));
}
return Ret;
}
int64_t getUses(const Function &F) {
return ((!F.hasLocalLinkage()) ? 1 : 0) + F.getNumUses();
}
} // namespace
void FunctionPropertiesInfo::reIncludeBB(const BasicBlock &BB) {
updateForBB(BB, +1);
}
void FunctionPropertiesInfo::updateForBB(const BasicBlock &BB,
int64_t Direction) {
assert(Direction == 1 || Direction == -1);
BasicBlockCount += Direction;
BlocksReachedFromConditionalInstruction +=
(Direction * getNrBlocksFromCond(BB));
for (const auto &I : BB) {
if (auto *CS = dyn_cast<CallBase>(&I)) {
const auto *Callee = CS->getCalledFunction();
if (Callee && !Callee->isIntrinsic() && !Callee->isDeclaration())
DirectCallsToDefinedFunctions += Direction;
}
if (I.getOpcode() == Instruction::Load) {
LoadInstCount += Direction;
} else if (I.getOpcode() == Instruction::Store) {
StoreInstCount += Direction;
}
}
TotalInstructionCount += Direction * BB.sizeWithoutDebug();
if (EnableDetailedFunctionProperties) {
unsigned SuccessorCount = succ_size(&BB);
if (SuccessorCount == 1)
BasicBlocksWithSingleSuccessor += Direction;
else if (SuccessorCount == 2)
BasicBlocksWithTwoSuccessors += Direction;
else if (SuccessorCount > 2)
BasicBlocksWithMoreThanTwoSuccessors += Direction;
unsigned PredecessorCount = pred_size(&BB);
if (PredecessorCount == 1)
BasicBlocksWithSinglePredecessor += Direction;
else if (PredecessorCount == 2)
BasicBlocksWithTwoPredecessors += Direction;
else if (PredecessorCount > 2)
BasicBlocksWithMoreThanTwoPredecessors += Direction;
if (TotalInstructionCount > BigBasicBlockInstructionThreshold)
BigBasicBlocks += Direction;
else if (TotalInstructionCount > MediumBasicBlockInstructionThreshold)
MediumBasicBlocks += Direction;
else
SmallBasicBlocks += Direction;
// Calculate critical edges by looking through all successors of a basic
// block that has multiple successors and finding ones that have multiple
// predecessors, which represent critical edges.
if (SuccessorCount > 1) {
for (const auto *Successor : successors(&BB)) {
if (pred_size(Successor) > 1)
CriticalEdgeCount += Direction;
}
}
ControlFlowEdgeCount += Direction * SuccessorCount;
if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
if (!BI->isConditional())
UnconditionalBranchCount += Direction;
}
for (const Instruction &I : BB.instructionsWithoutDebug()) {
if (I.isCast())
CastInstructionCount += Direction;
if (I.getType()->isFloatTy())
FloatingPointInstructionCount += Direction;
else if (I.getType()->isIntegerTy())
IntegerInstructionCount += Direction;
if (isa<IntrinsicInst>(I))
++IntrinsicCount;
if (const auto *Call = dyn_cast<CallInst>(&I)) {
if (Call->isIndirectCall())
IndirectCallCount += Direction;
else
DirectCallCount += Direction;
if (Call->getType()->isIntegerTy())
CallReturnsIntegerCount += Direction;
else if (Call->getType()->isFloatingPointTy())
CallReturnsFloatCount += Direction;
else if (Call->getType()->isPointerTy())
CallReturnsPointerCount += Direction;
else if (Call->getType()->isVectorTy()) {
if (Call->getType()->getScalarType()->isIntegerTy())
CallReturnsVectorIntCount += Direction;
else if (Call->getType()->getScalarType()->isFloatingPointTy())
CallReturnsVectorFloatCount += Direction;
else if (Call->getType()->getScalarType()->isPointerTy())
CallReturnsVectorPointerCount += Direction;
}
if (Call->arg_size() > CallWithManyArgumentsThreshold)
CallWithManyArgumentsCount += Direction;
for (const auto &Arg : Call->args()) {
if (Arg->getType()->isPointerTy()) {
CallWithPointerArgumentCount += Direction;
break;
}
}
}
#define COUNT_OPERAND(OPTYPE) \
if (isa<OPTYPE>(Operand)) { \
OPTYPE##OperandCount += Direction; \
continue; \
}
for (unsigned int OperandIndex = 0; OperandIndex < I.getNumOperands();
++OperandIndex) {
Value *Operand = I.getOperand(OperandIndex);
COUNT_OPERAND(GlobalValue)
COUNT_OPERAND(ConstantInt)
COUNT_OPERAND(ConstantFP)
COUNT_OPERAND(Constant)
COUNT_OPERAND(Instruction)
COUNT_OPERAND(BasicBlock)
COUNT_OPERAND(InlineAsm)
COUNT_OPERAND(Argument)
// We only get to this point if we haven't matched any of the other
// operand types.
UnknownOperandCount += Direction;
}
#undef CHECK_OPERAND
}
}
}
void FunctionPropertiesInfo::updateAggregateStats(const Function &F,
const LoopInfo &LI) {
Uses = getUses(F);
TopLevelLoopCount = llvm::size(LI);
MaxLoopDepth = 0;
std::deque<const Loop *> Worklist;
llvm::append_range(Worklist, LI);
while (!Worklist.empty()) {
const auto *L = Worklist.front();
MaxLoopDepth =
std::max(MaxLoopDepth, static_cast<int64_t>(L->getLoopDepth()));
Worklist.pop_front();
llvm::append_range(Worklist, L->getSubLoops());
}
}
FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo(
Function &F, FunctionAnalysisManager &FAM) {
return getFunctionPropertiesInfo(F, FAM.getResult<DominatorTreeAnalysis>(F),
FAM.getResult<LoopAnalysis>(F));
}
FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo(
const Function &F, const DominatorTree &DT, const LoopInfo &LI) {
FunctionPropertiesInfo FPI;
for (const auto &BB : F)
if (DT.isReachableFromEntry(&BB))
FPI.reIncludeBB(BB);
FPI.updateAggregateStats(F, LI);
return FPI;
}
void FunctionPropertiesInfo::print(raw_ostream &OS) const {
#define PRINT_PROPERTY(PROP_NAME) OS << #PROP_NAME ": " << PROP_NAME << "\n";
PRINT_PROPERTY(BasicBlockCount)
PRINT_PROPERTY(BlocksReachedFromConditionalInstruction)
PRINT_PROPERTY(Uses)
PRINT_PROPERTY(DirectCallsToDefinedFunctions)
PRINT_PROPERTY(LoadInstCount)
PRINT_PROPERTY(StoreInstCount)
PRINT_PROPERTY(MaxLoopDepth)
PRINT_PROPERTY(TopLevelLoopCount)
PRINT_PROPERTY(TotalInstructionCount)
if (EnableDetailedFunctionProperties) {
PRINT_PROPERTY(BasicBlocksWithSingleSuccessor)
PRINT_PROPERTY(BasicBlocksWithTwoSuccessors)
PRINT_PROPERTY(BasicBlocksWithMoreThanTwoSuccessors)
PRINT_PROPERTY(BasicBlocksWithSinglePredecessor)
PRINT_PROPERTY(BasicBlocksWithTwoPredecessors)
PRINT_PROPERTY(BasicBlocksWithMoreThanTwoPredecessors)
PRINT_PROPERTY(BigBasicBlocks)
PRINT_PROPERTY(MediumBasicBlocks)
PRINT_PROPERTY(SmallBasicBlocks)
PRINT_PROPERTY(CastInstructionCount)
PRINT_PROPERTY(FloatingPointInstructionCount)
PRINT_PROPERTY(IntegerInstructionCount)
PRINT_PROPERTY(ConstantIntOperandCount)
PRINT_PROPERTY(ConstantFPOperandCount)
PRINT_PROPERTY(ConstantOperandCount)
PRINT_PROPERTY(InstructionOperandCount)
PRINT_PROPERTY(BasicBlockOperandCount)
PRINT_PROPERTY(GlobalValueOperandCount)
PRINT_PROPERTY(InlineAsmOperandCount)
PRINT_PROPERTY(ArgumentOperandCount)
PRINT_PROPERTY(UnknownOperandCount)
PRINT_PROPERTY(CriticalEdgeCount)
PRINT_PROPERTY(ControlFlowEdgeCount)
PRINT_PROPERTY(UnconditionalBranchCount)
PRINT_PROPERTY(IntrinsicCount)
PRINT_PROPERTY(DirectCallCount)
PRINT_PROPERTY(IndirectCallCount)
PRINT_PROPERTY(CallReturnsIntegerCount)
PRINT_PROPERTY(CallReturnsFloatCount)
PRINT_PROPERTY(CallReturnsPointerCount)
PRINT_PROPERTY(CallReturnsVectorIntCount)
PRINT_PROPERTY(CallReturnsVectorFloatCount)
PRINT_PROPERTY(CallReturnsVectorPointerCount)
PRINT_PROPERTY(CallWithManyArgumentsCount)
PRINT_PROPERTY(CallWithPointerArgumentCount)
}
#undef PRINT_PROPERTY
OS << "\n";
}
AnalysisKey FunctionPropertiesAnalysis::Key;
FunctionPropertiesInfo
FunctionPropertiesAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
return FunctionPropertiesInfo::getFunctionPropertiesInfo(F, FAM);
}
PreservedAnalyses
FunctionPropertiesPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
OS << "Printing analysis results of CFA for function "
<< "'" << F.getName() << "':"
<< "\n";
AM.getResult<FunctionPropertiesAnalysis>(F).print(OS);
return PreservedAnalyses::all();
}
FunctionPropertiesUpdater::FunctionPropertiesUpdater(
FunctionPropertiesInfo &FPI, CallBase &CB)
: FPI(FPI), CallSiteBB(*CB.getParent()), Caller(*CallSiteBB.getParent()) {
assert(isa<CallInst>(CB) || isa<InvokeInst>(CB));
// For BBs that are likely to change, we subtract from feature totals their
// contribution. Some features, like max loop counts or depths, are left
// invalid, as they will be updated post-inlining.
SmallPtrSet<const BasicBlock *, 4> LikelyToChangeBBs;
// The CB BB will change - it'll either be split or the callee's body (single
// BB) will be pasted in.
LikelyToChangeBBs.insert(&CallSiteBB);
// The caller's entry BB may change due to new alloca instructions.
LikelyToChangeBBs.insert(&*Caller.begin());
// The successors may become unreachable in the case of `invoke` inlining.
// We track successors separately, too, because they form a boundary, together
// with the CB BB ('Entry') between which the inlined callee will be pasted.
Successors.insert(succ_begin(&CallSiteBB), succ_end(&CallSiteBB));
// Inlining only handles invoke and calls. If this is an invoke, and inlining
// it pulls another invoke, the original landing pad may get split, so as to
// share its content with other potential users. So the edge up to which we
// need to invalidate and then re-account BB data is the successors of the
// current landing pad. We can leave the current lp, too - if it doesn't get
// split, then it will be the place traversal stops. Either way, the
// discounted BBs will be checked if reachable and re-added.
if (const auto *II = dyn_cast<InvokeInst>(&CB)) {
const auto *UnwindDest = II->getUnwindDest();
Successors.insert(succ_begin(UnwindDest), succ_end(UnwindDest));
}
// Exclude the CallSiteBB, if it happens to be its own successor (1-BB loop).
// We are only interested in BBs the graph moves past the callsite BB to
// define the frontier past which we don't want to re-process BBs. Including
// the callsite BB in this case would prematurely stop the traversal in
// finish().
Successors.erase(&CallSiteBB);
for (const auto *BB : Successors)
LikelyToChangeBBs.insert(BB);
// Commit the change. While some of the BBs accounted for above may play dual
// role - e.g. caller's entry BB may be the same as the callsite BB - set
// insertion semantics make sure we account them once. This needs to be
// followed in `finish`, too.
for (const auto *BB : LikelyToChangeBBs)
FPI.updateForBB(*BB, -1);
}
void FunctionPropertiesUpdater::finish(FunctionAnalysisManager &FAM) const {
// Update feature values from the BBs that were copied from the callee, or
// might have been modified because of inlining. The latter have been
// subtracted in the FunctionPropertiesUpdater ctor.
// There could be successors that were reached before but now are only
// reachable from elsewhere in the CFG.
// One example is the following diamond CFG (lines are arrows pointing down):
// A
// / \
// B C
// | |
// | D
// | |
// | E
// \ /
// F
// There's a call site in C that is inlined. Upon doing that, it turns out
// it expands to
// call void @llvm.trap()
// unreachable
// F isn't reachable from C anymore, but we did discount it when we set up
// FunctionPropertiesUpdater, so we need to re-include it here.
// At the same time, D and E were reachable before, but now are not anymore,
// so we need to leave D out (we discounted it at setup), and explicitly
// remove E.
SetVector<const BasicBlock *> Reinclude;
SetVector<const BasicBlock *> Unreachable;
const auto &DT =
FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(Caller));
if (&CallSiteBB != &*Caller.begin())
Reinclude.insert(&*Caller.begin());
// Distribute the successors to the 2 buckets.
for (const auto *Succ : Successors)
if (DT.isReachableFromEntry(Succ))
Reinclude.insert(Succ);
else
Unreachable.insert(Succ);
// For reinclusion, we want to stop at the reachable successors, who are at
// the beginning of the worklist; but, starting from the callsite bb and
// ending at those successors, we also want to perform a traversal.
// IncludeSuccessorsMark is the index after which we include successors.
const auto IncludeSuccessorsMark = Reinclude.size();
bool CSInsertion = Reinclude.insert(&CallSiteBB);
(void)CSInsertion;
assert(CSInsertion);
for (size_t I = 0; I < Reinclude.size(); ++I) {
const auto *BB = Reinclude[I];
FPI.reIncludeBB(*BB);
if (I >= IncludeSuccessorsMark)
Reinclude.insert(succ_begin(BB), succ_end(BB));
}
// For exclusion, we don't need to exclude the set of BBs that were successors
// before and are now unreachable, because we already did that at setup. For
// the rest, as long as a successor is unreachable, we want to explicitly
// exclude it.
const auto AlreadyExcludedMark = Unreachable.size();
for (size_t I = 0; I < Unreachable.size(); ++I) {
const auto *U = Unreachable[I];
if (I >= AlreadyExcludedMark)
FPI.updateForBB(*U, -1);
for (const auto *Succ : successors(U))
if (!DT.isReachableFromEntry(Succ))
Unreachable.insert(Succ);
}
const auto &LI = FAM.getResult<LoopAnalysis>(const_cast<Function &>(Caller));
FPI.updateAggregateStats(Caller, LI);
}
bool FunctionPropertiesUpdater::isUpdateValid(Function &F,
const FunctionPropertiesInfo &FPI,
FunctionAnalysisManager &FAM) {
DominatorTree DT(F);
LoopInfo LI(DT);
auto Fresh = FunctionPropertiesInfo::getFunctionPropertiesInfo(F, DT, LI);
return FPI == Fresh;
}